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Programming with POSIX Threads 
II
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Global Variables

int IOfunc( ) {
extern int errno;

...

if (write(fd, buffer, size) == –1) {
if (errno == EIO)

fprintf(stderr, "IO problems 
...\n");

...
return(0);

}

...
}

Unix was not designed with multithreaded programming in mind. A good example of the 
implications of this is the manner in which error codes for failed system calls are made 
available to a program: if a system call fails, it returns –1 and the error code is stored in the 
global variable errno. Though this is not all that bad for single-threaded programs, it is 
plain wrong for multithreaded programs.
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Coping

• Fix Unix’s C/system-call interface
• Make errno refer to a different location in 

each thread
– e.g.

#define errno __errno(thread_ID)

The ideal way to solve the “errno problem” would be to redesign the C/system-call 
interface: system calls should return only an error code. Anything else to be returned 
should be returned via result parameters. (This is how things are done in Windows NT.) 
Unfortunately, this is not possible (it would break pretty much every Unix program in 
existence).

So we are stuck with errno. What can we do to make errno coexist with multithreaded 
programming? What would help would be to arrange, somehow, that each thread has its 
own private copy of errno. I.e., whenever a thread refers to errno, it refers to a different 
location from any other thread when it refers to errno.

What can we do? As shown in the slide, we might use the C preprocessor to redefine 
errno as something a bit more complicated—references to errno result in accessing a 
function that retrieves this thread’s private errno value. This is how things are actually 
done in Linux (and other implementations of POSIX threads). Please see the textbook for 
information on how this approach is generalized.



CS 167 IV–4 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Shared Data

• Thread 1:
printf("goto statement reached");

• Thread 2:
printf("Hello World\n");

• Printed on display:

go to Hell

Yet another problem that arises when using libraries that were not designed for 
multithreaded programs concerns synchronization. The slide shows what might happen if 
one relied on the single-threaded versions of the standard I/O routines.
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Coping

• Wrap library calls with synchronization 
constructs

• Fix the libraries

To deal with this printf problem, we must somehow add synchronization to printf (and all 
of the other standard I/O routines). A simple way to do this would be to supply wrappers 
for all of the standard I/O routines ensuring that only one thread is operating on any 
particular stream at a time. A better way would be to do the same sort of thing by fixing the 
routines themselves, rather than supplying wrappers (this is what is done in most 
implementations).
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Killing Time ...

struct timespec timeout, remaining_time;

timeout.tv_sec = 3; // seconds
timeout.tv_nsec = 1000; // nanoseconds

nanosleep(&timeout, &remaining_time);

It is sometimes useful for a thread to wait for a certain period of time before continuing. 
The traditional Unix approach of using alarm and SIGALRM not only is not suitable for 
multithreaded programming, but also does not provide fine enough granularity. The routine 
nanosleep provides a better approach. A thread calls it with two arguments; the first 
indicates (in seconds and nanoseconds) how long the thread wishes to wait. The second 
argument is relevant only if the thread is interrupted by a signal: it indicates how much 
additional time remains until the originally requested time period expires.

Note that most Unix implementations do not have a clock that measures time in 
nanoseconds: the first argument to nanosleep is rounded up to an integer multiple of 
whatever sleep resolution is supported.
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Timeouts

struct timespec relative_timeout, absolute_timeout;
struct timeval now;
relative_timeout.tv_sec = 3; // seconds
relative_timeout.tv_nsec = 1000; // nanoseconds
gettimeofday(&now, 0);
absolute_timeout.tv_sec = now.tv_sec + relative_timeout.tv_sec;
absolute_timeout.tv_nsec = 1000*now.tv_usec + 

relative_timeout.tv_nsec;
if (absolute_timeout.tv_nsec >= 1000000000) { // deal with the carry

absolute_timeout.tv_nsec –= 1000000000;
absolute_timeout.tv_sec++;

}
pthread_mutex_lock(&m);
while (!may_continue)

pthread_cond_timedwait(&cv, &m, &absolute_timeout);
pthread_mutex_unlock(&m);

POSIX threads provides a version of pthread_cond_wait that has a timeout: 
pthread_cond_timedwait. It takes an additional argument indicating when the thread should 
give up on being awoken by a pthread_cond_signal. This argument is an absolute time, as 
opposed to a relative time (as used in the previous slide); i.e., it is the clock time at which 
the call times out. To convert from an relative time to an absolute time, one must perform 
the machinations shown in the slide (or something similar)—note that gettimeofday returns 
seconds and microseconds, whereas pthread_cond_timedwait wants seconds and 
nanoseconds.

