
CSCI-1680
Link Layer Wrap-Up

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 David	
 Mazières,	
 Phil	
 Levis,	
 John	
 Janno<	

Rodrigo Fonseca

Administrivia

•  Homework I out later today, due next Friday,
Feb 17th

Today: Link Layer (cont.)

•  Framing
•  Reliability
–  Error correction
–  Sliding window

•  Medium Access Control
•  Case study: Ethernet
•  Link Layer Switching

Media Access Control

•  Control access to shared physical medium
–  E.g., who can talk when?
–  If everyone talks at once, no one hears anything
–  Job of the Link Layer

•  Two con!icting goals
–  Maximize utilization when one node sending
–  Approach 1/N allocation when N nodes sending

Different Approaches

•  Partitioned Access
–  Time Division Multiple Access (TDMA)
–  Frequency Division Multiple Access (FDMA)
–  Code Division Multiple Access (CDMA)

•  Random Access
–  ALOHA/ Slotted ALOHA
–  Carrier Sense Multiple Access / Collision Detection

(CSMA/CD)
–  Carrier Sense Multiple Access / Collision Avoidance

(CSMA/CA)
–  RTS/CTS (Request to Send/Clear to Send)
–  Token-based

Case Study: Ethernet (802.3)

•  Dominant wired LAN technology
–  10BASE2, 10BASE5 (Vampire Taps)
–  10BASET, 100BASE-TX, 1000BASE-T, 10GBASE-T,…

•  Both Physical and Link Layer speci#cation
•  CSMA/CD

–  Carrier Sense / Multiple Access / Collision Detection
•  Frame Format (Manchester Encoding):

Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

Ethernet Addressing

•  Globally unique, 48-bit unicast address per
adapter
–  Example: 00:1c:43:00:3d:09 (Samsung adapter)
–  24 msb: organization
–  http://standards.ieee.org/develop/regauth/oui/oui.txt

•  Broadcast address: all 1s
•  Multicast address: #rst bit 1
•  Adapter can work in promiscuous mode

Ethernet MAC: CSMA/CD

•  Problem: shared medium
–  10Mbps: 2500m, with 4 repeaters at 500m

•  Transmit algorithm
–  If line is idle, transmit immediately
–  Upper bound message size of 1500 bytes
–  Must wait 9.6μs (96-bit time) between back to back frames

•  (Old limit) To give time to switch from tx to rx mode
–  If line is busy: wait until idle and transmit immediately

Handling Collisions

•  Collision detection (10Base2 Ethernet)
–  Uses Manchester encoding. Why does that help?
–  Constant average voltage unless multiple transmitters

•  If collision
–  Jam for 32 bits, then stop transmitting frame

•  Collision detection constrains protocol
–  Imposes min. packet size (64 bytes or 512 bits)
–  Imposes maximum network diameter (2500m)
–  Ensure transmission time ≥ 2x propagation delay

(why?)

Collision Detection

•  Without minimum frame length, might not
detect collision

Violating Timing Constraints

Time

Collision

Detect

No Collision

Detect!

• Without min packet size, might miss collision

When to transmit again?

•  Delay and try again: exponential backoff
•  nth time: k × 51.2μs, for k = U{0..2min(n,10)-1}

–  1st time: 0 or 51.2μs
–  2nd time: 0, 51.2, 102.4, or 153.6μs

•  Give up aer several times (usually 16)

Capture Effect

•  Exponential backoff leads to self-adaptive use
of channel

•  A and B are trying to transmit, and collide
•  Both will back off either 0 or 51.2μs
•  Say A wins.
•  Next time, collide again.

