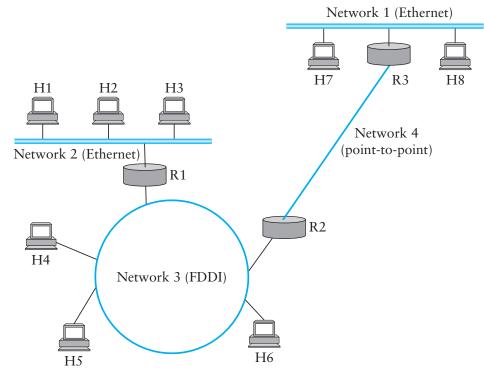
CSCI-1680 Network Layer: IP & Forwarding

Rodrigo Fonseca

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti

Administrivia

- IP out today. Your job:
 - Find partners and tell us
 - Implement IP forwarding and DV routing
 - Get started NOW (ok, after class)
- HW1 due tomorrow
- My next office hours:
 - Today, 12:30-1:30; Wednesday 11:00-12:00
- No class next Tuesday (Brown holiday)
- No class next Thursday (Rodrigo out of town)


Today

- Network layer: Internet Protocol (v4)
- Forwarding
 - Addressing
 - Fragmentation
 - ARP
 - DHCP
 - NATs
- Next 2 classes: Routing

Internet Protocol Goal

- How to connect everybody?
 - New global network or connect existing networks?
- Glue lower-level networks together:
 - allow packets to be sent between any pair or hosts
- Wasn't this the goal of switching?

Internetworking Challenges

• Heterogeneity

- Different addresses
- Different service models
- Different allowable packet sizes
- Scaling
- Congestion control

How would you design such a protocol?

- Circuits or packets?
 - Predictability
- Service model
 - Reliability, timing, bandwidth guarantees
- Any-to-any
 - Finding nodes: naming, routing
 - Maintenance (join, leave, add/remove links,...)
 - Forwarding: message formats

IP's Decisions

- Packet switched
 - Unpredictability
- Service model
 - Lowest common denominator: best effort, connectionless datagram
- Any-to-any
 - Common message format
 - Separated routing from forwarding
 - Naming: uniform addresses, hierarchical organization
 - Routing: hierarchical, prefix-based (longest prefix matching)

– Maintenance: delegated, hierarchical

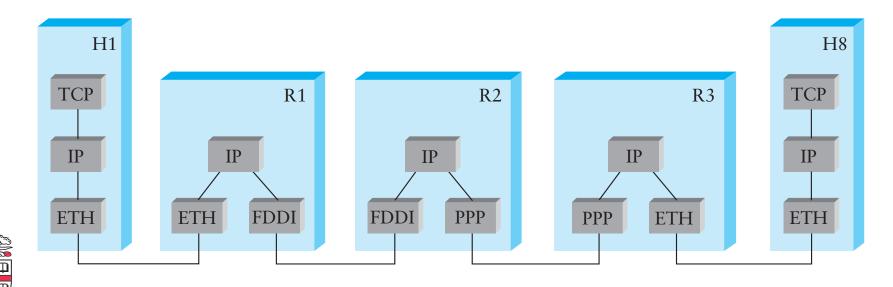
A Bit of History

- Packet switched networks: Arpanet's IMPs
 - Late 1960's
 - RFC 1, 1969!
 - Segmentation, framing, routing, reliability, reassembly, flow control
- Network Control Program (NCP)
 - Provided connections, flow control
 - Assumed reliable network: IMPs
 - Used by programs like telnet, mail, file transfer
- Wanted to connect multiple networks

TCP/IP Introduced

- Vint Cerf, Robert Kahn
- Replace NCP
- Initial design: single protocol providing a unified reliable pipe
 - Could support any application
- Different requirements soon emerged, and the two were separated
 - IP: basic datagram service among hosts
 - TCP: reliable transport
 - UDP: unreliable *multiplexed* datagram service

An excellent read


David D. Clark, "The design Philosophy of the DARPA Internet Protocols", 1988

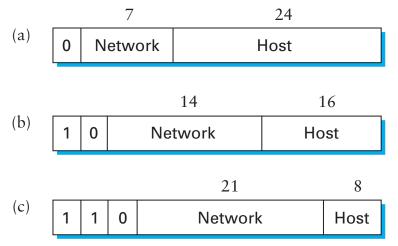
- Primary goal: multiplexed utilization of existing interconnected networks
- Other goals:
 - Communication continues despite loss of networks or gateways
 - Support a variety of communication services
 - Accommodate a variety of networks
 - Permit distributed management of its resources
 - Be cost effective
 - Low effort for host attachment
 - Resources must be accountable

