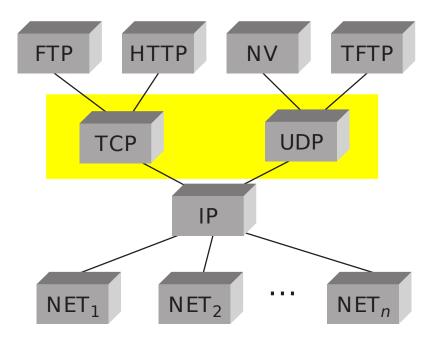
CSCI-1680 Transport Layer I

Rodrigo Fonseca



Today

- Transport Layer
 - UDP
 - TCP Intro
 - Connection Establishment

Transport Layer

- Transport protocols sit on top of network layer
- Problem solved: communication among processes
 - Application-level multiplexing ("ports")
 - Error detection, reliability, etc.

UDP – User Datagram Protocol

- Unreliable, unordered datagram service
- Adds multiplexing, checksum
- End points identified by ports
 - Scope is an IP address (interface)
- Checksum aids in error detection

UDP Header

UDP Checksum

Uses the same algorithm as the IP checksum

- Set Checksum field to 0
- Sum all 16-bit words, adding any carry bits to the LSB
- Flip bits to get checksum (except 0xffff->0xffff)
- To check: sum whole packet, including sum, should get 0xffff

How many errors?

- Catches any 1-bit error
- Not all 2-bit errors

Pseudo Header

- UDP Checksum is computer over *pseudo-header* prepended to the UDP header
 - For IPv4: IP Source, IP Dest, Protocol (=17), plus
 UDP length
- What does this give us?
- What is a problem with this?
 - Is UDP a layer on top of IP?

Next Problem: Reliability

• Review: reliability on the link layer

Problem	Mechanism
Dropped Packets	Acknowledgments + Timeout
Duplicate Packets	Sequence Numbers
Packets out of order	Receiver Window
Keeping the pipe full	Sliding Window (Pipelining)

Transport Layer Reliability

Extra difficulties

- Multiple hosts
- Multiple hops
- Multiple potential paths

Need for connection establishment, tear down

- Analogy: dialing a number versus a direct line

Varying RTTs

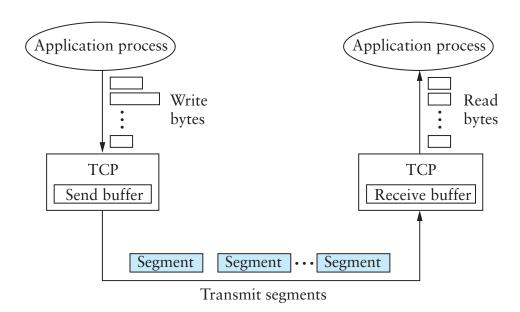
- Both across connections and during a connection
- Why do they vary? What do they influence?

Extra Difficulties (cont.)

Out of order packets

- Not only because of drops/retransmissions
- Can get very old packets (up to 120s), must not get confused

Unknown resources at other end


- Must be able to discover receiver buffer: flow control

Unknown resources in the network

- Should not overload the network
- But should use as much as safely possible
- Congestion Control (next class)

TCP - Transmission Control Protocol

• Service model: "reliable, connection oriented, full duplex byte stream"

– Endpoints: <IP Address, Port>

Flow control

- If one end stops reading, writes at other eventually stop/fail

Congestion control

Keeps sender from overloading the network

TCP

Specification

RFC 793 (1981), RFC 1222 (1989, some corrections),
 RFC 5681 (2009, congestion control), ...

Was born coupled with IP, later factored out

- We talked about this, don't always need everything!

End-to-end protocol

- Minimal assumptions on the network
- All mechanisms run on the end points

Alternative idea:

- Provide reliability, flow control, etc, link-by-link
- Does it work?

Why not provide (*) on the network layer?

Cost

 These functionalities are not free: don't burden those who don't need them

Conflicting

- Timeliness and in-order delivery, for example

Insufficient

Example: reliability

End-to-end argument

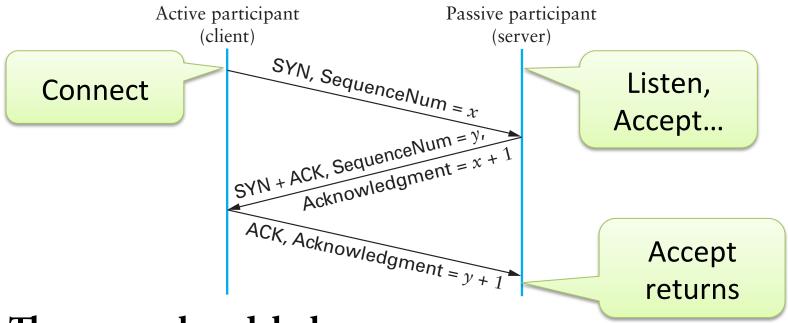
- Functions placed at lower levels of a system may be redundant or of little value
 - They may **need** to be performed at a higher layer anyway
- But they may be justified for performance reasons
 - Or just because they provide *most* of what is needed
 - Example: retransmissions
- Lesson: weigh the costs and benefits at each layer
 - Also: the *end* also varies from case to case

