CSCI-1680
Network Programming I1

Rodrigo Fonseca

Today

* Network programming
— Programming Paradigms

— Programming libraries

* Final project

Low-level Sockets

* Address Family AF_ PACKET
— Socket type: SOCK_RAW

* See link-layer (Ethernet) headers. Can send broadcast on a
LAN. Can get/create non-IP packets

— Socket type: SOCK_DGRAM

 See IP headers. Can get protocols other than TCP/UDP:
ICMP, SCTP, DCCP, your own...

 Can cook your own IP packets

— Must have root privileges to play with these

Building High Performance Servers

The need for concurrency

* How to improve throughput?
— Decrease latency (throughput a 1/latency)

— Hard to do!
* Optimize code (this you should try!)

* Faster processor (no luck here, recently)
* Speed of light isn’t changing anytime soon...
* Disks have to deal with things like inertia!

— Do multiple things at once
* Concurrency
— Allows overlapping of computation and I/O

— Allows use of multiple cores, machines

High-performance Servers

Common Patterns

Process 1 MUItlple processes MUlhple ThreadS
|Accept] _ I Read | __|Find1__ISend ~ 1'Read File |
r|Conn | | Request | " | File_! _>|Header_LSend Data h
— —— — —_—— — —— —lA ccept | |—>| Read |:| Fmd-=1|Send -: Read File
° _l—:ﬁi‘onn I =l | Request | —| File |—sIHeader | Send Data_
Process N .
|Accept| _, I'Read | __|Find1__ ISend ~ 1'Read File |
[" IConn_| ™1 Request | ™| File | ™ IHeader | Send Data_ h

Single Process Event Driven with Helpers

Single Process Event Driven Irccept] | Read Fina1 mondticader |
["Read File
______ [Conn _ b | Request b C File D [Send Data_ _b
IA_CC_ept I Read I Flnd1 Send Header - - _ I T T T T T 1
Read File Event Dispatcher |
CE‘E“—b L Request | ig“e ’)_ _Se_nd_Dita__j S ———— e
[——— —_— —— AT —
| Event Dispatcher } <_ -) <_ -)_ <_ _)
T T | Helper1 | Helper 2 e ¢ o | Helperk

Figures from Pai, et al., 1999 “Flash: An efficient and portable Web server”

Threads

Usual model for achieving concurrency
Uniform abstraction for single and multiple cores

Concurrency with locks/mutexes

— 'Threads may block, hold locks for long time
Easy to reason about

— Each thread has own stack

Strong support from OS, libraries, debuggers

Traditionally, problems with more than a few 100
threads

— Memory overhead, O(n) operations

Performance, Thread-based server

30000 - T - . - . : . - 400
Throughput e
Latency ===
Linear (ideal) latency ' ®:: | ¥ 350
25000 i
300
(&)
& 20000
E 250 3
8 g
= 15000 200 (>J~
o [
< e
3 150 =
S 10000
100
5000
50
O““_'-“!aluﬁ“'i """" ! O
1 4 16 64 256 1024

Number of threads

D
=== From Welsh, et al., SOSP 2001 “SEDA: An Architecture for Well-Conditioned, Scalable
T Internet Services

G E

/BlE|

Events

* Small number of threads, one per CPU

* Threads do one thing:
while(1) {
get event from queue

Handle event to completion

}

 Events are network, I/0O readiness and
completion, timers, signals

— Remember select()?

 Assume event handlers never block
— Helper threads handle blocking calls, like disk I/O

Events

* Many works in the early 2000’s claimed that
events are needed for high performance servers

— E.g., Flash, thttpd, Zeus, JAWS web servers

* Indeed, many of today’s fastest servers are
event-driven

— E.g., OKCupid, lighttpd, nginx, tornado

Lighttpd: “Its event-driven architecture is optimized for a large number of
parallel connections”

' nds o
Tornado: “Because it is non-blocking and uses epoll, it can handle thousa f

