
CS168 Programming Assignment 3: TCP over IP over UDP

Assignment Out: March 12, 2012
Milestone I: March 20 – March 22, 2012
Milestone II: April 9, 2012
Assignment Due: April 19, 2012, 10pm

1 Introduction

In this project, you will implement a simple, but RFC-compliant form of TCP on top of IP from
your last assignment. You will build the transport layer and export a socket API similar to what
you used in Snowcast.

Each year, students report this assignment is an order of magnitude harder than its predecessor
(seriously). But when you are done here, you will really understand TCP. We’ve given you a lot of
time for this assignment – use it wisely!

2 The Pieces

In this assignment you will use the library you wrote for IP as the underlying network.
Your TCP implementation will have four major pieces — the state machine that implements

connection setup and teardown, the sliding window protocol that determines what data you are
allowed to send and receive at any point, the API to your sockets layer, and a driver program that
will allow all of us to test your code.

2.1 State Machine

You have to implement a state machine that allows state transitions in your TCP. You can use this
diagram1 to help orient yourself.

The state machine is not as complicated as it may seem, but you should be sure that your TCP
follows all state transitions properly, and doesn’t do anything otherwise. For example, you need to
send SYNs for connect, and FINs to close. You will be expected to follow RFC7932 and RFC25253

precisely. You don’t have to handle the parts of the RFC that refer to urgent data, precedence,
and security.

1 http://ttcplinux.sourceforge.net/documents/one/tcpstate/tcpstate.html
2http://www.faqs.org/rfcs/rfc793.html
3http://www.faqs.org/rfcs/rfc2525.html

1

http://ttcplinux.sourceforge.net/documents/one/tcpstate/tcpstate.html
http://www.faqs.org/rfcs/rfc793.html 
http://www.faqs.org/rfcs/rfc2525.html


CS168 TCP

You can start coding by just using the diagram and getting connections to set up and close
under ideal conditions. However, there are tons of less obvious cases that the diagram doesn’t cover
– for example, what happens when, after a call to connect, you’ve sent a SYN, but you receive a
packet that has an incorrect ACK in it? Once your basic state diagram is working, we recommend
that you look at the RFC for answers to questions such as these. In particular, pages 54 and on
contain info on exactly what you should do in such scenarios.

2.2 Sliding Window Protocol

You need to implement the sliding window protocol that is the heart of TCP. Make sure you
understand the algorithm before you start coding. Also keep in mind how sliding windows will
interact with the rest of TCP. For example, a call to CLOSE (v_shutdown(s, 1) in our API) only
closes data flow in one direction. Because data will still be flowing in the other direction, the closed
side will need to send acknowledgments and window updates until both sides have closed.

Be sure that you can accept out-of-order packets. That is, a packet’s sequence number
doesn’t have to be exactly the sequence number of the start of the window. It can be fully contained
within the window, somewhere in the middle. The easiest way to handle such packets is to place
them on a queue of potentially valid packets, and then deal with them once the window has caught
up to the beginning of that segment’s sequence number.

You should strictly adhere to the flow control window as specified in the RFC, e.g. don’t send
packets outside of your window, etc. You have to ensure reliability – all data must get to its
destination in order, uncorrupted.

You must calculate smooth round trip times and retransmission timeouts as specified in class4.
Each separate segment you send should have its own timer – that is, if you’ve written 64kB of data,
and the first packet you sent expires, you shouldn’t immediately re-send all 64kB.

2.2.1 Graduate Credit: Congestion Control

If you are taking the course for graduate credit, you m
¯

ust implement slow start.

2.3 API

You must implement an API to your TCP implementation. This layer will use integers as handles
into a table you maintain, much like unix sockets do, and allow reading and writing into the buffers
associated with each connection. Think of it as the system call layer into your “kernel.”

An independent thread in your program should be able to use this interface in almost the exact
same way that you used the Socket API in your first assignment. These functions, on error, should
return a negative value indicating an error code, e.g. -EBADF if an invalid socket was passed to a
function. The man pages for the unix socket functions are a good source of error codes.

The functionality you need in your socket API is shown below:

4Website describing it: http://www.opalsoft.net/qos/TCP-10.htm



CS168 TCP

/* returns a new, unbound socket.
on failure, returns a negative value */

int v socket();

/* binds a socket to a port
always bind to all interfaces - which means addr is unused.
returns 0 on success or negative number on failure */

int v bind(int socket, struct in addr addr, uint16 t port);

/* moves socket into listen state (passive OPEN in the RFC)
bind the socket to a random port from 1024 to 65535 that is unused
if not already bound
returns 0 on success or negative number on failure */

int v listen(int socket);

/* connects a socket to an address (active OPEN in the RFC)
returns 0 on success or a negative number on failure */

int v connect(int socket, struct in addr addr, uint16 t port);

/* accept a requested connection (behave like unix socket’s accept)
returns new socket handle on success or negative number on failure */

int v accept(int socket, struct in addr *node);

