CSCI-1680
Network Layer:
Wrap-up

Rodrigo Fonseca

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti



Today

 Snowcast feedback
e Multicast
e [Pv6




Snowcast Feedback

* Results should be in early next week
* Current average: 74

* Common mistakes
— Byte order: ntoh* and hton*
— Not checking bytes read/written
— Using printf for non-textual data
— Memory and socket leaks

— Rate calculation: carefully read the spec!




Byte order issues

* In-memory short/long -> hton*() -> network
* Network -> ntoh*() -> short/long




Read/write

* printf is for strings: 0-terminated sequence of bytes
— Use read/write for binary data

* Check the return of functions!
* ssize t read (int fd, void *buf, int nbytes);
— Returns number of bytes read
— Returns 0 bytes at end of file, or -1 on error
* ssize t write (int £fd, void* buf, int nbytes);
— Returns number of bytes written, -1 on error
 Common example:
— Read from file in chunks of 1400B.
— Last chunk < 1400.

_ Garbagedata

— Send 1400 bytes




Common Ways to Sanity Check/Debug

Wireshark: will let you see what goes on the wire
netcat: easy way to send / receive data to servers

Valgrind: will find memory leaks in your program
— Forget to free allocated memory
— Double-free a region

— Access to unitialized memory

gdb: allow you inspect all aspects of your program
while running/after a crash

— break/watchpoints

— variable contents, lets you follow pointers, etc...

— useful after segmentation fault, will tell you where/why



Different IP Service Models

* Broadcast: send a packet to all nodes in some
subnet. “One to all”

— 255.255.255.255 : all hosts within a subnet, never
forwarded by a router

— “All ones host part”: broadcast address
 Host address | (255.255.255.255 & ~subnet mask)
* E.g.: 128.148.32.143 mask 255.255.255.128
e ~mask =0.0.0.127 => Bcast = 128.148.32.255

* Example use: DHCP
* Not present in IPv6

— Use multicast to link local all nodes group




Anycast

* Multiple hosts may share the same IP address
* “One to one of many” routing

* Example uses: load balancing, nearby servers
— DNS Root Servers (e.g. f.root-servers.net)
— Google Public DNS (8.8.8.8)
— IPv6 6-to-4 Gateway (192.88.99.1)




Anycast Implementation

* Anycast addresses are /32s
At the BGP level

— Multiple ASs can advertise the same prefixes

— Normal BGP rules choose one route

At the Router level

— Router can have multiple entries for the same prefix

— Can choose among many

* Each packet can go to a different server

— Best for services that are fine with that
(connectionless, stateless)




Multicast

* Send messages to many nodes: “one to many”

* Why do that?
— Snowcast, Internet Radio, IPTV
— Stock quote information
— Multi-way chat / video conferencing
— Multi-player games
* What’s wrong with sending data to each
recipient?
— Link stress

— Have to know address of all destinations




Multicast Service Model

Receivers join a multicast group G
Senders send packets to address G

Network routes and delivers packets to all
members of G

Multicast addresses: class D (start 1110)

224.x.x.X to 229.x.x.X
— 28 bits left for group address



LAN Multicast

* Easy on a shared medium

* Ethernet multicast address range:
— 01:00:57:00:00:00 to 01:00:57:7f:t:ft

e Setlow 23 bits of Ethernet address to low bits
of IP address

— (Small problem: 28-bit group address -> 23 bits)

How about on the Internet?




Use Distribution Trees

* Source-specific trees:
— Spanning tree over recipients, rooted at each source
— Best for each source

* Shared trees:
— Single spanning tree among all sources and recipients

— Hard to find one shared tree that’s best for many
senders

* State in routers much larger for source-specific




Source vs Shared Trees




Building the Tree: Host to Router

* Nodes tell their local routers about groups they
want to join
— IGMP, Internet Group Management Protocol (IPv4)
— MLD, Multicast Listener Discovery (IPv6)

* Router periodically polls LAN to determine
memberships

— Hosts are not required to leave, can stop responding




Building the Tree across networks

* Routers maintain multicast routing tables
— Multicast address -> set of interfaces, or

— <Source, Multicast address> -> set of interfaces

* Critical: only include interfaces where there are
downstream recipients




Using Link State

* Augment update message (LSP) to include set
of groups that have members on a particular
network

* Each router uses Djiktra’s algorithm to
compute shortest path spanning tree for each
source/group pair

* Very expensive!




Distance Vector (DVMRP)

* Reverse path broadcast

— Each router already knows shortest path to S is through
neighbor N

— When receive multicast packet from S, forward on all
outgoing links (except the one it came from), iff packet
came from N

* Eliminate duplicate broadcast packets by letting
only one router per LAN (“parent”) forward
— Router on shortest path from S

— Break ties with smallest address

* Problem: so far, this is broadcast !




Distance Vector (cont)

Goal: prune networks that have no hosts in

group G

If LAN is a leaf (e.g., no other routers), easy:
— Use IGMP

Otherwise, propagate “no members of G here”

— Only happens when multicast address becomes active

“Flood-and-Prune”



Scaling issues

* What if you have very few recipients spread on many
networks?