TCP Header

3 0 Source Port Destination Port Sequence Number Acknowledgment Number Data |U|A|P|R|S|F| Offset| Reserved |R|C|S|S|Y|I| Window G|K|H|T|N|N| Checksum Urgent Pointer Options Padding data

Header Fields

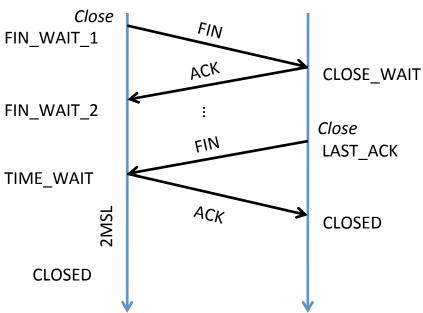
- Ports: multiplexing
- Sequence number
 - Correspond to bytes, not packets!
- Acknowledgment Number
 - Next expected sequence number
- Window: willing to receive
 - Lets receiver limit SWS (even to 0) for flow control
- Data Offset: # of 4 byte header + option bytes
- Flags, Checksum, Urgent Pointer



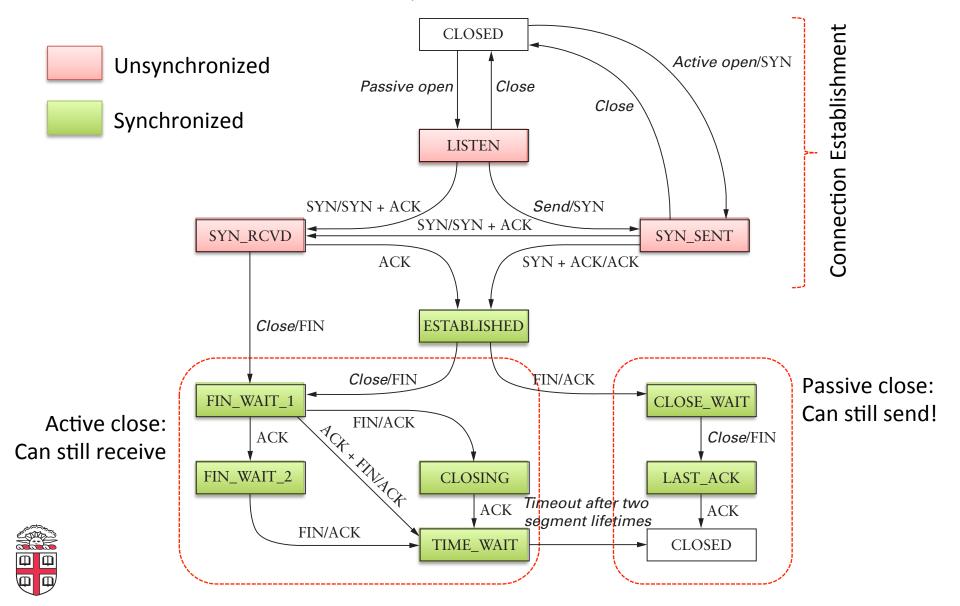
Header Flags

- URG: whether there is urgent data
- ACK: ack no. valid (all but first segment)
- PSH: push data to the application immediately
- RST: reset connection
- SYN: synchronize, establishes connection
- FIN: close connection

Establishing a Connection


- Three-way handshake
 - Two sides agree on respective initial sequence nums
- If no one is listening on port: server sends RST
- If server is overloaded: ignore SYN
- If no SYN-ACK: retry, timeout

Connection Termination


- FIN bit says no more data to send
 - Caused by close or shutdown
 - Both sides must send FIN to close a connection

Typical close

Summary of TCP States

TIME_WAIT

- Why do you have to wait for 2MSL in TIME_WAIT?
 - What if last ack is severely delayed, AND
 - Same port pair is immediately reused for a new connection?
- Solution: active closer goes into TIME_WAIT
 - Waits for 2MSL (Maximum Segment Lifetime)
- Can be problematic for active servers
 - OS has too many sockets in TIME_WAIT, can accept less connections
 - Hack: send RST and delete socket, SO_LINGER = 0
 - OS won't let you re-start server because port in use
 - SO_REUSEADDR lets you rebind

Next class

Sending data over TCP