/* read on an open socket (RECEIVE in the RFC)
return num bytes read or negative number on failure or 0 on eof */

int v read(int socket, unsigned char *buf, uint32 t nbyte);

/* write on an open socket (SEND in the RFC)
return num bytes written or negative number on failure */

int v write(int socket, const unsigned char *buf, uint32 t nbyte);

/* shutdown an open socket. If type is 1, close the writing part of
the socket (CLOSE call in the RFC. This should send a FIN, etc.)
If 2 is specified, close the reading part (no equivalent in the RFC;
v read calls should just fail, and the window size should not grow any
more). If 3 is specified, do both. The socket is not invalidated.
returns 0 on success, or negative number on failure
If the writing part is closed, any data not yet ACKed should still be retransmitted. */

int v shutdown(int socket, int type);

/* Invalidate this socket, making the underlying connection inaccessible to
any of these API functions. If the writing part of the socket has not been



CS168 TCP

shutdown yet, then do so. The connection shouldn’t be terminated, though;
any data not yet ACKed should still be retransmitted. */

int v close(int socket);

Among the bookkeeping that will be required for this part of the project, you will have your
own file-descriptor system. It’s important to remember that the file descriptors, port numbers,
etc. that are used in these functions will not be actual UNIX system values. They are your own
creation, and you are free to instantiate, manage, and free these resources as you see fit.

2.4 Driver

Your driver should support the following commands (“command/cmd” means that typing both
“command” and “cmd” should have the same effect):

help Print this list of commands.

interfaces/li Print information about each interface, one per line.

routes/lr Print information about the route to each known destination, one per line.

sockets/ls List all sockets, along with the state the TCP connection associated with them is in.

down integer Bring an interface “down”.

up integer Bring an interface “up” (it must be an existing interface, probably one you brought
down)

accept/a port Open a socket, bind it to the given port, and start accepting connections on that
port. Your driver must continute to accept other commands.

connect/c ip port Attempt to connect to the given ip address, in dot notation, on the given port.
Example: c 10.13.15.24 1056.

send/s/w socket data Send a string on a socket.

recv/r socket numbytes y/n Try to read data from a given socket. If the last argument is y, then
you should block until numbytes is received, or the connection closes. If n, then don’t block;
return whatever recv returns. Default is n.

sendfile filename ip port Connect to the given ip and port, send the entirety of the specified file,
and close the connection. Your driver must continue to accept other commands.

recvfile filename port Listen for a connection on the given port. Once established, write every-
thing you can read from the socket to the given file. Once the other side closes the connection,
close the connection as well. Your driver must continue to accept other commands.
Hint: give /dev/stdout as the filename to print to the screen.



CS168 TCP

window socket Print the socket’s send / receive window size.

shutdown socket read/write/both v shutdown on the given socket. If read or r is given, close
only the reading side. If write or w is given, close only the writing side. If both is given, close
both sides. Default is write.

close socket v close on the given socket.

We actually provide a .c file which implements most of this functionality. See the Getting
Started section below.

3 Implementation

A few notes:

• You should use the TCP packet format, exactly as-is. You can use the header found in
netinet/tcp.h, although technically, you can use anything, since the TCP packet format is
not exposed in the API.

• TCP uses a pseudo-header in its checksum calculation. Make sure you understand how TCP
checksumming works to ensure interoperability with the TA binary. You may consult online
resources as needed 5.

• You should not use arbitrary sleeps in your code. For example, you might have a thread which
takes care of all your transmission. You shouldn’t have this thread check whether there is
something to be sent every 1 ms, because 1 ms is an eternity on a fast LAN connection.
bqueue, and pthread_cond are your friends.

• Never send packets greater than the MTU. Even if you implemented fragmentation in your
IP, you should assume that fragmentation is not supported.

• You don’t have to handle any TCP options. You can ignore any options that you see in
incoming packets (but don’t blow up!).

• When should v connect() timeout? A good metric is after 3 re-transmitted SYNs fail to be
ACKed. The idea is that if your connection is so faulty that 4 packets get dropped in a row,
you wouldn’t do very well anyway. How long should you wait in between sending SYNs? You
can have a constant multi-second timeout, e.g. 3 seconds. Or, you can start off at 2 seconds,
and double the time with each SYN you retransmit.

• The RFC states that a lower bound for your RTO should be 1 second. This is way too long!
A common RTT is 350 microseconds for two nodes running on the same computer. Use 1
millisecond as the lower bound, instead.

5http://www.tcpipguide.com/free/t_TCPChecksumCalculationandtheTCPPseudoHeader-2.htm

http://www.tcpipguide.com/free/t_TCPChecksumCalculationandtheTCPPseudoHeader-2.htm 


CS168 TCP

4 Grading

4.1 Milestone I – 5%

Set up a meeting with a TA for anytime by the milestone due date. You should demonstrate that
your implementation can establish connections, properly following the TCP state diagram under
ideal conditions. Note that connection teardown is not yet required for Milesone I.

