
CS 167 IV–1 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Programming with POSIX Threads
II

CS 167 IV–2 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Global Variables

int IOfunc() {
extern int errno;

...

if (write(fd, buffer, size) == –1) {
if (errno == EIO)

fprintf(stderr, "IO problems
...\n");

...
return(0);

}

...
}

Unix was not designed with multithreaded programming in mind. A good example of the
implications of this is the manner in which error codes for failed system calls are made
available to a program: if a system call fails, it returns –1 and the error code is stored in the
global variable errno. Though this is not all that bad for single-threaded programs, it is
plain wrong for multithreaded programs.

CS 167 IV–3 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Coping

• Fix Unix’s C/system-call interface
• Make errno refer to a different location in

each thread
– e.g.

#define errno __errno(thread_ID)

The ideal way to solve the “errno problem” would be to redesign the C/system-call
interface: system calls should return only an error code. Anything else to be returned
should be returned via result parameters. (This is how things are done in Windows NT.)
Unfortunately, this is not possible (it would break pretty much every Unix program in
existence).

So we are stuck with errno. What can we do to make errno coexist with multithreaded
programming? What would help would be to arrange, somehow, that each thread has its
own private copy of errno. I.e., whenever a thread refers to errno, it refers to a different
location from any other thread when it refers to errno.

What can we do? As shown in the slide, we might use the C preprocessor to redefine
errno as something a bit more complicated—references to errno result in accessing a
function that retrieves this thread’s private errno value. This is how things are actually
done in Linux (and other implementations of POSIX threads). Please see the textbook for
information on how this approach is generalized.

CS 167 IV–4 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Shared Data

• Thread 1:
printf("goto statement reached");

• Thread 2:
printf("Hello World\n");

• Printed on display:

go to Hell

Yet another problem that arises when using libraries that were not designed for
multithreaded programs concerns synchronization. The slide shows what might happen if
one relied on the single-threaded versions of the standard I/O routines.

CS 167 IV–5 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Coping

• Wrap library calls with synchronization
constructs

• Fix the libraries

To deal with this printf problem, we must somehow add synchronization to printf (and all
of the other standard I/O routines). A simple way to do this would be to supply wrappers
for all of the standard I/O routines ensuring that only one thread is operating on any
particular stream at a time. A better way would be to do the same sort of thing by fixing the
routines themselves, rather than supplying wrappers (this is what is done in most
implementations).

CS 167 IV–6 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Killing Time ...

struct timespec timeout, remaining_time;

timeout.tv_sec = 3; // seconds
timeout.tv_nsec = 1000; // nanoseconds

nanosleep(&timeout, &remaining_time);

It is sometimes useful for a thread to wait for a certain period of time before continuing.
The traditional Unix approach of using alarm and SIGALRM not only is not suitable for
multithreaded programming, but also does not provide fine enough granularity. The routine
nanosleep provides a better approach. A thread calls it with two arguments; the first
indicates (in seconds and nanoseconds) how long the thread wishes to wait. The second
argument is relevant only if the thread is interrupted by a signal: it indicates how much
additional time remains until the originally requested time period expires.

Note that most Unix implementations do not have a clock that measures time in
nanoseconds: the first argument to nanosleep is rounded up to an integer multiple of
whatever sleep resolution is supported.

CS 167 IV–7 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Timeouts

struct timespec relative_timeout, absolute_timeout;
struct timeval now;
relative_timeout.tv_sec = 3; // seconds
relative_timeout.tv_nsec = 1000; // nanoseconds
gettimeofday(&now, 0);
absolute_timeout.tv_sec = now.tv_sec + relative_timeout.tv_sec;
absolute_timeout.tv_nsec = 1000*now.tv_usec +

relative_timeout.tv_nsec;
if (absolute_timeout.tv_nsec >= 1000000000) { // deal with the carry

absolute_timeout.tv_nsec –= 1000000000;
absolute_timeout.tv_sec++;

}
pthread_mutex_lock(&m);
while (!may_continue)

pthread_cond_timedwait(&cv, &m, &absolute_timeout);
pthread_mutex_unlock(&m);

POSIX threads provides a version of pthread_cond_wait that has a timeout:
pthread_cond_timedwait. It takes an additional argument indicating when the thread should
give up on being awoken by a pthread_cond_signal. This argument is an absolute time, as
opposed to a relative time (as used in the previous slide); i.e., it is the clock time at which
the call times out. To convert from an relative time to an absolute time, one must perform
the machinations shown in the slide (or something similar)—note that gettimeofday returns
seconds and microseconds, whereas pthread_cond_timedwait wants seconds and
nanoseconds.