Why is it done this way? Though at first (and most subsequent) glances it seems foolish 
to require an absolute timeout value rather than a relative one, the use of the former makes 
some sense if you keep in mind that pthread_cond_timedwait could return with the 
“may_continue” condition false even before the timeout has expired (either because it’s 
returned spontaneously or because the “may_continue” was falsified after the thread was 
released from the condition-variable queue). By having the timeout be absolute, there’s no 
need to compute a new relative timeout when pthread_cond_timedwait is called again.
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Cancellation

In a number of situations one thread must tell another to cease whatever it is doing. For 
example, suppose we’ve implemented a chess-playing program by having multiple threads 
search the solution space for the next move. If one thread has discovered a quick way of 
achieving a checkmate, it would want to notify the others that they should stop what 
they’re doing, the game has been won.

One might think that this is an ideal use for per-thread signals, but there’s a cleaner 
mechanism for doing this sort of thing in POSIX threads, called cancellation.
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Cancellation Concerns

• Getting cancelled at an inopportune moment
• Cleaning up

We have two concerns about the forced termination of threads resulting from 
cancellation: a thread might be in the middle of doing something important that it must 
complete before self-destructing; and a canceled thread must be given the opportunity to 
clean up.
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Cancellation State

• Pending cancel
– pthread_cancel(thread)

• Cancels enabled or disabled
– int pthread_setcancelstate(

{PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE},
&oldstate)

• Asynchronous vs. deferred cancels
– int pthread_setcanceltype(

{PTHREAD_CANCEL_ASYNCHRONOUS,
PTHREAD_CANCEL_DEFERRED},
&oldtype)

A thread issues a cancel request by calling pthread_cancel, supplying the ID of the target 
thread as the argument. Associated with each thread is some state information known as 
its cancellation state and its cancellation type. When a thread receives a cancel request, it is 
marked indicating that it has a pending cancel. The next issue is when the thread should 
notice and act upon the cancel. This is governed by the cancellation state: whether cancels 
are enabled or disabled and by the cancellation type: whether the response to cancels is 
asynchronous or deferred. If cancels are disabled, then the cancel remains pending but is 
otherwise ignored until cancels are enabled. If cancels are enabled, they are acted on as 
soon as they are noticed if the cancellation type is asynchronous. Otherwise, i.e., if the 
cancellation type is deferred, the cancel is acted upon only when the thread reaches a 
cancellation point.

Cancellation points are intended to be well defined points in a thread’s execution at 
which it is prepared to be canceled. They include pretty much all system and library calls 
in which the thread can block, with the exception of pthread_mutex_lock. In addition, a 
thread may call pthread_testcancel, which has no function other than being a cancellation 
point.

The default is that cancels are enabled and deferred. One can change the cancellation 
state of a thread by using the calls shown in the slide. Calls to pthread_setcancelstate and 
pthread_setcanceltype return the previous value of the affected portion of the cancellability
state.
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Cancellation Points

• aio_suspend
• close
• creat
• fcntl (when F_SETLCKW is 

the command)
• fsync
• mq_receive
• mq_send
• msync
• nanosleep
• open
• pause
• pthread_cond_wait
• pthread_cond_timedwait

• pthread_join
• pthread_testcancel
• read
• sem_wait
• sigsuspend
• sigtimedwait
• sigwait
• sigwaitinfo
• sleep
• system
• tcdrain
• wait
• waitpid
• write

The slide lists all of the required cancellation points in POSIX. Note, in particular, 
pthread_testcancel, whose effect is to be nothing but a cancellation point (i.e., if a cancel 
isn’t pending, it does nothing).
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Cleaning Up

• pthread_cleanup_push((void)(*routine)(void *), void *arg)
• pthread_cleanup_pop(int execute)

When a thread acts upon a cancel, its ultimate fate has been established, but it first gets 
a chance to clean up. Associated with each thread may be a stack of cleanup handlers. 
Such handlers are pushed onto the stack via calls to pthread_cleanup_push and popped off 
the stack via calls to pthread_cleanup_pop. Thus when a thread acts on a cancel or when it 
calls pthread_exit, it calls each of the cleanup handlers in turn, giving the argument that 
was supplied as the second parameter of pthread_cleanup_push. Once all the cleanup 
handlers have been called, the thread terminates.

