
CSCI-1680
Link Layer

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 David	
 Mazières,	
 Phil	
 Levis,	
 John	
 Janno<	

Rodrigo Fonseca

Administrivia

•  Where are the policy forms?
•  Snowcast due on Friday
•  Homework I out on ursday
•  GitHub

–  brown-csci1680 organization
–  Private repositories for each group

Today
•  Previously…

–  Physical Layer
•  Encoding
•  Modulation

–  Link Layer
•  Framing

•  Link Layer
–  Error Detection
–  Reliability
–  Media Access
–  Ethernet
–  Token Ring

Error Detection

•  Idea: add redundant information to catch
errors in packet

•  Used in multiple layers
•  ree examples:

–  Parity
–  Internet Checksum
–  CRC

Simplest Schemes

•  Repeat frame
–  High overhead
–  Can’t correct error

•  Parity
–  Can detect odd number of bit errors
–  No correction

2-D Parity

•  Add 1 parity bit for each 7 bits
•  Add 1 parity bit for each bit position across the

frame)
–  Can correct single-bit errors
–  Can detect 2- and 3-bit errors, most 4-bit errors

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data

IP Checksum
•  Fixed-length code

–  n-bit code should capture all but 2-n fraction of errors
–  But want to make sure that includes all common errors

•  Example: IP Checksum

Fixed-length codes
• Idea: Fixed-length code for arbitrary-size message

- Calculate code, append to message
- If code “mixes up the bits” enough, will detect many errors
- n-bit code should catch all but 2−n faction of errors
- But want to make sure that includes all common errors

• Example: IP checksum
u_short

cksum (u_short *buf, int count)

{

u_long sum = 0;

while (count--)

if ((sum += *buf) & 0xffff) /* carry */

sum = (sum & 0xffff) + 1;

return ~(sum & 0xffff);

}

How good is it?

•  16 bits not very long: misses 1/64K errors
•  Checksum does catch any 1-bit error
•  But not any 2-bit error

–  E.g., increment word ending in 0, decrement one
ending in 1

•  Checksum also optional in UDP
–  All 0s means no checksums calculated
–  If checksum word gets wiped to 0 as part of error, bad

news

CRC – Error Detection with Polynomials

•  Consider message to be a polynomial in Z2[x]
–  Each bit is one coefficient
–  E.g., message 10101001 -> m(x) = x7 + x5+ x3 + 1

•  Can reduce one polynomial modulo another
–  Let n(x) = m(x)x3. Let C(x) = x3 + x2 + 1

–  Find q(x) and r(x) s.t. n(x) = q(x)C(x) + r(x) and
degree of r(x) < degree of C(x)

–  Analogous to taking 11 mod 5 = 1

Polynomial Division Example

•  Just long division, but addition/subtraction is XOR

Generator 1101
11111001
10011010000 Message
1101

1001
1101

1000
1101

1011
1101
1100
1101

1000
1101

101 Remainder

CRC
•  Select a divisor polynomial C(x), degree k

–  C(x) should be irreducible – not expressible as a product of
two lower-degree polynomials in Z2[x]

•  Add k bits to message
–  Let n(x) = m(x)xk (add k 0’s to m)
–  Compute r(x) = n(x) mod C(x)
–  Compute n(x) = n(x) – r(x) (will be divisible by C(x))

(subtraction is XOR, just set k lowest bits to r(x)!)
•  Checking CRC is easy

–  Reduce message by C(x), make sure remainder is 0

Why is this good?

•  Suppose you send m(x), recipient gets m’(x)
–  E(x) = m’(x) – m(x) (all the incorrect bits)
–  If CRC passes, C(x) divides m’(x)
–  erefore, C(x) must divide E(x)

•  Choose C(x) that doesn’t divide any common errors!
–  All single-bit errors caught if xk, x0 coefficients in C(x) are 1
–  All 2-bit errors caught if at least 3 terms in C(x)
–  Any odd number of errors if last two terms (x + 1)
–  Any error burst less than length k caught

Common CRC Polynomials

•  CRC-8: x8 + x2 + x1 + 1
•  CRC-16: x16 + x15 + x2 + x1

•  CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 +
x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

•  CRC easily computable in hardware

Reliable Delivery

•  Error detection can discard bad packets
•  Problem: if bad packets are lost, how can we

ensure reliable delivery?
–  Exactly-once semantics = at least once + at most once

At Least Once Semantics

•  How can the sender know packet arrived at
least once?
–  Acknowledgments + Timeout

•  Stop and Wait Protocol
–  S: Send packet, wait
–  R: Receive packet, send ACK
–  S: Receive ACK, send next packet
–  S: No ACK, timeout and retransmit

Sender Receiver

Frame

ACK

T
im

eo
u

t

T
im

e

Sender Receiver

Frame

ACK

T
im

eo
u

t

Frame

ACK

T
im

eo
u

t

Sender Receiver

Frame

ACKT
im

eo
u

t
Frame

ACKT
im

eo
u

t

Sender Receiver

Frame

T
im

eo
u

t

Frame

ACK

T
im

eo
u

t

(a) (c)

(b) (d)

Stop and Wait Problems

•  Duplicate data
•  Duplicate acks
•  Can’t "ll pipe (remember bandwitdh-delay

product)
•  Difficult to set the timeout value

At Most Once Semantics

•  How to avoid duplicates?
–  Uniquely identify each packet
–  Have receiver and sender remember

•  Stop and Wait: add 1 bit to the header
–  Why is it enough?

