
CSCI-1680
Web Performance and Content Distribution

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 Sco2	
 Shenker	
 and	
 John	
 Janno6	

Rodrigo Fonseca

Administrivia

•  Midterms returned
•  One less homework!

–  Homework 3 released next ursday, last homework
•  How is TCP doing?

Last time

•  HTTP and the WWW
•  Some performance issues

–  Persistent Connections, Pipeline, Multiple Connections
–  Caching

•  Today
–  More on Caching
–  Content Distribution Networks

Caching
•  Why cache content?

–  Client (browser): avoid extra network transfers
–  Server: reduce load on the server
–  Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

Caching

•  Why caching works?
–  Locality of reference:

•  Users tend to request the same object in succession
•  Some objects are popular: requested by many users

Server

Clients

Backbone ISP

ISP-1 ISP-2

How well does caching work?

•  Very well, up to a point
–  Large overlap in requested objects
–  Objects with one access place upper bound on hit ratio

•  Example: Wikipedia
–  About 400 servers, 100 are HTTP Caches (Squid)
–  85% Hit ratio for text, 98% for media

HTTP Cache Control
Cache-Control = "Cache-Control" ":" 1#cache-directive !
cache-directive = cache-request-directive !
| cache-response-directive !
cache-request-directive = !
 "no-cache" ; Section 14.9.1 !
| "no-store" ; Section 14.9.2 !
| "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4 !
| "max-stale" ["=" delta-seconds] ; Section 14.9.3 !
| "min-fresh" "=" delta-seconds ; Section 14.9.3 !
| "no-transform" ; Section 14.9.5 !
| "only-if-cached" ; Section 14.9.4 !
| cache-extension ; Section 14.9.6!

cache-response-directive = !
 "public" ; Section 14.9.1 !
| "private" ["=" <"> 1#field-name <">] ; Section 14.9.1 !
| "no-cache" ["=" <"> 1#field-name <">]; Section 14.9.1 !
| "no-store" ; Section 14.9.2 !
| "no-transform" ; Section 14.9.5 !
| "must-revalidate" ; Section 14.9.4 !
| "proxy-revalidate" ; Section 14.9.4 !
| "max-age" "=" delta-seconds ; Section 14.9.3 !
| "s-maxage" "=" delta-seconds ; Section 14.9.3 !
| cache-extension ; Section 14.9.6 !

cache-extension = token ["=" (token | quoted-string)]!

Reverse Proxies

•  Close to the server
–  Also called Accelerators
–  Only work for static content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward Proxies
•  Typically done by ISPs or Enterprises

–  Reduce network traffic and decrease latency
–  May be transparent or con#gured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Content Distribution Networks

•  Integrate forward and reverse caching
–  One network generally administered by one entity
–  E.g. Akamai

•  Provide document caching
–  Pull: result from client requests
–  Push: expectation of high access rates to some objects

•  Can also do some processing
–  Deploy code to handle some dynamic requests
–  Can do other things, such as transcoding

Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

How Akamai works

•  Akamai has cache servers deployed close to clients
–  Co-located with many ISPs

•  Challenge: make same domain name resolve to a proxy close to the client
•  Lots of DNS tricks. BestBuy is a customer

–  Delegate name resolution to Akamai (via a CNAME)
•  From Brown:
dig www.bestbuy.com!
;; ANSWER SECTION:!
www.bestbuy.com.!3600 !IN !CNAME !www.bestbuy.com.edgesuite.net.!
www.bestbuy.com.edgesuite.net. 21600 IN !CNAME !a1105.b.akamai.net.!
a1105.b.akamai.net. !20 !IN !A !198.7.236.235!
a1105.b.akamai.net. !20 !IN !A !198.7.236.240!