The two routines pthread_cleanup_push and pthread_cleanup_pop are intended to act as 
left and right parentheses, and thus should always be paired (in fact, they may actually be 
implemented as macros: the former contains an unmatched “{“, the latter an unmatched 
“}”). The argument to the latter routine indicates whether or not the cleanup function 
should be called as a side effect of calling pthread_cleanup_pop.
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Cancellation and Cleanup

fd = open(file, O_RDONLY);
pthread_cleanup_push(

close_file, fd);
while(1) {

read(fd, buffer, buf_size);

// . . .

}
pthread_cleanup_pop(0);

void close_file(int fd) {
close(fd);

}

Here is a simple example of the use of a cleanup handler in conjunction with 
cancellation. The thread executing the code on the left, which has pushed a cleanup 
handler on its stack, makes successive calls to read, which is a cancellation point. 
Assuming the thread has cancellation enabled and set to deferred, if the thread is canceled, 
it will notice the cancel within read. It will then walk through its stack of cleanup handlers, 
first calling close_file, then any others that might be on the stack. Finally, the thread 
terminates.
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Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(pthread_mutex_unlock, &m);
while(should_wait)

pthread_cond_wait(&cv, &m);

// . . . (code containing other cancellation points)

pthread_cleanup_pop(1);

In this example we handle cancels that might occur while a thread is blocked within 
pthread_cond_wait. Again we assume the thread has cancels enabled and deferred. The 
thread first pushes a cleanup handler on its stack—in this case the cleanup handler 
unlocks the mutex. The thread then loops, calling pthread_cond_wait, a cancellation point. 
If it receives a cancel, the cleanup handler won’t be called until the mutex has been 
reacquired. Thus we are certain that when the cleanup handler is called, the mutex is 
locked.

What’s important here is that we make sure the thread does not terminate without 
releasing its lock on the mutex m. If the thread acts on a cancel within pthread_cond_wait
and the cleanup handler were invoked without first taking the mutex, this would be 
difficult to guarantee, since we wouldn’t know if the thread had the mutex locked (and thus 
needs to unlock it) when it’s in the cleanup handler.
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Signals

int x, y;

x = 0;
…
y = 16/x;

for (;;)
keep_on_trying( 
);

Signals are a kernel-supported mechanism for reporting events to user code and forcing a 
response to them. There are actually two sorts of such events, to which we sometimes refer 
as exceptions and interrupts. The former occur typically because the program has done 
something wrong. The response, the sending of a signal, is immediate; such signals are 
known as synchronous signals. The latter are in response to external actions, such as a 
timer expiring, an action at the keyboard, or the explicit sending of a signal by another 
process. Signals send in response to these events can seemingly occur at any moment and 
are referred to as asynchronous signals. 
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The OS to the Rescue

• Signals
– generated (by OS) in response to

- exceptions (e.g., arithmetic errors, addressing 
problems)

- external events (e.g., timer expiration, certain 
keystrokes, actions of other processes)

– effect on process:
- termination (possibly after producing a core 

dump)
- invocation of a procedure that has been set up 

to be a signal handler
- suspension of execution
- resumption of execution

Processes react to signals using the actions shown in the slide. The action taken depends 
partly on the signal and partly on arrangements made in the process beforehand.
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Signal Actions

• For each signal type, a process can specify 
an action:

– abort (with or without a core dump)
– ignore
– hold: temporarily ignore (delay delivery)
– catch: call a signal handler function

• For each signal type, there is a default action
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Terminology

time

signal
delivery

signal
generation

signal
pending

A signal is generated for (or sent to) a process when the event that causes the signal first 
occurs; the same event may generate signals for multiple processes. A signal is delivered to a 
process when the appropriate action for the process and signal is taken. In the period 
between the generation of the signal and its delivery the signal is pending.

