CSCI-1680 Network Layer: Inter-domain Routing

Rodrigo Fonseca

Based partly on lecture notes by Rob Sherwood, David Mazières, Phil Levis, John Jannotti

Administrivia

- Midterm moved up from 3/17 to 3/15
- IP due on Friday

Today

• Last time: Intra-Domain Routing (IGP)

- RIP distance vector
- OSPF link state
- Inter-Domain Routing (EGP)
 - Border Gateway Protocol
 - Path-vector routing protocol

Why Inter vs. Intra

• Why not just use OSPF everywhere?

- E.g., hierarchies of OSPF areas?
- Hint: scaling is not the only limitation
- BGP is a policy control and information hiding protocol
 - intra == trusted, inter == untrusted
 - Different policies by different ASs
 - Different costs by different ASs

Types of ASs

- Local Traffic source or destination in local AS
- Transit Traffic passes through an AS
- Stub AS
 - Connects to only a single other AS
- Multihomed AS
 - Connects to multiple ASs
 - Carries no transit traffic
- Transit AS
 - Connects to multiple ASs and carries transit traffic

AS Relationships

- How to prevent X from forwarding transit between B and C?
- How to avoid transit between CBA ?
 - B: BAZ -> X
 - B: BAZ -> C ? (=> Y: CBAZ and Y:CAZ)

Choice of Routing Algorithm

- Constraints
 - Scaling
 - Autonomy (policy and privacy)
- Link-state?
 - Requires sharing of complete information
 - Information exchange does not scale
 - Can't express policy
- Distance Vector?
 - Scales and retains privacy
 - Can't implement policy
 - Can't avoid loops if shortest path not taken
 - Count-to-infinity

Path Vector Protocol

- Distance vector algorithm with extra information
 - For each route, store the complete path (ASs)
 - No extra computation, just extra storage (and traffic)
- Advantages
 - Can make policy choices based on set of ASs in path
 - Can easily avoid loops

BGP - High Level

- Single EGP protocol in use today
- Abstract each AS to a single node
- Destinations are CIDR prefixes
- Exchange prefix *reachability* with all neighbors
 - E.g., "I can reach prefix 128.148.0.0/16 through ASes
 44444 3356 14325 11078"
- Select a single path by routing *policy*
- Critical: learn many paths, propagate one
 - Add your ASN to advertised path

Why study BGP?

- Critical protocol: makes the Internet run
 - Only widely deployed EGP
- Active area of problems!
 - Efficiency
 - Cogent vs. Level3: Internet Partition
 - Spammers use prefix hijacking
 - Pakistan accidentally took down YouTube
 - Egypt disconnected for 5 days

BGP Protocol Details

- Separate roles of *speakers* and *gateways*
 - Speakers talk BGP with other ASs
 - Gateways are routes that border other Ass
 - Can have more gateways than speakers
 - Speakers know how to reach gateways
- Speakers connect over TCP on port 179
 - Bidirectional exchange over long-lived connection

BGP Implications

- Explicit AS Path == Loop free
 - Except under churn, IGP/EGP mismatch
- Reachability not guaranteed
 - Decentralized combination of policies
- Not all ASs know all paths
- AS abstraction -> loss of efficiency
- Scaling
 - 37K ASs
 - 350K+ prefixes
 - ASs with one prefix: 15664
 - Most prefixes by one AS: 3686 (AS6389, BellSouth)

BGP Table Growth

Source: bgp.potaroo.net

Integrating EGP and IGP

• Stub ASs

- Border router clear choice for default route
- Inject into IGP: "any unknown route to border router"

• Inject specific prefixes in IGP

– E.g., Provider injects routes to customer prefix

• Backbone networks

- Too many prefixes for IGP
- Run internal version of BGP, iBGP
- All routers learn mappings: Prefix -> Border Router
- Use IGP to learn: Border Router -> Next Hop

BGP Messages

- Base protocol has four message types
 - OPEN Initialize connection. Identifies peers and must be first message in each direction
 - UPDATE Announce routing changes (most important message)
 - NOTIFICATION Announce error when closing connection
 - KEEPALIVE Make sure peer is alive
- Extensions can define more message types
 - E.g., ROUTE-REFRESH [RFC 2918]

Anatomy of an UPDATE

- Withdrawn routes: list of withdrawn IP prefixes
- Network Layer Reachability Information (NLRI)
 - List of prefixes to which path attributes apply
- Path attributes
 - ORIGIN, AS_PATH, NEXT_HOP, MULTI-EXIT-DISC, LOCAL_PREF, ATOMIC_AGGREGATE, AGGREGATOR, ...
 - Each attribute has 1-byte type, 1-byte flags, length, content
 - Can introduce new types of path attribute e.g., AS4_PATH for 32-bit AS numbers