–  A will wait between 0 or 1 slots
–  B will wait between 0, 1, 2, or 3 slots

•  …

Token Ring

•  Idea: frames !ow around ring
•  Capture special “token” bit pattern to transmit
•  Variation used today in Metropolitan Area

Networks, with #ber

Interface Cards

•  Problem: if host dies, can break the network
•  Hardware typically has relays

Host

From previous
host

To next
host

Relay

(a)

Host

Host Host

From previous
host

To next
host

Relay

(b)

Token Ring Frames

•  Frame format (Differential Manchester)

•  Sender grabs token, sends message(s)
•  Recipient checks address
•  Sender removes frame from ring aer lap
•  Maximum holding time: avoid capture
•  Monitor node reestablishes lost token

Body ChecksumSrc
addr

Variable48

Dest
addr

48 32

End
delimiter

8

Frame
status

8

Frame
control

8

Access
control

8

Start
delimiter

8

Switching

Basic Problem
•  Direct-link networks don’t scale

•  Solution: use switches to connect network
segments

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

Switching

•  Switches must be able to, given a packet,
determine the outgoing port

•  3 ways to do this:
–  Virtual Circuit Switching
–  Datagram Switching
–  Source Routing

Input
ports

T3

T3

STS-1

T3

T3

STS-1

Switch

Output
ports

Virtual Circuit Switching

•  Explicit set-up and tear down phases
–  Establishes Virtual Circuit Identi#er on each link
–  Each switch stores VC table

•  Subsequent packets follow same path
–  Switches map [in-port, in-VCI] : [out-port, out-VCI]

•  Also called connection-oriented model

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Host A Host B

Switch 3

Switch 2Switch 1

7

11

Virtual Circuit Model

•  Requires one RTT before sending #rst packet
•  Connection request contain full destination

address, subsequent packets only small VCI
•  Setup phase allows reservation of resources,

such as bandwidth or buffer-space
–  Any problems here?

•  If a link or switch fails, must re-establish whole
circuit

•  Example: ATM

Datagram Switching

•  Each packet carries destination address
•  Switches maintain address-based tables

–  Maps [destination address]:[out-port]

•  Also called connectionless model

0

13
2

0
1 3

2

0
13

2

Switch 3 Host B

Switch 2

Host A

Switch 1

Host C

Host D

Host E
Host F

Host G

Host H

Addr Port
A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0

Switch 2

Datagram Switching

•  No delay for connection setup
•  Source can’t know if network can deliver a

packet
•  Possible to route around failures
•  Higher overhead per-packet
•  Potentially larger tables at switches

Source Routing

•  Packets carry entire route: ports
•  Switches need no tables!

–  But end hosts must obtain the path information
•  Variable packet header

0

13
2

0
1 3

2

0

13

2

0

13

2
3 0 1 3 01

30 1

Switch 3

Host B

Switch 2

Host A

Switch 1

Bridging

Bridges and Extended LANs

•  LANs have limitations
–  E.g. Ethernet < 1024 hosts, < 2500m

•  Connect two or more LANs with a bridge
–  Operates on Ethernet addresses
–  Forwards packets from one LAN to the other(s)

•  Ethernet switch is just a multi-way bridge
A

Bridge

B C

X Y Z

Port 1

Port 2

Learning Bridges

•  Idea: don’t forward a packet where it isn’t needed
–  If you know recipient is not on that port

•  Learn hosts’ locations based on source addresses
–  Build a table as you receive packets
–  Table is a cache: if full, evict old entries. Why is this #ne?

•  Table says when not to forward a packet
–  Doesn’t need to be complete for correctness

A

Bridge

B C

X Y Z

Port 1

Port 2

Attack on a Learning Switch

•  Eve: wants to sniff all packets sent to Bob
•  Same segment: easy (shared medium)
•  Different segment on a learning bridge: hard

–  Once bridge learns Bob’s port, stop broadcasting
•  How can Eve force the bridge to keep

broadcasting?
–  Flood the network with frames with spoofed src addr!

Bridges

•  Unicast: forward with #ltering
•  Broadcast: always forward
•  Multicast: always forward or learn groups
•  Difference between bridges and repeaters?