. V4
simultaneous standing connections

Performance, Event-Driven Web server

.) — 40000
Throughput e
35000 [Latency ==-B==
Linear (ideal) latency '
30000
30000
O
& 25000
n (@]
2 2
< 20000 £
= 20000 5
o C
< 2
S 15000 T
c
|_
10000 10000
5000
Ol-l-l-l-l-*-l-l-l-l-l-l-l-'l“.ﬂ.'r- — 0
1 32 1024 32768 1048576

Number of tasks in pipeline

A
‘:

775

=== From Welsh, et al., SOSP 2001 “SEDA: An Architecture for Well-Conditioned, Scalable
T Internet Services

/BlE|
G E

Flash Web Server

Pai, Drushel, Zwaenepoel, 1999

 Influential work

Compared four architectures
— Multi-process servers

— Multi-threaded servers

— Single-process event-driven

— Asymmetric Multi-process event driven

AMPED was the fastest

Events (cont)

* Highly efficient code
— Little or no switching overhead
— Easy concurrency control
* Common complaint: hard to program and
reason about

— For people and tools

* Main reason: stack ripping

Events criticism: control flow

* Events obscure control flow Web Server

— For programmers and tools

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
read_request(&s); else ResponseHandler.enqueue(s);
pin_cache(&s); }
write_response(&s); RequestHandler(struct session *s) {
unpin(&s); ...; CacheHandler.enqueue(s);
by by
pin_cache(struct session *s) { ExitHandlerr(struct session *s) {
pin(&s); ..., unpin(&s); free_session(s);
if(lin_cache(&s)) }
read_file(&s); AcceptHandler(event e) {
} struct session *s = new_session(e);
RequestHandler.enqueue(s); }
[/ [m)

Events criticism: Exceptions

* Exceptions complicate control flow
— Harder to understand program flow

Web Server

— Cause bugs in cleanup code

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
if('read_request(&s)) else ResponseHandler.enqueue(s);
return; }
pin_cache(&s); RequestHandler(struct session *s) {
write_response(&s); ...; if(error) return; CacheHandler.enqueue(s);
unpin(&s); }
} e
ExitHandlerr(struct session *s) {
pin_cache(struct session *s) { ...; unpin(&s); free_session(s);
pin(&s); by
if(lin_cache(&s)) AcceptHandler(event e) {
read_file(&s); struct session *s = new_session(e);
} RequestHandler.enqueue(s); }
[/ [m)

Events criticism: State Management

* Events require manual state management
e Hard to know when to free

— Use GC or risk bugs
Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
if('read_request(&s)) else ResponseHandler.enqueue(s);

return;
pin_cache(&s);
write_response(&s);
unpin(&s);
by

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

}

RequestHandler(struct session *s) {
...; ifC error) return; CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

(/

A
&
(]

/BB
\ENE]H

Web Server

Usual Arguments

* Events:
— Hard to program (stack ripping)

— Easy to deal with concurrency (cooperative task management)

* Shared state is more explicit

— High performance (low overhead, no switching, no blocking)

 Threads

— Easy to reason about flow, state (automatic stack management)

— Hard to deal with concurrency (preemptive task management)
* Everything is shared

— Lower performance (thread switching cost, memory overhead)

Capriccio (2003)

 Showed threads can
perform as well as
events

— Avoid O(n) operations e -ﬂ\

— Cooperative lightweight |
user-level threads

* (still one kernel thread per
core)

80000 =

70000 =

Threaded Server
60000 =

50000 | Event-Based Server

Requests / Second

40000 =

30000

— Asynchronous I/O
* Handled by the library

— Variable-length stacks

— 'The thread library runs an
event-based system
underneath!

20000

Il Il Il Il Il
1 10 100 1000 10000 100000 le+06

Concenrrent Tackg

Artificial Dichotomy!

 Old debate! Lauer and Needham, 78

— Duality between process-based and message-passing
— Updated by the Capriccio folks, 2003

Threads Events
= Monitors = Event handler & queue
= Exported functions » Events accepted

= Call/return and fork/join = Send message / await reply
= Wait on condition variable |« Wait for new messages

 Performance should be similar
— No inherent reason for threads to be worse

— Implementation is key

Artificial Dichotomy

 Threads

— Preemptive multitasking
— Automatic stack management
* Events
— Cooperative multitasking
— Manual stack management (stack ripping)

* Adya, 2002: you can choose your features!

