
CSCI-1680
WWW

Based	 partly	 on	 lecture	 notes	 by	 Sco2	 Shenker	 and	 John	 Janno6	

Rodrigo Fonseca

Precursors

•  1945, Vannevar Bush, Memex:
–  “a device in which an individual stores all his books,

records, and communications, and which is
mechanized so that it may be consulted with
exceeding speed and flexibility”

•  Precursors to hypertext
–  “e human mind [...] operates by association. With

one item in its grasp, it snaps instantly to the next that
is suggested by the association of thoughts, in
accordance with some intricate web of trails carried by
the cells of the brain”

•  His essay, “As we may think”, is worth reading!

Tim Berners-Lee

•  Physicist at CERN, trying to solve real problem
–  Distributed access to data

•  WWW: distributed database of pages linked
through the Hypertext Transfer Protocol
–  First HTTP implementation: 1990
–  HTTP/0.9 – 1991

•  Simple GET commant
–  HTTP/1.0 – 1992

•  Client/server information, simple caching
–  HTTP/1.1 – 1996

•  Extensive caching support
•  Host identi"cation
•  Pipelined, persistent connections, …

Why so successful?

•  Ability to self publish
–  Like youtube for video

•  But…
–  Mechanism is easy
–  Independent, open
–  Free

•  Current debate
–  Is it easy enough? Why is facebook so popular, even

though it is not open?

Components
•  Content

–  Objects (may be static or dynamically generated)
•  Clients

–  Send requests / Receive responses
•  Servers

–  Receive requests / Send responses
–  Store or generate content

•  Proxies
–  Placed between clients and servers
–  Provide extra functions

•  Caching, anonymization, logging, transcoding, "ltering access
–  Explicit or transparent

Ingredients

•  HTTP
–  Hypertext Transfer Protocol

•  HTML
–  Language for description of content

•  Names (mostly URLs)
–  Won’t talk about URIs, URNs

URLs

protocol://[name@]hostname[:port]/directory/
resource?k1=v1&k2=v2#tag

•  URLs are a type of URIs
•  Name is for possible client identi!cation
•  Hostname is FQDN or IP address
•  Port defaults to protocol default (e.g., 80)
•  Directory is a path to the resource
•  Resource is the name of the object
•  ?parameters are passed to the server for execution
•  #tag allows jumps to named tags within document

HTTP

•  Important properties
–  Client-server protocol
–  Protocol (but not data) in ASCII
–  Stateless
–  Extensible (header "elds)

•  Server typically listens on port 80
•  Server sends response, may close connection

(client may ask it to say open)
•  Currently version 1.1

Steps in HTTP Request

•  Open TCP connection to server
•  Send request
•  Receive response
•  TCP connection terminates

–  How many RTTs for a single request?
•  You may also need to do a DNS lookup !rst!

> telnet www.cs.brown.edu 80

Trying 128.148.32.110...

Connected to www.cs.brown.edu.
Escape character is '^]'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g

Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"

Accept-Ranges: bytes

Content-Length: 9068
Vary: Accept-Encoding

Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en”>

...

HTTP Request

•  Method:
–  GET: current value of resource, run program
–  HEAD: return metadata associated with a resource
–  POST: update a resource, provide input for a program

•  Headers: useful info for proxies or the server
–  E.g., desired language

HTTP Request Format

method URL version ←↓

header field name value ←↓

header field name value ←↓

←↓

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

Sample Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

(empty line)

Firefox	 extension	 LiveHTTPHeaders	 is	 a	 cool	 way	 to	 see	 this	

HTTP Response

•  Status Codes:
–  1xx: Information e.g, 100 Continue
–  2xx: Success e.g., 200 OK
–  3xx: Redirection e.g., 302 Found (elsewhere)
–  4xx: Client Error e.g., 404 Not Found
–  5xx: Server Error e.g, 503 Service Unavailable

HTTP Response Format

version status code phrase ←↓

header field name value ←↓

header field name value ←↓

←↓

status

headers

body

blank line

• 1xx codes: Informational

• 2xx codes: Successes

• 3xx codes: Redirection

• 4xx codes: Client Error

• 5xx codes: Server Error

HTTP is Stateless

•  Each request/response treated independently
•  Servers not required to maintain state
•  is is good!

–  Improves server scalability

•  is is also bad…
–  Some applications need persistent state
–  Need to uniquely identify user to customize content
–  E.g., shopping cart, web-mail, usage tracking, (most

sites today!)

HTTP Cookies
•  Client-side state maintenance

–  Client stores small state on behalf of server
–  Sends request in future requests to the server
–  Cookie value is meaningful to the server (e.g., session id)

•  Can provide authentication

Request	

Response	
Set-‐Cookie:	 XYZ	

Request	
Cookie:	 XYZ	

Anatomy of a Web Page

•  HTML content
•  A number of additional resources

–  Images
–  Scripts
–  Frames

•  Browser makes one HTTP request for each
object
–  Course web page: 4 objects
–  My facebook page this morning: 100 objects

What about AJAX?

•  Asynchronous Javascript and XML
•  Based on XMLHttpRequest object in browsers,

which allow code in the page to:
–  Issue a new, non-blocking request to the server,

without leaving the current page
–  Receive the content
–  Process the content

•  Used to add interactivity to web pages
–  XML not always used, HTML fragments, JSON, and

plain text also popular

e Web is Dead? (Wired, Aug 2010)

h2p://www.wired.com/magazine/2010/08/ff_webrip/all/1	

e Web is Dead? (Wired, Aug 2010)

•  You wake up and check your email on your bedside
iPad — that’s one app. During breakfast you browse
Facebook, Twitter, and e New York Times — three
more apps. On the way to the office, you listen to a
podcast on your smartphone. Another app. At work,
you scroll through RSS feeds in a reader and have
Skype and IM conversations. More apps. At the end
of the day, you come home, make dinner while
listening to Pandora, play some games on Xbox Live,
and watch a movie on Net!ix’s streaming service.
You’ve spent the day on the Internet — but not on
the Web. And you are not alone.

HTTP Performance

•  What matters for performance?
•  Depends on type of request

–  Lots of small requests (objects in a page)
–  Some big requests (large download or video)

Small Requests

•  Latency matters
•  RTT dominates
•  Two major causes:

–  Opening a TCP connection
–  Actually sending the request and receiving response
–  And a third one: DNS lookup!

•  Mitigate the !rst one with persistent
connections (HTTP/1.1)
–  Which also means you don’t have to “open” the

window each time

Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Small Requests (cont)

•  Second problem is that requests are serialized
–  Similar to stop-and-wait protocols!

•  Two solutions
–  Pipelined requests (similar to sliding windows)
–  Parallel Connections

•  HTTP standard says no more than 2 concurrent connections
per host name

•  Most browsers use more (up to 8 per host, ~35 total)
–  See http://www.browserscope.org/

–  How are these two approaches different?

Larger Objects

•  Problem is throughput in bottleneck link
•  Solution: HTTP Proxy Caching

–  Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache

- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

•  Server sets options
–  Expires header
–  No-Cache header

•  Client can do a conditional request:
–  Header option: if-modi"ed-since
–  Server can reply with 304 NOT MODIFIED

•  More when we talk about Content Distribution

