
CSCI-1680
P2P

Based	 partly	 on	 lecture	 notes	 by	 Ion	 Stoica,	 Sco5	 Shenker,	 Joe	 Hellerstein	

Rodrigo Fonseca

Today

•  Overlay networks and Peer-to-Peer

Motivation

•  Suppose you want to write a routing protocol to
replace IP
–  But your network administrator prevents you from

writing arbitrary data on your network
•  What can you do?

–  You have a network that can send packets between
arbitrary hosts (IP)

•  You could…
–  Pretend that the point-to-point paths in the network

are links in an overlay network…

Overlay Networks
•  Users want innovation
•  Change is very slow on the Internet (e.g. IPv6!)

–  Require consensus (IETF)
–  Lots of money sunk in existing infrastructure

•  Solution: don’t require change in the network!
–  Use IP paths, deploy your own processing among nodes

Why would you want that anyway?

•  Doesn’t the network provide you with what you
want?
–  What if you want to teach a class on how to implement

IP? (IP on top of UDP… sounds familiar?)
–  What if Internet routing is not ideal?
–  What if you want to test out new multicast algorithms,

or IPv6?
•  Remember…

–  e Internet started as an overlay over ossi"ed
telephone networks!

Case Studies

•  Resilient Overlay Network
•  Peer-to-peer systems
•  Others (won’t cover today)

–  Email
–  Web
–  End-system Multicast
–  Your IP programming assignment
–  VPNs
–  Some IPv6 deployment solutions
–  …

Resilient Overlay Network - RON

•  Goal: increase performance and reliability of routing
•  How?

–  Deploy N computers in different places
–  Each computer acts as a router between the N participants

•  Establish IP tunnels between all pairs
•  Constantly monitor

–  Available bandwidth, latency, loss rate, etc…
•  Route overlay traffic based on these measurements

RON

Default	 IP	 path	 determined	 by	 BGP	 &	 OSPF	

Reroute	 traffic	 using	 red	 alternaEve	 overlay	 network	 path,	 avoid	 congesEon	 point	

Acts	 as	 overlay	 router	

Berkeley	
Brown	

UCLA	

Picture	 from	 Ion	 Stoica	

RON

•  Does it scale?
–  Not really, only to a few dozen nodes (NxN)

•  Why does it work?
–  Route around congestion
–  In BGP, policy trumps optimality

•  Example
–  2001, one 64-hour period: 32 outages over 30 minutes
–  RON routed around failure in 20 seconds

•  Reference: http://nms.csail.mit.edu/ron/

Peer-to-Peer Systems

•  How did it start?
–  A killer application: "le distribution
–  Free music over the Internet! (not exactly legal…)

•  Key idea: share storage, content, and bandwidth of
individual users
–  Lots of them

•  Big challenge: coordinate all of these users
–  In a scalable way (not NxN!)
–  With changing population (aka churn)
–  With no central administration
–  With no trust
–  With large heterogeneity (content, storage, bandwidth,…)

3 Key Requirements

•  P2P Systems do three things:
•  Help users determine what they want

–  Some form of search
–  P2P version of Google

•  Locate that content
–  Which node(s) hold the content?
–  P2P version of DNS (map name to location)

•  Download the content
–  Should be efficient
–  P2P form of Akamai

Napster (1999)

xyz.mp3	

Napster

xyz.mp3	 ?	

xyz.mp3	

Napster

xyz.mp3	 ?	

xyz.mp3	

Napster

xyz.mp3	 ?	

xyz.mp3	

Napster

•  Search & Location: central server
•  Download: contact a peer, transfer directly
•  Advantages:

–  Simple, advanced search possible

•  Disadvantages:
–  Single point of failure (technical and … legal!)
–  e latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

xyz.mp3	 ?	

xyz.mp3	

An	 “unstructured”	 overlay	 network	

•  Search & Location: "ooding (with TTL)
•  Download: direct

Gnutella: Flooding on Overlays

xyz.mp3	 ?	

xyz.mp3	

Flooding	

Gnutella: Flooding on Overlays

xyz.mp3	 ?	

xyz.mp3	

Flooding	

Gnutella: Flooding on Overlays

xyz.mp3	

KaZaA: Flooding w/ Super Peers (2001)

•  Well connected nodes can be installed (KaZaA)
or self-promoted (Gnutella)