Why is it done this way? Though at first (and most subsequent) glances it seems foolish
to require an absolute timeout value rather than a relative one, the use of the former makes
some sense if you keep in mind that pthread_cond_timedwait could return with the
“may_continue” condition false even before the timeout has expired (either because it’s
returned spontaneously or because the “may_continue” was falsified after the thread was
released from the condition-variable queue). By having the timeout be absolute, there’s no
need to compute a new relative timeout when pthread_cond_timedwait is called again.

CS 167 IV–8 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cancellation

In a number of situations one thread must tell another to cease whatever it is doing. For
example, suppose we’ve implemented a chess-playing program by having multiple threads
search the solution space for the next move. If one thread has discovered a quick way of
achieving a checkmate, it would want to notify the others that they should stop what
they’re doing, the game has been won.

One might think that this is an ideal use for per-thread signals, but there’s a cleaner
mechanism for doing this sort of thing in POSIX threads, called cancellation.

CS 167 IV–9 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cancellation Concerns

• Getting cancelled at an inopportune moment
• Cleaning up

We have two concerns about the forced termination of threads resulting from
cancellation: a thread might be in the middle of doing something important that it must
complete before self-destructing; and a canceled thread must be given the opportunity to
clean up.

CS 167 IV–10 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cancellation State

• Pending cancel
– pthread_cancel(thread)

• Cancels enabled or disabled
– int pthread_setcancelstate(

{PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE},
&oldstate)

• Asynchronous vs. deferred cancels
– int pthread_setcanceltype(

{PTHREAD_CANCEL_ASYNCHRONOUS,
PTHREAD_CANCEL_DEFERRED},
&oldtype)

A thread issues a cancel request by calling pthread_cancel, supplying the ID of the target
thread as the argument. Associated with each thread is some state information known as
its cancellation state and its cancellation type. When a thread receives a cancel request, it is
marked indicating that it has a pending cancel. The next issue is when the thread should
notice and act upon the cancel. This is governed by the cancellation state: whether cancels
are enabled or disabled and by the cancellation type: whether the response to cancels is
asynchronous or deferred. If cancels are disabled, then the cancel remains pending but is
otherwise ignored until cancels are enabled. If cancels are enabled, they are acted on as
soon as they are noticed if the cancellation type is asynchronous. Otherwise, i.e., if the
cancellation type is deferred, the cancel is acted upon only when the thread reaches a
cancellation point.

Cancellation points are intended to be well defined points in a thread’s execution at
which it is prepared to be canceled. They include pretty much all system and library calls
in which the thread can block, with the exception of pthread_mutex_lock. In addition, a
thread may call pthread_testcancel, which has no function other than being a cancellation
point.

The default is that cancels are enabled and deferred. One can change the cancellation
state of a thread by using the calls shown in the slide. Calls to pthread_setcancelstate and
pthread_setcanceltype return the previous value of the affected portion of the cancellability
state.

CS 167 IV–11 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cancellation Points

• aio_suspend
• close
• creat
• fcntl (when F_SETLCKW is

the command)
• fsync
• mq_receive
• mq_send
• msync
• nanosleep
• open
• pause
• pthread_cond_wait
• pthread_cond_timedwait

• pthread_join
• pthread_testcancel
• read
• sem_wait
• sigsuspend
• sigtimedwait
• sigwait
• sigwaitinfo
• sleep
• system
• tcdrain
• wait
• waitpid
• write

The slide lists all of the required cancellation points in POSIX. Note, in particular,
pthread_testcancel, whose effect is to be nothing but a cancellation point (i.e., if a cancel
isn’t pending, it does nothing).

