
CSCI-1680 
P2P 

Based	
  partly	
  on	
  lecture	
  notes	
  by	
  Ion	
  Stoica,	
  Sco5	
  Shenker,	
  Joe	
  Hellerstein	
  

Rodrigo Fonseca 



Today 

•  Overlay networks and Peer-to-Peer 



Motivation 

•  Suppose you want to write a routing protocol to 
replace IP 
–  But your network administrator prevents you from 

writing arbitrary data on your network 
•  What can you do? 
–  You have a network that can send packets between 

arbitrary hosts (IP) 
•  You could… 
–  Pretend that the point-to-point paths in the network 

are links in an overlay network… 



Overlay Networks 
•  Users want innovation 
•  Change is very slow on the Internet (e.g. IPv6!) 

–  Require consensus (IETF) 
–  Lots of money sunk in existing infrastructure 

•  Solution: don’t require change in the network! 
–  Use IP paths, deploy your own processing among nodes 



Why would you want that anyway? 

•  Doesn’t the network provide you with what you 
want? 
–  What if you want to teach a class on how to implement 

IP? (IP on top of UDP… sounds familiar?) 
–  What if Internet routing is not ideal? 
–  What if you want to test out new multicast algorithms, 

or IPv6? 
•  Remember… 
– e Internet started as an overlay over ossi"ed 

telephone networks! 



Case Studies 

•  Resilient Overlay Network 
•  Peer-to-peer systems 
•  Others (won’t cover today) 
–  Email 
–  Web 
–  End-system Multicast 
–  Your IP programming assignment 
–  VPNs 
–  Some IPv6 deployment solutions 
–  … 



Resilient Overlay Network - RON 

•  Goal: increase performance and reliability of routing 
•  How? 
–  Deploy N computers in different places 
–  Each computer acts as a router between the N participants 

•  Establish IP tunnels between all pairs 
•  Constantly monitor 
–  Available bandwidth, latency, loss rate, etc… 

•  Route overlay traffic based on these measurements  



RON 

Default	
  IP	
  path	
  determined	
  by	
  BGP	
  &	
  OSPF	
  

Reroute	
  traffic	
  using	
  red	
  alternaEve	
  overlay	
  network	
  path,	
  avoid	
  congesEon	
  point	
  

Acts	
  as	
  overlay	
  router	
  

Berkeley	
  
Brown	
  

UCLA	
  

Picture	
  from	
  Ion	
  Stoica	
  



RON 

•  Does it scale? 
–  Not really, only to a few dozen nodes (NxN) 

•  Why does it work? 
–  Route around congestion 
–  In BGP, policy trumps optimality 

•  Example 
–  2001, one 64-hour period: 32 outages over 30 minutes 
–  RON routed around failure in 20 seconds 

•  Reference: http://nms.csail.mit.edu/ron/ 



Peer-to-Peer Systems 

•  How did it start? 
–  A killer application: "le distribution 
–  Free music over the Internet! (not exactly legal…) 

•  Key idea: share storage, content, and bandwidth of 
individual users 
–  Lots of them 

•  Big challenge: coordinate all of these users 
–  In a scalable way (not NxN!) 
–  With changing population (aka churn) 
–  With no central administration  
–  With no trust 
–  With large heterogeneity (content, storage, bandwidth,…) 



3 Key Requirements 

•  P2P Systems do three things: 
•  Help users determine what they want 
–  Some form of search 
–  P2P version of Google 

•  Locate that content 
–  Which node(s) hold the content? 
–  P2P version of DNS (map name to location) 

•  Download the content 
–  Should be efficient 
–  P2P form of Akamai 



Napster (1999) 

xyz.mp3	
  



Napster 

xyz.mp3	
  ?	
  

xyz.mp3	
  



Napster 

xyz.mp3	
  ?	
  

xyz.mp3	
  



Napster 

xyz.mp3	
  ?	
  

xyz.mp3	
  



Napster 

•  Search & Location: central server 
•  Download: contact a peer, transfer directly 
•  Advantages: 
–  Simple, advanced search possible 

•  Disadvantages: 
–  Single point of failure (technical and … legal!) 
– e latter is what got Napster killed 



Gnutella: Flooding on Overlays (2000) 

xyz.mp3	
  ?	
  

xyz.mp3	
  

An	
  “unstructured”	
  overlay	
  network	
  

•  Search & Location: "ooding (with TTL) 
•  Download: direct 



Gnutella: Flooding on Overlays  

xyz.mp3	
  ?	
  

xyz.mp3	
  

Flooding	
  



Gnutella: Flooding on Overlays  

xyz.mp3	
  ?	
  

xyz.mp3	
  

Flooding	
  



Gnutella: Flooding on Overlays  

xyz.mp3	
  



KaZaA: Flooding w/ Super Peers (2001) 

•  Well connected nodes can be installed (KaZaA) 
or self-promoted (Gnutella)  



Say you want to make calls among peers 

•  You need to #nd who to call 
–  Centralized server for authentication, billing 