Internet Protocol

- IP Protocol running on all hosts and *routers*
- Routers are present in all networks they join
- Uniform addressing
- Forwarding/Fragmentation
- Complementary:
 - Routing, Error Reporting, Address Translation

IP Protocol

- Provides addressing and *forwarding*
 - Addressing is a set of conventions for naming nodes in an IP network
 - Forwarding is a local action by a router: passing a packet from input to output port
- IP forwarding finds output port based on destination address
 - Also defines certain conventions on how to handle packets (e.g., fragmentation, time to live)
- Contrast with *routing*
 - Routing is the process of determining how to map packets to output ports (topic of next two lectures)


Service Model

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets may be lost
 - packets may be delivered out of order
 - duplicate copies of packets may be delivered
 - packets may be delayed for a long time
- It's the lowest common denominator
 - A network that delivers no packets fits the bill!
 - All these can be dealt with above IP (if probability of delivery is non-zero...)

Format of IP addresses

- Globally unique (or made seem that way)
 - 32-bit integers, read in groups of 8-bits: 128.148.32.110
- Hierarchical: network + host
- Originally, routing prefix embedded in address

- Class A (8-bit prefix), B (16-bit), C (24-bit)
- Routers need only know route for each network

Forwarding Tables

• Exploit hierarchical structure of addresses: need to know how to reach *networks*, not hosts

Network	Next Address
212.31.32.*	0.0.0
18.*.*.*	212.31.32.5
128.148.*.*	212.31.32.4
Default	212.31.32.1

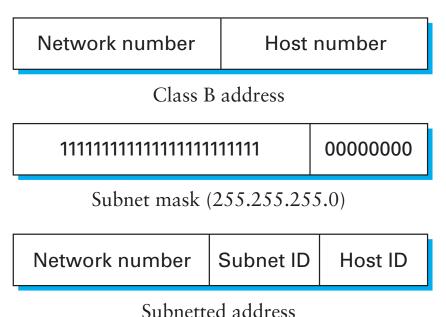
- Keyed by network portion, not entire address
- Next address should be local

Classed Addresses

• Hierarchical: network + host

- Saves memory in backbone routers (no default routes)
- Originally, routing prefix embedded in address
- Routers in same network must share network part

• Inefficient use of address space

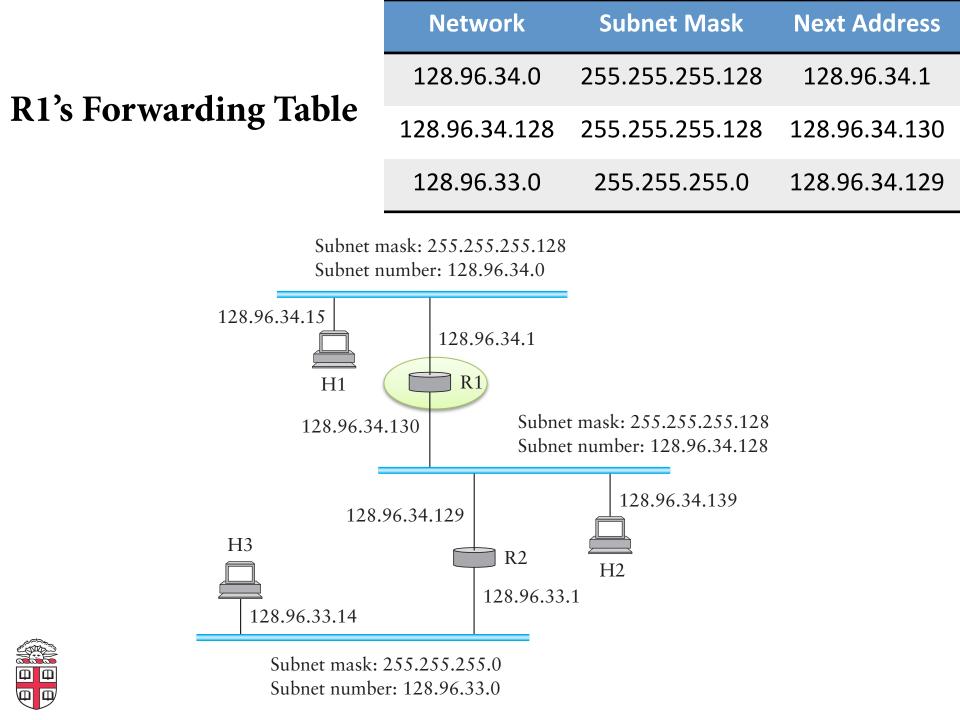

- Class C with 2 hosts (2/255 = 0.78% efficient)
- Class B with 256 hosts (256/65535 = 0.39% efficient)
- Shortage of IP addresses
- Makes address authorities reluctant to give out class B's