Much like how hardware-generated interrupts can be masked by the processor, (software-
generated) signals can be blocked from delivery to the process. Associated with each process 
is a vector indicated which signals are blocked. A signal that’s been generated for a process 
remains pending until after it’s been unblocked.
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Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

This slide shows the complete list of signals required by POSIX 1003.1. In addition, many 
Unix systems support other signals, some of which we’ll mention in the course. The third 
column of the slide lists the default actions in response to each of the signals. term means 
the process is terminated, core means there is also a core dump; ignore means that the 
signal is ignored; stop means that the process is stopped (suspended); cont means that a 
stopped process is resumed (continued); forced means that the default action cannot be 
changed and that the signal cannot be blocked.
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Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid
– (not always) terminate with extreme prejudice

• Also
– kill shell command
– type ctrl-c

- sends signal 2 (SIGINT) to current process
– do something illegal

- bad address, bad arithmetic, etc.
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Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,

sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);
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Special Handlers

• SIG_IGN
– ignore the signal
– signal(SIGINT, SIG_IGN);

• SIG_DFL
– use the default handler

- usually terminates the process
– signal(SIGINT, SIG_DFL);
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Example

int main() {
void handler(int);

signal(SIGINT, handler);
while(1)
;

return 1;
}
void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

Note that the C compiler implicitly concatenates two adjacent strings, as done in 
printf above.
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Signals and Handlers

• What happens when signal is delivered to 
process that has a handler?

– original Unix: current handler is called, but for 
subsequent occurrences, handler set to 
default

– BSD (1981): new system call, sigset, 
introduced

- signal/handler association is permanent
- signal is blocked (masked) while handler is 

running
– Sun Solaris (~1992): meanings of signal and 

sigset switched
– Linux: ???

Linux’s man-page entry for signal is a bit ambiguous on whether it sets a signal’s handler 
to default after an occurrence of the signal. In fact, it does not: once the handler is set, it 
stays set until explicitly changed.
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sigaction

int sigaction(int sig, const struct sigaction *new, 
struct sigaction *old);

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void sighandler(int);
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = sighandler;
sigaction(SIGINT, &act, NULL);
…

}

The sigaction system call is the primary means for establishing a process’s response to a 
particular signal. Its first argument is the signal for which a response is being specified, the 
second argument is a pointer to a sigaction structure defining the response, and the third 
argument is a pointer to memory in which a sigaction structure will be stored containing the 
specification of what the response was prior to this call. If the third argument is null, the 
prior response is not returned.

The sa_handler member of sigaction is either a pointer to a user-defined handler function 
for the signal or one of SIG_DFL (meaning that the default action is taken) or SIG_IGN 
(meaning that the signal is to be ignored). The sig_action member is an alternative means for 
specifying a handler function; we discuss it starting in the next slide.

When a a user-defined signal-handler function is entered in response to a signal, the 
signal itself is masked until the function returns. Using the sa_mask member, one can 
specify additional signals to be masked while the handler function is running. On return 
from the handler function, the process’s previous signal mask is restored.

The sa_flags member is used to specify various other things which we describe in 
upcoming slides.



CS 167 IV–26 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, DoSomethingInteresting);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

Here we use the setitimer system call to arrange so that a SIGALRM signal is generated in
one millisecond. (The system call takes three arguments: the first indicates how time should 
be measured; what’s specified here is to use real time. See its man page for other
possibilities. The second argument contains a struct itimerval that itself contains two struct
timevals. One (named it_value) indicates how much time should elapse before a SIGALRM is 
generated for the process. The other (named it_interval), if non-zero, indicates that a 
SIGALRM should be sent again, repeatedly, every it_interval period of time. Each process 
may have only one pending timer, thus when a process calls setitimer, the new value 
replaces the old. If the third argument to setitimer is non-zero, the old value is stored at the 
location it points to.)

The pause system call causes the process to block and not resume until any signal that is 
not ignored is delivered.

Note that there is a race condition here: it’s possible that the SIGALRM might be delivered 
after the process calls setitimer, but before it calls pause (the system might be very busy). If 
this were to happen, then the process might get “stuck” within pause, since no other signals 
are forthcoming.
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Doing It Safely

sigset_t set, oldset;
sigemptyset(&set);
sidaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset);/* wait for it safely */
/* SIGALRM masked again */
…

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

Here’s a safer way of doing what was attempted in the previous slide. We mask the 
SIGALRM signal before calling setitimer. Then, rather than calling pause, we call sigsuspend, 
which sets the set of masked signals to its argument and, at the same instant, blocks the 
calling process. Thus if the SIGALRM is generated before our process calls sigsuspend, it 
won’t be delivered right away. Since the call to sigsuspend reinstates the previous mask 
(which, presumably, did not include SIGALRM), the SIGALRM signal will be delivered and 
the process will return (after invoking the handler). When sigsuspend returns, the signal 
mask that was in place just before it was called (set) is restored. Thus we have to restore 
oldset explicitly.