•  You need to #nd where they are 
–  Can use central server, or a decentralized search, such 

as in KaZaA 
•  You need to call them 
–  What if both of you are behind NATs? (only allow 

outgoing connections) 
–  You could use another peer as a relay… 



Skype 

•  Built by the founders of KaZaA! 
•  Uses Superpeers for registering presence, 

searching for where you are 
•  Uses regular nodes, outside of NATs, as 

decentralized relays 
– is is their killer feature 

•  is morning, from my computer: 
–  25,456,766 people online 



Lessons and Limitations 

•  Client-server performs well 
–  But not always feasible 

•  ings that "ood-based systems do well 
–  Organic scaling 
–  Decentralization of visibility and liability 
–  Finding popular stuff 
–  Fancy local queries 

•  ings that "ood-based systems do poorly 
–  Finding unpopular stuff 
–  Fancy distributed queries 
–  Vulnerabilities: data poisoning, tracking, etc. 
–  Guarantees about anything (answer quality, privacy, 

etc.) 



BitTorrent (2001) 

•  One big problem with the previous approaches 
–  Asymmetric bandwidth 

•  BitTorrent (original design) 
–  Search: independent search engines (e.g. PirateBay, 

isoHunt) 
•  Maps keywords -> .torrent "le 

–  Location: centralized tracker node per "le 
–  Download: chunked 

•  File split into many pieces 
•  Can download from many peers 



BitTorrent 

•  How does it work? 
–  Split "les into large pieces (256KB ~ 1MB) 
–  Split pieces into subpieces 
–  Get peers from tracker, exchange info on pieces 

•  ree-phases in download 
–  Start: get a piece as soon as possible (random) 
–  Middle: spread pieces fast (rarest piece) 
–  End: don’t get stuck (parallel downloads of last pieces) 



BitTorrent 

•  Self-scaling: incentivize sharing 
–  If people upload as much as they download, system scales 

with number of users (no free-loading) 

•  Uses tit-for-tat: only upload to who gives you data 
–  Choke most of your peers (don’t upload to them) 
–  Order peers by download rate, choke all but P best 
–  Occasionally unchoke a random peer (might become a nice 

uploader) 

•  Optional reading:  
 [Do Incentives Build Robustness in BitTorrent? Piatek et al, 
NSDI’07] 



Structured Overlays: DHTs 

•  Academia came (a little later)… 
•  Goal: Solve efficient decentralized location 
–  Remember the second key challenge? 
–  Given ID, map to host 

•  Remember the challenges? 
–  Scale to millions of nodes 
–  Churn 
–  Heterogeneity 
–  Trust (or lack thereof) 

•  Sel"sh and malicious users 



DHTs 

•  IDs from a !at namespace 
–  Contrast with hierarchical IP, DNS 

•  Metaphor: hash table, but distributed 
•  Interface 
–  Get(key) 
–  Put(key, value) 

•  How? 
–  Every node supports a single operation: 

 Given a key, route messages to node holding key 



Identi#er to Node Mapping Example 

•  Node  8 maps [5,8] 
•  Node 15 maps [9,15] 
•  Node 20 maps [16, 20] 
•  … 
•  Node 4 maps [59, 4] 

•  Each node maintains a 
pointer to its successor 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

Example	
  from	
  Ion	
  Stoica	
  



Remember Consistent Hashing? 

•  But each node only 
knows about a small 
number of other nodes 
(so far only their 
successors) 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  



Lookup 

•  Each node maintains its 
successor  

•  Route packet (ID, data) to 
the node responsible for ID 
using successor pointers 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

lookup(37)	
  

node=44	
  



Stabilization Procedure 

•  Periodic operations performed by each node N to 
maintain the ring: 

STABILIZE()	
  [N.successor	
  =	
  M]	
  
	
  N-­‐>M:	
  “What	
  is	
  your	
  predecessor?”	
  
	
  M-­‐>N:	
  “x	
  is	
  my	
  predecessor”	
  
	
  if	
  x	
  between	
  (N,M),	
  N.successor	
  =	
  x	
  

	
   	
  N-­‐>N.successor:	
  NOTIFY()	
  
NOTIFY()	
  

N-­‐>N.successor:	
  “I	
  think	
  you	
  are	
  my	
  successor”	
  
M:	
  upon	
  receiving	
  NOTIFY	
  from	
  N:	
  

If	
  (N	
  between	
  (M.predecessor,	
  M))	
  
	
  M.predecessor	
  =	
  N	
  



Joining Operation 

4	
  

20	
  

32	
  
35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  Node	
  with	
  id=50	
  joins	
  
the	
  ring	
  

§  Node	
  50	
  needs	
  to	
  
know	
  at	
  least	
  one	
  
node	
  already	
  in	
  the	
  
system	
  

-­‐  Assume	
  known	
  node	
  
	
  	
  	
  	
  	
  is	
  15 	
   	
   	
   	
  	
  

succ=4	
  
pred=44	
  

succ=nil	
  
pred=nil	
  

succ=58	
  
pred=35	
  



Joining Operation 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  Node	
  50:	
  send	
  join(50)	
  
to	
  node	
  15	
  	
  

§  Node	
  44:	
  returns	
  node	
  
58	
  	
  