CS 167 IV–12 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cleaning Up

• pthread_cleanup_push((void)(*routine)(void *), void *arg)
• pthread_cleanup_pop(int execute)

When a thread acts upon a cancel, its ultimate fate has been established, but it first gets
a chance to clean up. Associated with each thread may be a stack of cleanup handlers.
Such handlers are pushed onto the stack via calls to pthread_cleanup_push and popped off
the stack via calls to pthread_cleanup_pop. Thus when a thread acts on a cancel or when it
calls pthread_exit, it calls each of the cleanup handlers in turn, giving the argument that
was supplied as the second parameter of pthread_cleanup_push. Once all the cleanup
handlers have been called, the thread terminates.

The two routines pthread_cleanup_push and pthread_cleanup_pop are intended to act as
left and right parentheses, and thus should always be paired (in fact, they may actually be
implemented as macros: the former contains an unmatched “{“, the latter an unmatched
“}”). The argument to the latter routine indicates whether or not the cleanup function
should be called as a side effect of calling pthread_cleanup_pop.

CS 167 IV–13 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cancellation and Cleanup

fd = open(file, O_RDONLY);
pthread_cleanup_push(

close_file, fd);
while(1) {

read(fd, buffer, buf_size);

// . . .

}
pthread_cleanup_pop(0);

void close_file(int fd) {
close(fd);

}

Here is a simple example of the use of a cleanup handler in conjunction with
cancellation. The thread executing the code on the left, which has pushed a cleanup
handler on its stack, makes successive calls to read, which is a cancellation point.
Assuming the thread has cancellation enabled and set to deferred, if the thread is canceled,
it will notice the cancel within read. It will then walk through its stack of cleanup handlers,
first calling close_file, then any others that might be on the stack. Finally, the thread
terminates.

CS 167 IV–14 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(pthread_mutex_unlock, &m);
while(should_wait)

pthread_cond_wait(&cv, &m);

// . . . (code containing other cancellation points)

pthread_cleanup_pop(1);

In this example we handle cancels that might occur while a thread is blocked within
pthread_cond_wait. Again we assume the thread has cancels enabled and deferred. The
thread first pushes a cleanup handler on its stack—in this case the cleanup handler
unlocks the mutex. The thread then loops, calling pthread_cond_wait, a cancellation point.
If it receives a cancel, the cleanup handler won’t be called until the mutex has been
reacquired. Thus we are certain that when the cleanup handler is called, the mutex is
locked.

What’s important here is that we make sure the thread does not terminate without
releasing its lock on the mutex m. If the thread acts on a cancel within pthread_cond_wait
and the cleanup handler were invoked without first taking the mutex, this would be
difficult to guarantee, since we wouldn’t know if the thread had the mutex locked (and thus
needs to unlock it) when it’s in the cleanup handler.

CS 167 IV–15 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Signals

int x, y;

x = 0;
…
y = 16/x;

for (;;)
keep_on_trying(
);

Signals are a kernel-supported mechanism for reporting events to user code and forcing a
response to them. There are actually two sorts of such events, to which we sometimes refer
as exceptions and interrupts. The former occur typically because the program has done
something wrong. The response, the sending of a signal, is immediate; such signals are
known as synchronous signals. The latter are in response to external actions, such as a
timer expiring, an action at the keyboard, or the explicit sending of a signal by another
process. Signals send in response to these events can seemingly occur at any moment and
are referred to as asynchronous signals.

CS 167 IV–16 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

The OS to the Rescue

• Signals
– generated (by OS) in response to

- exceptions (e.g., arithmetic errors, addressing
problems)

- external events (e.g., timer expiration, certain
keystrokes, actions of other processes)

– effect on process:
- termination (possibly after producing a core

dump)
- invocation of a procedure that has been set up

to be a signal handler
- suspension of execution
- resumption of execution

Processes react to signals using the actions shown in the slide. The action taken depends
partly on the signal and partly on arrangements made in the process beforehand.

CS 167 IV–17 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Signal Actions

• For each signal type, a process can specify
an action:

– abort (with or without a core dump)
– ignore
– hold: temporarily ignore (delay delivery)
– catch: call a signal handler function

• For each signal type, there is a default action

CS 167 IV–18 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Terminology

time

signal
delivery

signal
generation

signal
pending

A signal is generated for (or sent to) a process when the event that causes the signal first
occurs; the same event may generate signals for multiple processes. A signal is delivered to a
process when the appropriate action for the process and signal is taken. In the period
between the generation of the signal and its delivery the signal is pending.