As with pause, sigsuspend returns only if an unmasked signal that is not ignored is 
delivered.
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Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

A number of signal-related operations involve sets of signals. These sets are normally 
represented by a bit vector of type sigset_t.
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Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,

sigset_t *old);

– used to examine or change the signal mask of the calling 
process

- how is one of three commands:
• SIG_BLOCK

– the new signal mask is the union of the current signal 
mask and set

• SIG_UNBLOCK
– the new signal mask is the intersection of the current 

signal mask and the complement of set
• SIG_SETMASK

– the new signal mask is set

In addition to ignoring signals, you may specify that they are to be blocked (that is, held 
pending or masked). When a signal type is masked, signals of that type remains pending and 
do not interrupt the process until they are unmasked. When the process unblocks the 
signal, the action associated with any pending signal is performed. This technique is most 
useful for protecting critical code that should not be interrupted. Also, as we’ve already seen, 
when the handler for a signal is entered, subsequent occurrences of that signal are 
automatically masked until the handler is exited, hence the handler never has to worry 
about being invoked to handle another instance of the signal it’s already handling.
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Signals and Threads

•

– who gets them?
– who needs them?

•

– how do you respond to them?

Asynchronous signals were designed (like everything else) with single-threaded processes 
in mind. A signal is delivered to the process; if the signal is caught, the process stops 
whatever it is doing, deals with the signal, and then resumes normal processing. But what 
happens when a signal is delivered to a multithreaded process? Which thread or threads 
deal with it?

Asynchronous signals, by their very nature, are handled asynchronously. But one of the 
themes of multithreaded programming is that threads are a cure for asynchrony. Thus we 
should be able to use threads as a means of getting away from the “drop whatever you are 
doing and deal with me” approach to asynchronous signals.

Synchronous signals often are an indication that something has gone wrong: there really 
is no point continuing execution in this part of the program because you have already 
blown it. Traditional Unix approaches for dealing with this bad news are not terribly elegant 
(some, but not all, POSIX-threads implementations provide a more elegant means for 
dealing with such situations by means of an exception-handling package, similar to what’s 
available to C++ programmers).
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Dealing with Signals

• Per-thread signal masks
• Per-process signal vectors
• One delivery per signal

The standard Unix model has a process-wide signal mask and a vector indicating what is 
to be done in response to each kind of signal. When a signal is delivered to a process, an 
indication is made that this signal is pending. If the signal is unmasked, then the vector is 
examined to determine the response: to suspend the process, to resume the process, to 
terminate the process, to ignore the signal entirely, or to invoke a signal handler.

A number of issues arise in translating this model into a multithreaded-process model. 
First of all, if we invoke a signal handler, which thread or threads should execute the 
handler? What seems to be closest to the spirit of the original signal semantics is that 
exactly one thread should execute the handler. Which one? The consensus is that it really 
does not matter, just as long as exactly one thread executes the signal handler. But what 
about the signal mask? Since one sets masks depending on a thread’s local behavior, it 
makes sense for each thread to have its own private signal mask. Thus a signal is delivered 
to any one thread that has the signal unmasked (if more than one thread has the signal 
unmasked, a thread is chosen randomly to handle the signal). If all threads have the signal 
masked, then the signal remains pending until some thread unmasks it.

A related issue is the vector indicating the response to each signal. Should there be one 
such vector per thread? If so, what if one thread specifies process termination in response 
to a signal, while another thread supplies a handler? For reasons such as this, it was 
decided that, even for multithreaded processes, there would continue to be a single, 
process-wide signal-disposition vector.
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Asynchronous Signals (1)

main( ) {
void handler(int);

sigset(SIGINT, handler);
...  // long-running buggy code

}

void handler(int sig) {

...  // die gracefully

exit(1);
}

Let’s look at some of the typical uses for asynchronous signals. Perhaps the most 
common is to force the termination of the process. When the user types control-C, the 
program should terminate. There might be a handler for the signal, so that the program 
can clean up and then terminate.
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Asynchronous Signals (2)

computation_state_t state;

main( ) {
void handler(int);

sigset(SIGINT, handler);

long_running_procedure( );
}

long_running_procedure( ) {
while (a_long_time) {
update_state(&state);
compute_more( );