It should work with itself and our reference implementation.
Also show that your TCP works even with another node in between the two endpoints. Your

IP and routing should make this trivial. Note that this sounds redundant, but doing this early in
the development of TCP will ensure you find any lingering bugs in your IP implementation.

4.2 Milestone II – 20%

Set up a meeting with a TA for anytime by the milestone due date.
Students should have the send and receive commands working over non-lossy links. That is,

send and receive should each be utilizing the sliding window and ACKing the data received to
progress the window. This also means that sequence numbers, circular buffers, etc. should be in
place and working.

Retransmission, connection teardown, packet logging and the ability to send and receive at the
same time are not yet required. The final implementation, will, however require these functionalities
be implemented correctly.

4.3 Basic Functionality – 55%

As usual, most of your grade depends on how well your implementation adheres to these specifica-
tions. Some key points:

• Properly follow the state diagram.

• Adhere to the flow control window.

• Re-transmit reasonably. Calculate SRTT and RTO.

• Send data reliably. Files sent across your network should arrive at the other end identical
to how they were sent, even if the links in between the two nodes are lossy.

• Follow the RFC in corner cases.

The idea is that having full basic functionality means that any existing valid TCP implementa-
tion should be able to talk with yours and eventually get data across, regardless of how faulty the
link is.



CS168 TCP

4.4 Performance and Documentation – 20%

Part of this grade will be your TCP’s speed. Your implementation should achieve speeds of at least
8 megabytes/second (that’s 64Mb/s) on two nodes connected directly to each other, both running
on the same computer, with a perfect link. It should also not perform terribly if the link is slightly
faulty.

We want you to understand how your design decisions affect your TCP’s behavior, so another
part of the grade will be a README stating all design decisions you made, and why.

The rest will be a packet trace. You should send a 1 megabyte file, as specified in the Driver
section, and have your TCP record all the packets that are sent and received on each end, along
with a nanosecond timestamp of when the packet was sent, the sequence number and size of the
data in the packet, and the ack number of the packet. You should annotate the first few hundred of
these packets with key events, saying why particular events occurred. Run your connection through
a faulty node with a 2% drop rate.

You don’t have to write too much about the packets that get to the other end safely. The
interesting things happen when packets get dropped. When this happens, let us know how this
affects your congestion window, how your implementation reacted and retransmitted the dropped
packet, etc. Let us know which of your design decisions caused this behavior.

5 Getting Started

5.1 IP Reference Implementation Code

We’ve released the source code for our IP reference implementation. Feel free to look at it and
take whatever you like from it. You can even completely use ours instead of your own, if you like
it more. It’s in /course/cs168/pub/ipsrc.

5.2 C Support Code

We’ve given some C support code, in /course/cs168/pub/tcp. If you are not using C, it is not
important for you to read these files.

• util/bqueue.c util/bqueue.h: A blocking queue. See the header and source files for in-
structions on how to use it.

• util/circular_buffer.c util/circular_buffer.h: A circular buffer, which will probably
be useful as you implement the sliding window buffer.

• node.c: Code for a driver that implements all functionality that only uses the TCP API
functions, e.g. connect, sendfile, etc. It only has holes for implementation-specific functions
such as up, down, routes, etc. Feel free to take this code and use it for your driver.

• node_readline.c: The same thing as node.c except that it uses lib readline. This means
you can use up down arrow keys to scroll through your command history and tab to auto-



CS168 TCP

complete file path. This will make your experience with your console much better. Compile
it with -lreadline.

We’ve also modified the debugging macros to prepend messages with a timestamp. These are also
in the util directory.

5.3 TCP Reference Implementation

Available in /course/cs168/pub/tcp as node. You can specify a drop rate as the second parameter
at the command line, to simulate lossy links. The drop rate should be a value between 0 and 100,
where 100 means every packet will be dropped by the node.

5.4 Hand In

/course/cs168/bin/cs168 handin tcp

6 Final Thoughts

Although we expect compatibilty between your TCP implementation and our own, do not get
bogged down in the RFC from the start. It is much more important that you understand how TCP
works on an algorithmic/abstract level and design the interface to your buffers from your TCP
stack and from the virtual socket layer.

Don’t tackle the RFC until you’re sure that you have your head wrapped around the assign-
ment. For any corner cases or small details, the RFC will be your best friend, and our reference
implementation should come in handy. You should read it and consult the TA staff if you have
any questions about what you are required to do, or how to handle corner cases. It is not OK
to just make assumptions as to how things will work, because we will be testing your code for
interoperability with other groups in the class.


	Introduction
	The Pieces
	State Machine
	Sliding Window Protocol
	Graduate Credit: Congestion Control

	API
	Driver

	Implementation
	Grading
	Milestone I – 5%
	Milestone II – 20%
	Basic Functionality – 55%
	Performance and Documentation – 20%

	Getting Started
	IP Reference Implementation Code
	C Support Code
	TCP Reference Implementation
	Hand In

	Final Thoughts