Example

- NLRI: 128.148.0.0/16
- AS Path: ASN 44444 3356 14325 11078
- Next Hop IP: same as in RIPv2
- Knobs for traffic engineering:
 - Metric, weight, LocalPath, MED, Communities
 - Lots of voodoo

BGP State

- BGP speaker conceptually maintains 3 sets of state
- Adj-RIB-In
 - "Adjacent Routing Information Base, Incoming"
 - Unprocessed routes learned from other BGP speakers
- Loc-RIB
 - Contains routes from Adj-RIB-In selected by policy
 - First hop of route must be reachable by IGP or static route
- Adj-RIB-Out
 - Subset of Loc-RIB to be advertised to peer speakers

Demo

- Route views project: <u>http://www.routeviews.org</u>
 - telnet route-views.linx.routeviews.org
 - show ip bgp 128.148.0.0/16 longer-prefixes
- All path are learned internally (iBGP)
- Not a production device

Route Selection

- More specific prefix
- Next-hop reachable?
- Prefer highest weight
 - Computed using some AS-specific local policy
- Prefer highest local-pref
- Prefer locally originated routes
- Prefer routes with shortest AS path length
- Prefer eBGP over iBGP
- Prefer routes with lowest cost to egress point
 - Hot-potato routing
- Tie-breaking rules
 - E.g., oldest route, lowest router-id

Customer/Provider AS relationships

- Customer pays for connectivity
 - E.g. Brown contracts with OSHEAN
 - Customer is stub, provider is a transit

• Many customers are multi-homed

- E.g., OSHEAN connects to Level3, Cogent
- Typical policy: prefer routes from customers

Peer Relationships

- ASs agree to exchange traffic for free
 - Penalties/Renegotiate if imbalance
- Tier 1 ISPs have no default route: all peer with each other
- You are Tier *i* + 1 if you have a default route to a Tier *i*

Peering Drama

- Cogent vs. Level3 were peers
- In 2003, Level3 decided to start charging Cogent
- Cogent said no
- Internet partition: Cogent's customers couldn't get to Level3's customers and vice-versa
 - Other ISPs were affected as well
- Took 3 weeks to reach an undisclosed agreement

"Shutting off" the Internet

- Starting from Jan 27th, 2011, Egypt was disconnected from the Internet
 - 2769/2903 networks withdrawn from BGP (95%!

Source: RIPEStat - http://stat.ripe.net/egypt/

Egypt Incident

Source: BGPMon (http://bgpmon.net/blog/?p=480)

Some BGP Challenges

- Convergence
- Scaling (route reflectors)
- Traffic engineering
 - How to assure certain routes are selected
- Security

Convergence

- Given a change, how long until the network restabilizes?
 - Depends on change: sometimes never
 - Open research problem: "tweak and pray"
 - Distributed setting is challenging
- Easier: is there a stable configuration?
 - Distributed: open research problem
 - Centralized: NP-Complete problem!
 - Multiple stable solutions given policies (e.g. "Wedgies", RFC 4264)

Scaling iBGP: route reflectors

BGP Mesh == O(n^2) mess

Scaling iBGP: route reflectors

Route Engineering

- Route filtering
- Setting weights
- More specific routes: longest prefix
- AS prepending: "477 477 477 477"
- More of an art than science

BGP Security

- Anyone can source a prefix announcement!
 - − To say BGP is insecure is an understatement ☺

• Pakistan Youtube incident

- Youtube's has prefix 208.65.152.0/22
- Pakistan's government order Youtube blocked
- Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
- Longest prefix match caused worldwide outage
- <u>http://www.youtube.com/watch?v=IzLPKuAOe50</u>

Many other incidents

- Spammers steal unused IP space to hide
 - Announce very short prefixes
 - For a short amount of time

• China incident, April 8th 2010

- China Telecom's AS23724 generally announces 40 prefixes
- On April 8th, announced ~37,000 prefixes
- About 10% leaked outside of China
- Suddenly, going to <u>www.dell.com</u> might have you routing through AS23724!
- Secure BGP is in the works

BGP Recap

- Key protocol that holds Internet routing together
- Path Vector Protocol among Autonomous Systems
- Policy, feasibility first; non-optimal routes
- Important security problems

Next Lecture

• Network layer wrap-up

- IPv6
- Multicast
- MPLS
- Next Chapter: Transport Layer (UDP, TCP,...)