–  Ping time: 2.53ms
•  From Berkeley, CA:
a1105.b.akamai.net. !20 !IN !A !198.189.255.200!
a1105.b.akamai.net. !20 !IN !A !198.189.255.207

–  Pint time: 3.20ms

DNS Resolution
dig www.bestbuy.com!
;; ANSWER SECTION:!
www.bestbuy.com.!3600 !IN !CNAME !www.bestbuy.com.edgesuite.net.!
www.bestbuy.com.edgesuite.net. 21600 IN !CNAME !a1105.b.akamai.net.!

a1105.b.akamai.net. !20 !IN !A !198.7.236.235!
a1105.b.akamai.net. !20 !IN !A !198.7.236.240!
;; AUTHORITY SECTION:!
b.akamai.net. !!1101!IN !NS !n1b.akamai.net.!
b.akamai.net. !!1101!IN !NS !n0b.akamai.net.!

;; ADDITIONAL SECTION:!
n0b.akamai.net. !!1267!IN !A !24.143.194.45!
n1b.akamai.net. !!2196!IN !A !198.7.236.236!

•  n1b.akamai.net !nds an edge server close to
the client’s local resolver
•  Uses knowledge of network: BGP feeds, traceroutes.

eir secret sauce…

What about the content?
•  Say you are Akamai

–  Clusters of machines close to clients
–  Caching data from many customers
–  Proxy fetches data from origin server #rst time it sees a

URL
•  Choose cluster based on client network

location
•  How to choose server within a cluster?
•  If you choose based on client

–  Low hit rate: N servers in cluster means N cache
misses per URL

Straw man: modulo hashing

•  Say you have N servers
•  Map requests to proxies as follows:

–  Number servers 0 to N-1
–  Compute hash of URL: h = hash (URL)
–  Redirect client to server #p = h mod N

•  Keep track of load in each proxy
–  If load on proxy #p is too high, try again with a

different hash function (or “salt”)
•  Problem: most caches will be useless if you add

or remove proxies, change value of N

Consistent Hashing [Karger et al., 99]

•  URLs and Caches are mapped to points on a circle using a
hash function

•  A URL is assigned to the closest cache clockwise
•  Minimizes data movement on change!

–  When a cache is added, only the items in the preceding segment are
moved

–  When a cache is removed, only the next cache is affected

A	

B	

C	

0	

1	

2	

3	

4	

Object	
 Cache	

1	
 B	

2	
 C	

3	
 C	

4	
 A	

Consistent Hashing [Karger et al., 99]

•  Minimizes data movement
–  If 100 caches, add/remove a proxy invalidates ~1% of objects
–  When proxy overloaded, spill to successor

•  Can also handle servers with different capacities. How?
–  Give bigger proxies more random points on the ring

A	

B	

C	

0	

1	

2	

3	

4	

Object	
 Cache	

1	
 B	

2	
 C	

3	
 C	

4	
 A	

CoralCDN

•  What if a content provider can’t pay a CDN?
–  Slashdotted servers

•  CoralCDN is a clever response to that
•  Say you want to access

http://www.cs.brown.edu/courses/cs168
•  Instead, try to access

http://www.cs.brown.edu.nyud.net/courses/cs168
•  What does this accomplish?

CoralCDN
http://www.cs.brown.edu.nyud.net/courses/cs168

–  Resolution controlled by the owner of nyud.net
–  CoralCDN runs a set of DNS servers and a set of HTTP proxies
–  DNS servers return an HTTP proxy close to the client

•  e HTTP proxies form a Distributed Hash Table,
mapping (url -> {proxies})
–  e mapping for a URL is stored in the server found by a technique

similar to consistent hashing
•  e HTTP proxy can:

1.  Return the object if stored locally
2.  Fetch it from another CoralCDN proxy if stored there
3.  Fetch it from the origin server
4.  In case of 3 or 4, store the object locally

Summary

•  HTTP Caching can greatly help performance
–  Client, ISP, and Server-side caching

•  CDNs make it more effective
–  Incentives, push/pull, well provisioned
–  DNS and Anycast tricks for #nding close servers
–  Consistent Hashing for smartly distributing load

Next time

•  Peer-to-Peer Content Distribution