— Flood and prune highly inefficient

* PIM-SM (Protocol-independent multicast, Sparse
Mode)

— Name a Rendezvous Point (RP) router for a domain
— Send a JOIN(*,G) message to RP
— Routers note the JOIN in their routing table

— Sender S sends unicast packet to RP, which multicasts it to the
{ree

— Optimization 1: RP sends JOIN(S,G) to S
— Optimization 2: Recipients send JOIN(S,G) to S




Inter-Domain

* MSDP connects RPs from different domains
together over TCP
— Mesh of MSDP uses reverse path broadcast

* Other examples (e.g. BGMP)




Practical Considerations

* Multicast protocols end up being quite complex
 Introduce alot of router state
 Turned off on most routers

* Mostly used within domains

— In the department: Ganglia monitoring infrastructure

— IPTV on campus

* Alternative: do multicast in higher layers




IPv6

Main motivation: IPv4 address exhaustion
Initial idea: larger address space

Need new packet format:
— REALLY expensive to upgrade all infrastructure!
— While at it, why don’t we fix a bunch of things in IPv4?

Work started in 1994, basic protocol published
in 1998



IPv6 Key Features

e 128-bit addresses
— Autoconfiguration
* Simplifies basic packet format through
extension headers
— 40-byte base header (fixed)

— Make less common fields optional

* Security and Authentication




IPv6 Address Representation

* Groups of 16 bits in hex notation
47¢d:1244:3422:0000:0000:fef4:43ea:0001

* Two rules:
— Leading 0’s in each 16-bit group can be omitted

47¢d:1244:3422:0:0:fef4:43ea:1

— One contiguous group of 0’s can be compacted

47cd:1244:3422::fef4:43ea:1




IPv6 Addresses

 Break 128 bits into 64-bit network and 64-bit
interface

— Makes autoconfiguration easy: interface part can be
derived from Ethernet address, for example

* Types of addresses
— All 0’s: unspecified
— 000...1: loopback
— f1/8: multicast
— fe8/10: link local unicast
— fec/10: site local unicast

— All else: global unicast




IPv6 Header

Ver Class Flow

Length Next Hdr. | Hop limit

Source
(16 octets, 128 bits)

Destination
(16 octets, 128 bits)




IPv6 Header Fields

* Version: 4 bits, 6

* Class: 8 bits, like TOSS in IPv4

* Flow: 20 bits, identifies a flow

* Length: 16 bits, datagram length
 Next Header, 8 bits: ...

* Hop Limit: 8 bits, like TTL in IPv4
* Addresses: 128 bits

* No options, no checksum




Interoperability

RFC 4291
* Every IPv4 address has an associated IPv6 address

* Simply prefix 32-bit IPv4 address with 96 bits of 0
— E.g., ::128.148.32.2

* Two IPv6 endpoints must have IPv6 stacks

* Transit network:
—V6-V6-V6: VvV
—v4d-vd-v4:vV
—v4-v6-v4: vV
— v6—-v4 —-v6: X!




IP Tunneling

* Encapsulate an IP packet inside another IP packet
* Makes an end-to-end path look like a single IP hop

IPv4 Header

IPv6 Packet :> IPv6 Packet




IPv6 in IPv4 Tunneling

ORO

* Key issues: configuring the tunnels

— Determining addresses
— Determining routes

— Deploying relays to encapsulate/forward/decapsulate

* 6to4 is a standard to automate this

— Deterministic address generation
— Anycast 192.88.99.1 to find gateway into IPv6 network




Other uses for tunneling

Virtual Private Networks
Use case: access CS network from the outside

Set up an encrypted TCP connection between
your computer and Brown’s OpenVPN server

Configure routes to Brown’s internal addresses
to go through this connection

Can connect two remote sites securely



Extension Headers

Two types: hop-by-hop and end-to-end
Both have a next header byte
Last next header also denotes transport protocol

Destination header: intended for IP endpoint
— Fragment header

— Routing header (loose source routing)

Hop-by-hop headers: processed at each hop
— Jumbogram: packet is up to 2°2 bytes long!



Example Next Header Values

* 0: Hop by hop header

* 1: ICMPv4

* 4:1Pv4

* 6:TCP

 17: UDP

* 41:1Pv6

* 43: Routing Header

* 44: Fragmentation Header
* 58: ICMPv6




Fragmentation and MTU

Fragmentation is supported only on end hosts!
Hosts should do MTU discovery

Routers will not fragment: just send ICMP
saying packet was too big

Minimum MTU is 1280-bytes

— If some link layer has smaller MTU, must interpose
fragmentation reassembly underneath



Current State

IPv6 Deployment has been slow

Most end hosts have dual stacks today
(Windows, Mac OSX, Linux, *BSD, Solaris)

2008 Google study:

— Less than 1% of traffic in any country

Requires all parties to work!
— Servers, Clients, DNS, ISPs, all routers

IPv4 and IPv6 will coexist for a long time



Coming Up

* IP handins: please pay attention to the issues
we discussed today, good luck!

* Next week: Transport Layer