–  Bridges: same broadcast domain; copy frames
–  Repeaters: same broadcast and collision domain; copy

signals

Dealing with Loops

•  Problem: people may create loops in LAN!
–  Accidentally, or to provide redundancy
–  Don’t want to forward packets inde#nitely

A

C

E

D

B

K

F

H

J

G

I

B3

B7

B4

B2

B5

B1

B6

Spanning Tree

•  Need to disable ports, so that no loops in network
•  Like creating a spanning tree in a graph
–  View switches and networks as nodes, ports as edges

A

C

E

D

B

K

F

H

J

G

I

B5

B2

B3

B7

B4

B1

B6

Distributed Spanning Tree Algorithm

•  Every bridge has a unique ID (Ethernet address)
•  Goal:
–  Bridge with the smallest ID is the root
–  Each segment has one designated bridge, responsible for

forwarding its packets towards the root
•  Bridge closest to root is designated bridge
•  If there is a tie, bridge with lowest ID wins

Spanning Tree Protocol

•  Spanning Tree messages contain:
–  ID of bridge sending the message
–  ID sender believes to be the root
–  Distance (in hops) from sender to root

•  Bridges remember best con#g msg on each port
•  Send message when you think you are the root
•  Otherwise, forward messages from best known root
–  Add one to distance before forwarding
–  Don’t forward if you know you aren’t dedicated bridge

•  In the end, only root is generating messages

Limitations of Bridges

•  Scaling
–  Spanning tree algorithm doesn’t scale
–  Broadcast does not scale
–  No way to route around congested links, even if path

exists
•  May violate assumptions

–  Could confuse some applications that assume single
segment

–  Much more likely to drop packets
–  Makes latency between nodes non-uniform
–  Beware of transparency

VLANs

•  Company network, A and B departments
–  Broadcast traffic does not scale
–  May not want traffic between the two departments
–  Topology has to mirror physical locations
–  What if employees move between offices?

b1

b2

a1

a2

VLANs

•  Solution: Virtual LANs
–  Assign switch ports to a VLAN ID (color)
–  Isolate traffic: only same color
–  Trunk links may belong to multiple VLANs
–  Encapsulate packets: add 12-bit VLAN ID

•  Easy to change, no need to rewire

a2

b2

a1

b1

Generic Switch Architecture

•  Goal: deliver packets from input to output ports
•  ree potential performance concerns:
– roughput in bytes/second
– roughput in packets/second
–  Latency

Generic switch architecture

Switch
fabric

Control
processor

Output
port

Input
port

• Goal: deliver packets from input to output ports

• Three potential performance concerns:
- Throughput in terms of bytes/time

- Throughput in terms of packets/time

- Latency

Cut through vs. Store and Forward

•  Two approaches to forwarding a packet
–  Receive a full packet, then send to output port
–  Start retransmitting as soon as you know output port,

before full packet
•  Cut-through routing can greatly decrease latency
•  Disadvantage
–  Can waste transmission (classic optimistic approach)
–  CRC may be bad
–  If Ethernet collision, may have to send runt packet on

output link

Buffering
•  Buffering of packets can happen at input ports,

fabric, and/or output ports
•  Queuing discipline is very important
•  Consider FIFO + input port buffering

–  Only one packet per output port at any time
–  If multiple packets arrive for port 2, they may block

packets to other ports that are free
–  Head-of-line blocking

2	

2	
 1	

Port	
 1	

Port	
 2	

Shared Memory Switch

•  1st Generation – like a regular PC
–  NIC DMAs packet to memory over I/O bus
–  CPU examines header, sends to destination NIC
–  I/O bus is serious bottleneck
–  For small packets, CPU may be limited too
–  Typically < 0.5 Gbps

I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Shared Bus Switch

•  2st Generation
–  NIC has own processor, cache of forwarding table
–  Shared bus, doesn’t have to go to main memory
–  Typically limited to bus bandwidth

•  (Cisco 5600 has a 32Gbps bus)

I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Point to Point Switch

•  3rd Generation: overcomes single-bus bottleneck
•  Example: Cross-bar switch
–  Any input-output permutation
–  Multiple inputs to same output requires trickery
–  Cisco 12000 series: 60Gbps

Coming Up

•  Connecting multiple networks: IP and the
Network Layer

•  Remember: no class on Tuesday!