}
}

void handler(int sig) {
display(&state);

}

Here we are using a signal to send a request to a running program: when the user types 
control-C, the program prints out its current state and then continues execution. If 
synchronization is necessary so that the state is printed only when it is stable, it must be 
provided by appropriate settings of the signal mask.
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Asynchronous Signals (3)

main( ) {
void handler(int);

sigset(SIGINT, handler);

...  // complicated program

printf("very important message:"
" %s\n", message);

...  // more program

}

void handler(int sig) {

...  // deal with signal

printf("equally important"
" message: %s\n", 
message);

}

In this example, the signal handler calls printf. This is usually not a problem, except 
when the mainline code is interrupted while in the middle of printf—the printf called from 
the signal handler might destructively interfere with the printf called from the mainline 
code.

Similarly, it’s dangerous (fatally so) to call malloc and free from within signal handlers: 
the handler might have interrupted another call to malloc or free and the result could be a 
corrupted heap.
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Async-Signal Safety

• Which library routines are safe to use within 
signal handlers?

– access
– aio_error
– aio_suspend
– alarm
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– creat

– dup2
– dup
– execle
– execve
– _exit
– fcntl
– fdatasync
– fork
– fstat
– fsync
– getegid
– geteuid
– getgid
– getoverrun

– getgroups
– getpgrp
– getpid
– getppid
– getuid
– kill
– link
– lseek
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe

– rename
– rmdir
– sem_post
– setgid
– setpgid
– setsid
– setuid
– sigaction
– sigaddset
– sigdelset
– sigemptyset
– sigfillset
– sigismember
– sigpending

– sigprocmask
– sigqueue
– sigsuspend
– sleep
– stat
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr
– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp

– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write

To deal with the problem on the previous page, we must arrange that signal handlers 
cannot destructively interfere with the operations of the mainline code. Unless we are 
willing to work with signal masks (which can be expensive), this means we must restrict 
what can be done inside a signal handler. Routines that, when called from a signal handler, 
do not interfere with the operation of the mainline code, no matter what that code is doing, 
are termed async-signal-safe. The POSIX 1003.1 spec defines a number of these. Of the 
new routines introduced with multithreaded programming, only one is async-signal-safe—
sem_post.

Note that POSIX specifies only those routines that must be async-signal safe. 
Implementations may make other routines async-signal safe as well. In particular, almost 
everything is async-signal-safe in Solaris. (Quick exercise: how might this be done?)



CS 167 IV–36 Copyright © 2008 Thomas W. Doeppner. All rights reserved.

Synchronizing Asynchrony

computation_state_t state;
sigset_t set;

main( ) {
pthread_t thread;

sigemptyset(&set);
sigaddset(&set, SIGINT);
pthread_sigmask(SIG_BLOCK,

&set, 0);
pthread_create(&thread, 0,

monitor, 0);
long_running_procedure( );

}

void *monitor( ) {
int sig;
while (1) {
sigwait(&set, &sig);
display(&state);

}
return(0);

}

In this slide we go back to the earlier problem and use a different technique for dealing 
with the signal. Rather than have the thread performing the long-running computation be 
interrupted by the signal, we dedicate a thread to dealing with the signal. We make use of a 
new signal-handling routine, sigwait. This routine puts its caller to sleep until one of the 
signals specified in its argument occurs, at which point the call returns. As is done here, 
sigwait is normally called with the signals of interest masked off; sigwait responds to 
signals even if they are masked. (Note also that a new thread inherits the signal mask of its 
creator.) (The system call sigprocmask is identical in effect to pthread_sigmask and could be 
used here instead.)

Among the advantages of this approach is that there are no concerns about async-signal 
safety since a signal handler is never invoked. The signal-handling thread waits for signals 
synchronously—it is not interrupted. Thus it is safe for it to use even mutexes, condition 
variables, and semaphores from inside of the display routine. Another advantage is that, if 
this program is run on a multiprocessor, the “signal handling” can run in parallel with the 
mainline code, which could not happen with the previous approach.