Sender Receiver

Frame 0

ACK 0
T

im
e

Frame 1

ACK 1

Frame 0

ACK 0

…

Sliding Window Protocol

•  Still have the problem of keeping pipe full
–  Generalize approach with > 1-bit counter
–  Allow multiple outstanding (unACKed) frames
–  Upper bound on unACKed frames, called window

Sender Receiver

T
im

e

…
…

Sliding Window Sender
•  Assign sequence number (SeqNum) to each frame
•  Maintain three state variables

–  send window size (SWS)
–  last acknowledgment received (LAR)
–  last frame send (LFS)

•  Maintain invariant: LFS – LAR ≤ SWS
•  Advance LAR when ACK arrives
•  Buffer up to SWS frames

≤ SWS

LAR LFS

… …

Sliding Window Receiver
•  Maintain three state variables:

–  receive window size (RWS)
–  largest acceptable frame (LAF)
–  last frame received (LFR)

•  Maintain invariant: LAF – LFR ≤ RWS
•  Frame SeqNum arrives:

–  if LFR < SeqNum ≤ LAF, accept
–  if SeqNum ≤ LFR or SeqNum > LAF, discard

•  Send cumulative ACKs

≤ RWS

LFR LAF

… …

Tuning SW

•  How big should SWS be?
–  “Fill the pipe”

•  How big should RWS be?
–  1 ≤ RWS ≤ SWS

•  How many distinct sequence numbers needed?
–  If RWS = 1, need at least SWS+1
–  If RWS = SWS, SWS < (#seqs + 1)/2

Case Study: Ethernet (802.3)

•  Dominant wired LAN technology
–  10BASE2, 10BASE5 (Vampire Taps)
–  10BASET, 100BASE-TX, 1000BASE-T, 10GBASE-T,…

•  Both Physical and Link Layer speci"cation
•  CSMA/CD

–  Carrier Sense / Multiple Access / Collision Detection

•  Frame Format (Manchester Encoding):

Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

Ethernet Addressing

•  Globally unique, 48-bit unicast address per
adapter
–  Example: 00:1c:43:00:3d:09 (Samsung adapter)
–  24 msb: organization
–  http://standards.ieee.org/develop/regauth/oui/oui.txt

•  Broadcast address: all 1s
•  Multicast address: "rst bit 1
•  Adapter can work in promiscuous mode

Media Access Control

•  Control access to shared physical medium
–  E.g., who can talk when?
–  If everyone talks at once, no one hears anything
–  Job of the Link Layer

•  Two con&icting goals
–  Maximize utilization when one node sending
–  Approach 1/N allocation when N nodes sending

Different Approaches

•  Partitioned Access
–  Time Division Multiple Access (TDMA)
–  Frequency Division Multiple Access (FDMA)
–  Code Division Multiple Access (CDMA)

•  Random Access
–  ALOHA/ Slotted ALOHA
–  Carrier Sense Multiple Access / Collision Detection

(CSMA/CD)
–  Carrier Sense Multiple Access / Collision Avoidance

(CSMA/CA)
–  RTS/CTS (Request to Send/Clear to Send)
–  Token-based

Ethernet MAC

•  Problem: shared medium
–  10Mbps: 2500m, with 4 repeaters at 500m

•  Transmit algorithm
–  If line is idle, transmit immediately
–  Upper bound message size of 1500 bytes
–  Must wait 9.6μs between back to back frames
–  If line is busy: wait until idle and transmit immediately

Handling Collisions

•  Collision detection (10Base2 Ethernet)
–  Uses Manchester encoding
–  Constant average voltage unless multiple transmitters

•  If collision
–  Jam for 32 bits, then stop transmitting frame

•  Collision detection constrains protocol
–  Imposes min. packet size (64 bytes or 512 bits)
–  Imposes maximum network diameter (2500m)
–  Ensure transmission time ≥ 2x propagation delay

(why?)

Collision Detection

•  Without minimum frame length, might not
detect collision

Violating Timing Constraints

Time

Collision

Detect

No Collision

Detect!

• Without min packet size, might miss collision

When to transmit again?

•  Delay and try again: exponential backoff
•  nth time: k × 51.2μs, for k = U{0..2min(n,10)-1}

–  1st time: 0 or 51.2μs
–  2nd time: 0, 51.2, 102.4, or 153.6μs

•  Give up aer several times (usually 16)

Capture Effect

•  Exponential backoff leads to self-adaptive use
of channel

•  A and B are trying to transmit, and collide
•  Both will back off either 0 or 51.2μs
•  Say A wins.
•  Next time, collide again.

–  A will wait between 0 or 1 slots
–  B will wait between 0, 1, 2, or 3 slots

•  …

Token Ring

•  Idea: frames &ow around ring
•  Capture special “token” bit pattern to transmit
•  Variation used today in Metropolitan Area

Networks, with "ber

Interface Cards

•  Problem: if host dies, can break the network
•  Hardware typically has relays

Host

From previous
host

To next
host

Relay

(a)

Host

Host Host

From previous
host

To next
host

Relay

(b)

Token Ring Frames

•  Frame format (Differential Manchester)

•  Sender grabs token, sends message(s)
•  Recipient checks address
•  Sender removes frame from ring aer lap
•  Maximum holding time: avoid capture
•  Monitor node reestablishes lost token

Body ChecksumSrc
addr

Variable48

Dest
addr

48 32

End
delimiter

8

Frame
status

8

Frame
control

8

Access
control

8

Start
delimiter

8

Coming Up

•  Link Layer Switching