Say you want to make calls among peers

•  You need to #nd who to call
–  Centralized server for authentication, billing

•  You need to #nd where they are
–  Can use central server, or a decentralized search, such

as in KaZaA
•  You need to call them

–  What if both of you are behind NATs? (only allow
outgoing connections)

–  You could use another peer as a relay…

Skype

•  Built by the founders of KaZaA!
•  Uses Superpeers for registering presence,

searching for where you are
•  Uses regular nodes, outside of NATs, as

decentralized relays
–  is is their killer feature

•  is morning, from my computer:
–  25,456,766 people online

Lessons and Limitations

•  Client-server performs well
–  But not always feasible

•  ings that "ood-based systems do well
–  Organic scaling
–  Decentralization of visibility and liability
–  Finding popular stuff
–  Fancy local queries

•  ings that "ood-based systems do poorly
–  Finding unpopular stuff
–  Fancy distributed queries
–  Vulnerabilities: data poisoning, tracking, etc.
–  Guarantees about anything (answer quality, privacy,

etc.)

BitTorrent (2001)

•  One big problem with the previous approaches
–  Asymmetric bandwidth

•  BitTorrent (original design)
–  Search: independent search engines (e.g. PirateBay,

isoHunt)
•  Maps keywords -> .torrent "le

–  Location: centralized tracker node per "le
–  Download: chunked

•  File split into many pieces
•  Can download from many peers

BitTorrent

•  How does it work?
–  Split "les into large pieces (256KB ~ 1MB)
–  Split pieces into subpieces
–  Get peers from tracker, exchange info on pieces

•  ree-phases in download
–  Start: get a piece as soon as possible (random)
–  Middle: spread pieces fast (rarest piece)
–  End: don’t get stuck (parallel downloads of last pieces)

BitTorrent

•  Self-scaling: incentivize sharing
–  If people upload as much as they download, system scales

with number of users (no free-loading)
•  Uses tit-for-tat: only upload to who gives you data

–  Choke most of your peers (don’t upload to them)
–  Order peers by download rate, choke all but P best
–  Occasionally unchoke a random peer (might become a nice

uploader)
•  Optional reading:

 [Do Incentives Build Robustness in BitTorrent? Piatek et al,
NSDI’07]

Structured Overlays: DHTs

•  Academia came (a little later)…
•  Goal: Solve efficient decentralized location

–  Remember the second key challenge?
–  Given ID, map to host

•  Remember the challenges?
–  Scale to millions of nodes
–  Churn
–  Heterogeneity
–  Trust (or lack thereof)

•  Sel"sh and malicious users

DHTs

•  IDs from a !at namespace
–  Contrast with hierarchical IP, DNS

•  Metaphor: hash table, but distributed
•  Interface

–  Get(key)
–  Put(key, value)

•  How?
–  Every node supports a single operation:

 Given a key, route messages to node holding key

Identi#er to Node Mapping Example

•  Node 8 maps [5,8]
•  Node 15 maps [9,15]
•  Node 20 maps [16, 20]
•  …
•  Node 4 maps [59, 4]

•  Each node maintains a
pointer to its successor

4	

20	

32	
35	

8	

15	

44	

58	

Example	 from	 Ion	 Stoica	

Remember Consistent Hashing?

•  But each node only
knows about a small
number of other nodes
(so far only their
successors)

4	

20	

32	
35	

8	

15	

44	

58	

Lookup

•  Each node maintains its
successor

•  Route packet (ID, data) to
the node responsible for ID
using successor pointers

4	

20	

32	
35	

8	

15	

44	

58	

lookup(37)	

node=44	

Stabilization Procedure

•  Periodic operation performed by each node N to
handle joins

N:	 periodically:	

STABILIZE	 	 N.successor;	

M:	 upon	 receiving	 STABILIZE	 from	 N:	
NOTIFY(M.predecessor)	 	 N;	

N:	 upon	 receiving	 NOTIFY(M’)	 from	 M:	

if	 (M’	 between	 (N,	 N.successor))	

N.successor	 =	 M’;	 	