• Still too many networks

- Routing tables do not scale
- Routing protocols do not scale

Subnetting

- Add another level to address/routing hierarchy
- Subnet mask defines variable portion of host part
- Subnets visible only within site
 - Better use of address space



Example Subnet mask: 255.255.255.128 Subnet number: 128.96.34.0 128.96.34.15 128.96.34.1 R1 H1 Subnet mask: 255.255.255.128 128.96.34.130 Subnet number: 128.96.34.128 128.96.34.139 128.96.34.129 H3 R2 H2 128.96.33.1 128.96.33.14

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

H1-> H2: H2.ip & H1.mask != H1.subnet => no direct path

IP v4 packet format

 $\begin{smallmatrix} 0 & & & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 \\ \end{smallmatrix}$

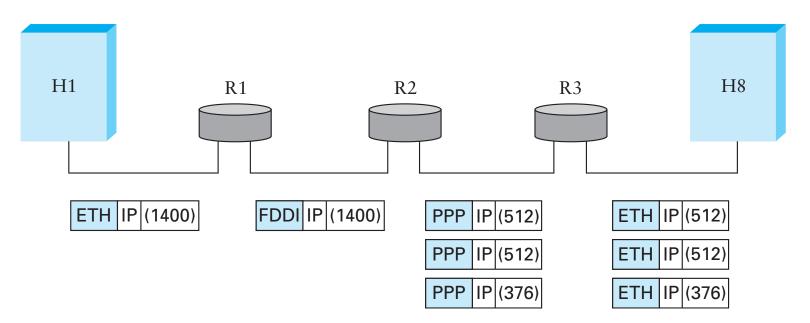
vers	hdr len	TOS	Total Length	
Identification		$0 \begin{vmatrix} DM \\ F \end{vmatrix} \overset{O}{F}$	Frag	ment offset
T	TL	Protocol	hdr checksum	
Source IP address				
Destination IP address				
Options				Padding
Data				

IP header details

- Forwarding based on destination address
- TTL (time-to-live) decremented at each hop
 - Originally was in seconds (no longer)
 - Mostly prevents forwarding loops
 - Other cool uses...
- Fragmentation possible for large packets
 - Fragmented in network if crossing link w/ small frame
 - MF: more fragments for this IP packet
 - DF: don't fragment (returns error to sender)
- Following IP header is "payload" data
 - Typically beginning with TCP or UDP header

Other fields

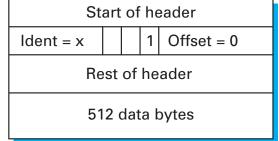
- Version: 4 (IPv4) for most packets, there's also 6
- Header length: in 32-bit units (>5 implies options)
- Type of service (won't go into this)
- Protocol identifier (TCP: 6, UDP: 17, ICMP: 1, ...)
- Checksum over the header

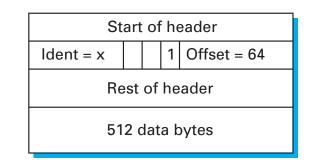


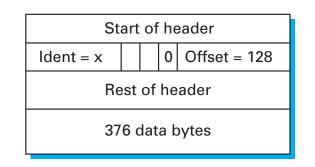
Fragmentation & Reassembly

- Each network has maximum transmission unit (MTU)
- Strategy
 - Fragment when necessary (MTU < size of datagram)
 - Source tries to avoid fragmentation (why?)
 - Re-fragmentation is possible
 - Fragments are self-contained datagrams
 - Delay reassembly until destination host
 - No recovery of lost fragments

Fragmentation Example




- Ethernet MTU is 1,500 bytes
- PPP MTU is 576 bytes
 - R2 must fragment IP packets to forward them



Fragmentation Example (cont)

(a) Start of header Ident = x 0 Offset = 0 Rest of header 1400 data bytes

- IP addresses plus ident field identify fragments of same packet
- MF (more fragments bit) is 1 in all but last fragment
- Fragment offset multiple of 8 bytes
 - Multiply offset by 8 for fragment position original packet

Translating IP to lower level addresses

- Map IP addresses into physical addresses
 - E.g., Ethernet address of destination host
 - or Ethernet address of next hop router
- Techniques
 - Encode physical address in host part of IP address (IPv6)
 - Each network node maintains lookup table (IP->phys)

ARP – address resolution protocol

- Dynamically builds table of IP to physical address bindings for a *local network*
- Broadcast request if IP address not in table
- All learn IP address of requesting node (broadcast)
- Target machine responds with its physical address
- Table entries are discarded if not refreshed

ARP Ethernet frame format

0	3 16	5 3
Hardware type = 1		ProtocolType = 0x0800
HLen = 48	PLen = 32	Operation
SourceHardwareAddr (bytes 0–3)		
SourceHardwareAddr (bytes 4–5)		SourceProtocolAddr (bytes 0–1)
SourceProtocolAddr (bytes 2–3)		TargetHardwareAddr (bytes 0–1)
TargetHardwareAddr (bytes 2–5)		
TargetProtocolAddr (bytes 0–3)		

• Why include source hardware address? Why not?