Much like how hardware-generated interrupts can be masked by the processor, (software-
generated) signals can be blocked from delivery to the process. Associated with each process
is a vector indicated which signals are blocked. A signal that’s been generated for a process
remains pending until after it’s been unblocked.

CS 167 IV–19 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

This slide shows the complete list of signals required by POSIX 1003.1. In addition, many
Unix systems support other signals, some of which we’ll mention in the course. The third
column of the slide lists the default actions in response to each of the signals. term means
the process is terminated, core means there is also a core dump; ignore means that the
signal is ignored; stop means that the process is stopped (suspended); cont means that a
stopped process is resumed (continued); forced means that the default action cannot be
changed and that the signal cannot be blocked.

CS 167 IV–20 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid
– (not always) terminate with extreme prejudice

• Also
– kill shell command
– type ctrl-c

- sends signal 2 (SIGINT) to current process
– do something illegal

- bad address, bad arithmetic, etc.

CS 167 IV–21 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,

sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);

CS 167 IV–22 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Special Handlers

• SIG_IGN
– ignore the signal
– signal(SIGINT, SIG_IGN);

• SIG_DFL
– use the default handler

- usually terminates the process
– signal(SIGINT, SIG_DFL);

CS 167 IV–23 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Example

int main() {
void handler(int);

signal(SIGINT, handler);
while(1)
;

return 1;
}
void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

Note that the C compiler implicitly concatenates two adjacent strings, as done in
printf above.

CS 167 IV–24 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Signals and Handlers

• What happens when signal is delivered to
process that has a handler?

– original Unix: current handler is called, but for
subsequent occurrences, handler set to
default

– BSD (1981): new system call, sigset,
introduced

- signal/handler association is permanent
- signal is blocked (masked) while handler is

running
– Sun Solaris (~1992): meanings of signal and

sigset switched
– Linux: ???

Linux’s man-page entry for signal is a bit ambiguous on whether it sets a signal’s handler
to default after an occurrence of the signal. In fact, it does not: once the handler is set, it
stays set until explicitly changed.

CS 167 IV–25 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
struct sigaction *old);

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void sighandler(int);
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = sighandler;
sigaction(SIGINT, &act, NULL);
…

}

The sigaction system call is the primary means for establishing a process’s response to a
particular signal. Its first argument is the signal for which a response is being specified, the
second argument is a pointer to a sigaction structure defining the response, and the third
argument is a pointer to memory in which a sigaction structure will be stored containing the
specification of what the response was prior to this call. If the third argument is null, the
prior response is not returned.

The sa_handler member of sigaction is either a pointer to a user-defined handler function
for the signal or one of SIG_DFL (meaning that the default action is taken) or SIG_IGN
(meaning that the signal is to be ignored). The sig_action member is an alternative means for
specifying a handler function; we discuss it starting in the next slide.

When a a user-defined signal-handler function is entered in response to a signal, the
signal itself is masked until the function returns. Using the sa_mask member, one can
specify additional signals to be masked while the handler function is running. On return
from the handler function, the process’s previous signal mask is restored.

The sa_flags member is used to specify various other things which we describe in
upcoming slides.

CS 167 IV–26 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, DoSomethingInteresting);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

Here we use the setitimer system call to arrange so that a SIGALRM signal is generated in
one millisecond. (The system call takes three arguments: the first indicates how time should
be measured; what’s specified here is to use real time. See its man page for other
possibilities. The second argument contains a struct itimerval that itself contains two struct
timevals. One (named it_value) indicates how much time should elapse before a SIGALRM is
generated for the process. The other (named it_interval), if non-zero, indicates that a
SIGALRM should be sent again, repeatedly, every it_interval period of time. Each process
may have only one pending timer, thus when a process calls setitimer, the new value
replaces the old. If the third argument to setitimer is non-zero, the old value is stored at the
location it points to.)

The pause system call causes the process to block and not resume until any signal that is
not ignored is delivered.

Note that there is a race condition here: it’s possible that the SIGALRM might be delivered
after the process calls setitimer, but before it calls pause (the system might be very busy). If
this were to happen, then the process might get “stuck” within pause, since no other signals
are forthcoming.