§  Node	
  50	
  updates	
  its	
  
successor	
  to	
  58	
   join(50)	
  

succ=58	
  

succ=4	
  
pred=44	
  

succ=nil	
  
pred=nil	
  

succ=58	
  
pred=35	
  

58	
  



Joining Operation 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  Node	
  50:	
  send	
  
stabilize()	
  to	
  node	
  
58	
  

§  Node	
  58:	
  	
  
-­‐  Replies	
  with	
  44	
  
-­‐  50	
  determines	
  

it	
  is	
  the	
  right	
  
predecessor	
  

succ=58	
  
pred=nil	
  

succ=58	
  
pred=35	
  

stabilize():	
  
“What	
  is	
  your	
  predecessor?”	
  

succ=4	
  
pred=44	
  



Joining Operation 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  Node	
  50:	
  send	
  
noEfy()	
  to	
  node	
  
58	
  

§  Node	
  58:	
  	
  
-­‐  update	
  

predecessor	
  to	
  
50	
  	
  

succ=58	
  
pred=nil	
  

succ=58	
  
pred=35	
  

noEfy():	
  	
  
“I	
  think	
  you	
  are	
  my	
  successor”	
  

pred=50	
  
succ=4	
  
pred=44	
  



Joining Operation 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  Node	
  44	
  sends	
  a	
  stabilize	
  
message	
  to	
  its	
  successor,	
  node	
  
58	
  

§  Node	
  58	
  replies	
  with	
  50	
  
§  Node	
  44	
  updates	
  its	
  successor	
  

to	
  50	
  
succ=58	
  

stabilize():	
  	
  
“What	
  is	
  your	
  predecessor?”	
  

succ=50	
  

pred=50	
  
succ=4	
  

pred=nil	
  

succ=58	
  
pred=35	
  



Joining Operation 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  Node	
  44	
  sends	
  a	
  noEfy	
  
message	
  to	
  its	
  new	
  successor,	
  
node	
  50	
  

§  Node	
  50	
  sets	
  its	
  predecessor	
  to	
  
node	
  44	
  

succ=58	
  

succ=50	
  

noEfy()	
  
pred=44	
  

pred=50	
  

pred=35	
  

succ=4	
  

pred=nil	
  



Joining Operation (cont’d) 

4	
  

20	
  

32	
  35	
  

8	
  

15	
  

44	
  

58	
  

50	
  

§  This	
  completes	
  the	
  joining	
  
operaEon!	
  

succ=58	
  

succ=50	
  

pred=44	
  

pred=50	
  



Achieving Efficiency: "nger tables 

80 + 20!
80 + 21!

80 + 22!
80 + 23!

80 + 24!

80 + 25!
(80 + 26) mod 27 = 16!

0 
Say m=7 

ith entry at peer with id n is first peer with id >=                           )2(mod2 min+

i   ft[i] 
0  96 
1  96 
2  96 
3  96 
4  96 
5  112 
6  20 

Finger Table at 80 

32	
  

45	
  80	
  

20	
  
112	
  

96	
  



Chord 

•  ere is a tradeoff between routing table size 
and diameter of the network 

•  Chord achieves diameter O(log n) with O(log 
n)-entry routing tables 



Many other DHTs 
•  CAN 

–  Routing in n-dimensional space 
•  Pastry/Tapestry/Bamboo 

–  (Book describes Pastry) 
–  Names are "xed bit strings 
–  Topology: hypercube (plus a ring for fallback) 

•  Kademlia 
–  Similar to Pastry/Tapestry 
–  But the ring is ordered by the XOR metric 
–  Used by BitTorrent for distributed tracker 

•  Viceroy 
–  Emulated butter%y network 

•  Koorde 
–  DeBruijn Graph 
–  Each node connects to 2n, 2n+1 
–  Degree 2, diameter log(n) 

•  … 



Discussion 

•  Query can be implemented 
–  Iteratively: easier to debug 
–  Recursively: easier to maintain timeout values 

•  Robustness 
–  Nodes can maintain (k>1) successors 
–  Change notify() messages to take that into account 

•  Performance 
–  Routing in overlay can be worse than in the underlay 
–  Solution: %exibility in neighbor selection 

•  Tapestry handles this implicitly (multiple possible next hops) 
•  Chord can select any peer between [2n,2n+1) for "nger, choose 

the closest in latency to route through 



Where are they now? 

•  Many P2P networks shut down 
–  Not for technical reasons! 
–  Centralized systems work well (or better) sometimes 

•  But… 
–  Vuze network: Kademlia DHT, millions of users 
–  Skype uses a P2P network similar to KaZaA 



Where are they now? 

•  DHTs allow coordination of MANY nodes 
–  Efficient !at namespace for routing and lookup 
–  Robust, scalable, fault-tolerant 

•  If you can do that 
–  You can also coordinate co-located peers 
–  Now dominant design style in datacenters 

•  E.g., Amazon’s Dynamo storage system 
–  DHT-style systems everywhere 

•  Similar to Google’s philosophy 
–  Design with failure as the common case 
–  Recover from failure only at the highest layer 
–  Use low cost components 
–  Scale out, not up 



Next time 

•  Wireless 