Joining Operation

4	

20	

32	
35	

8	

15	

44	

58	

50	

  Node	 with	 id=50	 joins	
the	 ring	

  Node	 50	 needs	 to	
know	 at	 least	 one	
node	 already	 in	 the	
system	
-‐  Assume	 known	 node	

is	 15 	 	 	

succ=4	
pred=44	

succ=nil	
pred=nil	

succ=58	
pred=35	

Joining Operation

4	

20	

32	
35	

8	

15	

44	

58	

50	

  Node	 50:	 send	 join(50)	
to	 node	 15	 	

  Node	 44:	 returns	 node	
58	 	

  Node	 50	 updates	 its	
successor	 to	 58	 join(50)	

succ=58	

succ=4	
pred=44	

succ=nil	
pred=nil	

succ=58	
pred=35	

58	

Joining Operation

4	

20	

32	
35	

8	

15	

44	

58	

50	

  Node	 50:	 send	
stabilize()	 to	 node	
58	

  Node	 58:	 	
-‐  update	

predecessor	 to	
50	 	

-‐  send	 noEfy()	
back	 	

succ=58	
pred=nil	

succ=58	
pred=35	

stabilize()	

pred=50	
succ=4	
pred=44	

Joining Operation (cont’d)

4	

20	

32	
35	

8	

15	

44	

58	

50	

  Node	 44	 sends	 a	 stabilize	
message	 to	 its	 successor,	 node	
58	

  Node	 58	 reply	 with	 a	 noEfy	
message	

  Node	 44	 updates	 its	 successor	
to	 50	 succ=58	

stabilize()	

succ=50	

pred=50	
succ=4	

pred=nil	

succ=58	
pred=35	

Joining Operation (cont’d)

4	

20	

32	
35	

8	

15	

44	

58	

50	

  Node	 44	 sends	 a	 stabilize	
message	 to	 its	 new	 successor,	
node	 50	

  Node	 50	 sets	 its	 predecessor	 to	
node	 44	

succ=58	

succ=50	

Stabilize()	
pred=44	

pred=50	

pred=35	

succ=4	

pred=nil	

Joining Operation (cont’d)

4	

20	

32	
35	

8	

15	

44	

58	

50	

  This	 completes	 the	 joining	
operaEon!	

succ=58	

succ=50	

pred=44	

pred=50	

Achieving Efficiency: "nger tables

80 + 20!
80 + 21!

80 + 22!
80 + 23!

80 + 24!

80 + 25!
(80 + 26) mod 27 = 16!

0
Say m=7

ith entry at peer with id n is first peer with id >=

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32	

45	
80	

20	
112	

96	

Chord

•  ere is a tradeoff between routing table size
and diameter of the network

•  Chord achieves diameter O(log n) with O(log
n)-entry routing tables

Many other DHTs
•  CAN

–  Routing in n-dimensional space
•  Pastry/Tapestry/Bamboo

–  (Book describes Pastry)
–  Names are "xed bit strings
–  Topology: hypercube (plus a ring for fallback)

•  Kademlia
–  Similar to Pastry/Tapestry
–  But the ring is ordered by the XOR metric
–  Used by BitTorrent for distributed tracker

•  Viceroy
–  Emulated butter%y network

•  Koorde
–  DeBruijn Graph
–  Each node connects to 2n, 2n+1
–  Degree 2, diameter log(n)

•  …

Discussion

•  Query can be implemented
–  Iteratively: easier to debug
–  Recursively: easier to maintain timeout values

•  Robustness
–  Nodes can maintain (k>1) successors
–  Change notify() messages to take that into account

•  Performance
–  Routing in overlay can be worse than in the underlay
–  Solution: %exibility in neighbor selection

•  Tapestry handles this implicitly (multiple possible next hops)
•  Chord can select any peer between [2n,2n+1) for "nger, choose

the closest in latency to route through

Where are they now?

•  Many P2P networks shut down
–  Not for technical reasons!
–  Centralized systems work well (or better) sometimes

•  But…
–  Vuze network: Kademlia DHT, millions of users
–  Skype uses a P2P network similar to KaZaA

Where are they now?

•  DHTs allow coordination of MANY nodes
–  Efficient !at namespace for routing and lookup
–  Robust, scalable, fault-tolerant

•  If you can do that
–  You can also coordinate co-located peers
–  Now dominant design style in datacenters

•  E.g., Amazon’s Dynamo storage system
–  DHT-style systems everywhere

•  Similar to Google’s philosophy
–  Design with failure as the common case
–  Recover from failure only at the highest layer
–  Use low cost components
–  Scale out, not up

Next time

•  It’s about the data
–  How to encode it, compress it, send it…