CS 167 IV–27 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Doing It Safely

sigset_t set, oldset;
sigemptyset(&set);
sidaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset);/* wait for it safely */
/* SIGALRM masked again */
…

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

Here’s a safer way of doing what was attempted in the previous slide. We mask the
SIGALRM signal before calling setitimer. Then, rather than calling pause, we call sigsuspend,
which sets the set of masked signals to its argument and, at the same instant, blocks the
calling process. Thus if the SIGALRM is generated before our process calls sigsuspend, it
won’t be delivered right away. Since the call to sigsuspend reinstates the previous mask
(which, presumably, did not include SIGALRM), the SIGALRM signal will be delivered and
the process will return (after invoking the handler). When sigsuspend returns, the signal
mask that was in place just before it was called (set) is restored. Thus we have to restore
oldset explicitly.

As with pause, sigsuspend returns only if an unmasked signal that is not ignored is
delivered.

CS 167 IV–28 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

A number of signal-related operations involve sets of signals. These sets are normally
represented by a bit vector of type sigset_t.

CS 167 IV–29 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,

sigset_t *old);

– used to examine or change the signal mask of the calling
process

- how is one of three commands:
• SIG_BLOCK

– the new signal mask is the union of the current signal
mask and set

• SIG_UNBLOCK
– the new signal mask is the intersection of the current

signal mask and the complement of set
• SIG_SETMASK

– the new signal mask is set

In addition to ignoring signals, you may specify that they are to be blocked (that is, held
pending or masked). When a signal type is masked, signals of that type remains pending and
do not interrupt the process until they are unmasked. When the process unblocks the
signal, the action associated with any pending signal is performed. This technique is most
useful for protecting critical code that should not be interrupted. Also, as we’ve already seen,
when the handler for a signal is entered, subsequent occurrences of that signal are
automatically masked until the handler is exited, hence the handler never has to worry
about being invoked to handle another instance of the signal it’s already handling.

CS 167 IV–30 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Signals and Threads

•

– who gets them?
– who needs them?

•

– how do you respond to them?

Asynchronous signals were designed (like everything else) with single-threaded processes
in mind. A signal is delivered to the process; if the signal is caught, the process stops
whatever it is doing, deals with the signal, and then resumes normal processing. But what
happens when a signal is delivered to a multithreaded process? Which thread or threads
deal with it?

Asynchronous signals, by their very nature, are handled asynchronously. But one of the
themes of multithreaded programming is that threads are a cure for asynchrony. Thus we
should be able to use threads as a means of getting away from the “drop whatever you are
doing and deal with me” approach to asynchronous signals.

Synchronous signals often are an indication that something has gone wrong: there really
is no point continuing execution in this part of the program because you have already
blown it. Traditional Unix approaches for dealing with this bad news are not terribly elegant
(some, but not all, POSIX-threads implementations provide a more elegant means for
dealing with such situations by means of an exception-handling package, similar to what’s
available to C++ programmers).

CS 167 IV–31 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Dealing with Signals

• Per-thread signal masks
• Per-process signal vectors
• One delivery per signal

The standard Unix model has a process-wide signal mask and a vector indicating what is
to be done in response to each kind of signal. When a signal is delivered to a process, an
indication is made that this signal is pending. If the signal is unmasked, then the vector is
examined to determine the response: to suspend the process, to resume the process, to
terminate the process, to ignore the signal entirely, or to invoke a signal handler.

A number of issues arise in translating this model into a multithreaded-process model.
First of all, if we invoke a signal handler, which thread or threads should execute the
handler? What seems to be closest to the spirit of the original signal semantics is that
exactly one thread should execute the handler. Which one? The consensus is that it really
does not matter, just as long as exactly one thread executes the signal handler. But what
about the signal mask? Since one sets masks depending on a thread’s local behavior, it
makes sense for each thread to have its own private signal mask. Thus a signal is delivered
to any one thread that has the signal unmasked (if more than one thread has the signal
unmasked, a thread is chosen randomly to handle the signal). If all threads have the signal
masked, then the signal remains pending until some thread unmasks it.

A related issue is the vector indicating the response to each signal. Should there be one
such vector per thread? If so, what if one thread specifies process termination in response
to a signal, while another thread supplies a handler? For reasons such as this, it was
decided that, even for multithreaded processes, there would continue to be a single,
process-wide signal-disposition vector.