Obtaining Host IP Addresses - DHCP

- Networks are free to assign addresses within block to hosts
- Tedious and error-prone: e.g., laptop going from CIT to library to coffee shop
- Solution: Dynamic Host Configuration Protocol
 - Client: DHCP Discover to 255.255.255.255 (broadcast)
 - Server(s): DHCP Offer to 255.255.255.255 (why broadcast?)
 - Client: choose offer, DHCP Request (broadcast, why?)
 - Server: DHCP ACK (again broadcast)
 - Result: address, gateway, netmask, DNS server

Scaling: Supernetting

- Problem: routing table growth
- Idea: assign blocks of contiguous networks to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair
 - (first network address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- Address aggregation: reduce routing tables

CIDR Forwarding Table

Network	Next Address
212.31.32/24	0.0.0
18/8	212.31.32.5
128.148/16	212.31.32.4
128.148.128/17	212.31.32.8
0/0	212.31.32.1

Obtaining IP Addresses

Blocks of IP addresses allocated hierarchically

ISP obtains an address block, may subdivide
ISP: 128.35.16/20 <u>1000000 00100011 0001</u>0000 0000000
Client 1: 128.35.16/22 <u>1000000 00100011 000100</u> 00000000
Client 2: 128.35.20/22 <u>1000000 00100011 00010100 00000000</u>
Client 3: 128.35.24/21 <u>1000000 00100011 00011</u>000 00000000

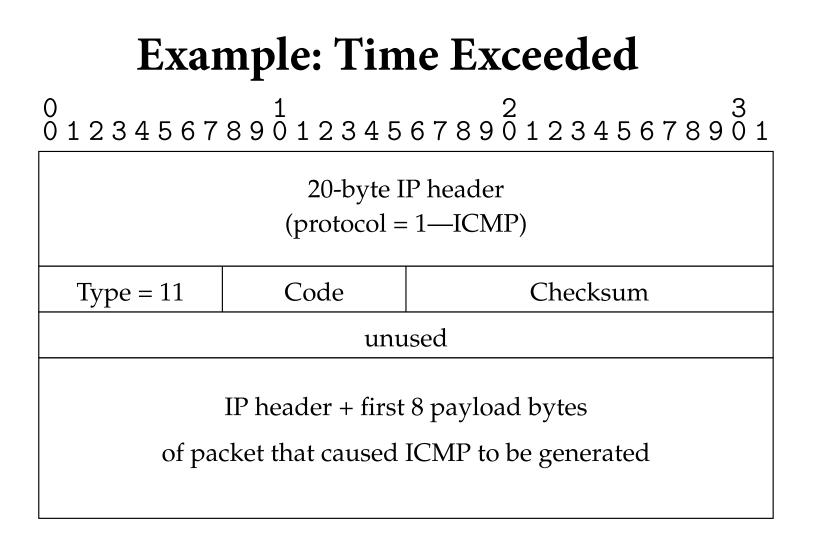
- Global allocation: ICANN, /8's (ran out!)
- Regional registries: ARIN, RIPE, APNIC, LACNIC, AFRINIC

Network Address Translation (NAT)

- Despite CIDR, it's still difficult to allocate addresses (2³² is only 4 billion)
- We'll talk about IPv6 later
- NAT "hides" entire network behind one address
- Hosts are given *private* addresses
- Routers map outgoing packets to a free address/ port
- Router reverse maps incoming packets
- Problems?

Internet Control Message Protocol (ICMP)

- Echo (ping)
- Redirect
- Destination unreachable (protocol, port, or host)
- TTL exceeded
- Checksum failed
- Reassembly failed
- Can't fragment
- Many ICMP messages include part of packet that triggered them


• See <u>http://www.iana.org/assignments/icmp-parameters</u>

ICMP message format

20-byte IP header (protocol = 1—ICMP)				
Туре	Code	Checksum		
depends on type/code				

- Code usually 0 (TTL exceeded in transit)
- Discussion: traceroute

Example: Can't Fragment

- Sent if DF=1 and packet length > MTU
- What can you use this for?
- Path MTU Discovery
 - Can do binary search on packet sizes
 - But better: base algorithm on most common MTUs

Coming Up

• Routing: how do we fill the routing tables?

- Intra-domain routing: Tuesday 2/28
- Inter-domain routing: Thursday, 3/1