CS 167 IV–32 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler(int);

sigset(SIGINT, handler);
... // long-running buggy code

}

void handler(int sig) {

... // die gracefully

exit(1);
}

Let’s look at some of the typical uses for asynchronous signals. Perhaps the most
common is to force the termination of the process. When the user types control-C, the
program should terminate. There might be a handler for the signal, so that the program
can clean up and then terminate.

CS 167 IV–33 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation_state_t state;

main() {
void handler(int);

sigset(SIGINT, handler);

long_running_procedure();
}

long_running_procedure() {
while (a_long_time) {
update_state(&state);
compute_more();

}
}

void handler(int sig) {
display(&state);

}

Here we are using a signal to send a request to a running program: when the user types
control-C, the program prints out its current state and then continues execution. If
synchronization is necessary so that the state is printed only when it is stable, it must be
provided by appropriate settings of the signal mask.

CS 167 IV–34 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (3)

main() {
void handler(int);

sigset(SIGINT, handler);

... // complicated program

printf("very important message:"
" %s\n", message);

... // more program

}

void handler(int sig) {

... // deal with signal

printf("equally important"
" message: %s\n",
message);

}

In this example, the signal handler calls printf. This is usually not a problem, except
when the mainline code is interrupted while in the middle of printf—the printf called from
the signal handler might destructively interfere with the printf called from the mainline
code.

Similarly, it’s dangerous (fatally so) to call malloc and free from within signal handlers:
the handler might have interrupted another call to malloc or free and the result could be a
corrupted heap.

CS 167 IV–35 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

• Which library routines are safe to use within
signal handlers?

– access
– aio_error
– aio_suspend
– alarm
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– creat

– dup2
– dup
– execle
– execve
– _exit
– fcntl
– fdatasync
– fork
– fstat
– fsync
– getegid
– geteuid
– getgid
– getoverrun

– getgroups
– getpgrp
– getpid
– getppid
– getuid
– kill
– link
– lseek
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe

– rename
– rmdir
– sem_post
– setgid
– setpgid
– setsid
– setuid
– sigaction
– sigaddset
– sigdelset
– sigemptyset
– sigfillset
– sigismember
– sigpending

– sigprocmask
– sigqueue
– sigsuspend
– sleep
– stat
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr
– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp

– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write

To deal with the problem on the previous page, we must arrange that signal handlers
cannot destructively interfere with the operations of the mainline code. Unless we are
willing to work with signal masks (which can be expensive), this means we must restrict
what can be done inside a signal handler. Routines that, when called from a signal handler,
do not interfere with the operation of the mainline code, no matter what that code is doing,
are termed async-signal-safe. The POSIX 1003.1 spec defines a number of these. Of the
new routines introduced with multithreaded programming, only one is async-signal-safe—
sem_post.

Note that POSIX specifies only those routines that must be async-signal safe.
Implementations may make other routines async-signal safe as well. In particular, almost
everything is async-signal-safe in Solaris. (Quick exercise: how might this be done?)

CS 167 IV–36 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Synchronizing Asynchrony

computation_state_t state;
sigset_t set;

main() {
pthread_t thread;

sigemptyset(&set);
sigaddset(&set, SIGINT);
pthread_sigmask(SIG_BLOCK,

&set, 0);
pthread_create(&thread, 0,

monitor, 0);
long_running_procedure();

}

void *monitor() {
int sig;
while (1) {
sigwait(&set, &sig);
display(&state);

}
return(0);

}

In this slide we go back to the earlier problem and use a different technique for dealing
with the signal. Rather than have the thread performing the long-running computation be
interrupted by the signal, we dedicate a thread to dealing with the signal. We make use of a
new signal-handling routine, sigwait. This routine puts its caller to sleep until one of the
signals specified in its argument occurs, at which point the call returns. As is done here,
sigwait is normally called with the signals of interest masked off; sigwait responds to
signals even if they are masked. (Note also that a new thread inherits the signal mask of its
creator.) (The system call sigprocmask is identical in effect to pthread_sigmask and could be
used here instead.)

Among the advantages of this approach is that there are no concerns about async-signal
safety since a signal handler is never invoked. The signal-handling thread waits for signals
synchronously—it is not interrupted. Thus it is safe for it to use even mutexes, condition
variables, and semaphores from inside of the display routine. Another advantage is that, if
this program is run on a multiprocessor, the “signal handling” can run in parallel with the
mainline code, which could not happen with the previous approach.