— 'They show that you can have cooperative multitasking
with automatic stack managment

Adya, A. et al., 2002. “Cooperative Task Management without Manual Stack

Managementor, Event-driven Programming is Not the Opposite of Threaded
Programming

Threads vs. Events

* Today you still have to mostly choose either
style (complete packages)
— 'Thread-based servers very dependent on OS,
threading libraries
* Some promising directions!
— TAME allows you to write sequential C++ code (with
some annotations), converts it into event-based

— Scala (oo/functional language that runs on the JVM)
makes threaded and event-based code look almost
identical

Popular Event-Based Frameworks

* libevent
libasync (SFS, SFS-light)

* Javascript

— All browser code

— Node.js at the server side

GUI programming

Some available libraries

With material from Igor Ganichev

Python

* Rich standard library
— url/http/ftp/pop/imap/smtp/telnet
— SocketServer, HTTPServer, DocXMLRPCServer, etc

* Twisted
— Very popular
— Has a lot of stuff, but quite modular

— Event-driven, many design patterns. Steep learning
curve...

— Well maintained and documented

Java

Mature RPC library: RMI
* River: RMI + service discovery, mobile code

Java.NIO
— High-level wrapping of OS primitives

e Select -> Selector . Socket -> Channel

— Good, efficient buffer abstraction

Jetty

— Extensible, event-driven framework

— High-performance
— Avoid unnecessary copies
— Other side doesn’t have to be in Java

Transport Services Protocol Support

Socket & HTTP & Google
Datagram WebSocket SR Protobuf
HTTP Tunnel zh4elp Large e RTSP
Compression Transfer
In-VM Pipe Legacy Text - Binary Protocols

with Unit Testability

Extensible Event Model

Universal Communication API

Core

Zero-Copy-Capable Rich Byte Buffer

3109

* Sockets!
* Direct access to what the OS provides

 Libevent

— Simple, somewhat portable abstraction of select() with
uniform access to events: I/O, timers, signals

— Supports /dev/poll, kqueue(2), event ports, select(2),
poll(2) and epoll(4).
— Well maintained, actively developed

— Behind many very high-performance servers

* Memcached

C++

* Boost.ASIO

— Clean, lightweight, portable abstraction of sockets and
other features

— Not a lot of higher-level protocol support

— Has support for both synchronous and asynchronous
operations, threads (from other parts of Boost)

e QOthers: ACE, POCO

ICE

Cross-language middleware + framework
— 'Think twisted + protocol buffers

Open source but owned by a company

SSL, sync/async, threads, resource allocation,
firewall traversal, event distribution, fault
tolerance

Supports many languages

— C++, Java, NET-languages (such as C# or Visual
Basic), Objective-C, Python, PHP, and Ruby

Other “cool” approaches

* Erlang, Scala, Objective C

— Support the Actor model: program is a bunch of actors
sending messages to each other

— Naturally extends to multi-core and multiple
machines, as sending messages is the same

e Go

— Built for concurrency, uses ‘Goroutines, no shared
state

<« d . .
— "Don’t share memory to communicate, communicate
to share memory”

Node.js

* Javascript server framework

* Leverages highly efficient Chrome V8 Javascript JIT
runtime

* Completely event-based
* Many high-level libraries

var http = require('http');

http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/plain'});
res.end('Hello wWorld\n');

}).listen(8124, "127.0.0.1");

console.log('Server running at http://127.0.0.1:8124/"');

Final Assignment

Final Project

* Tethering IP over 3G

* Problem: Laptop in need of internet, no Wi-Fi
available.

* On hand: Smartphone with 3G connection.

* Native applications don’t always allow custom
network programming.
— iOS App Store guidelines.

Custom Tethering Solution

 Websockets to the rescue!
— Implemented in browsers.

— Bi-directional, full-duplex connection over a single
TCP socket.

— Modern smartphone browsers have implemented
websockets.

Implementation

Some questions

* How to connect phone to laptop?
e How to encode data?
Virtual interfaces: TUN or TAP?

Client: setting up routes

* Server: what to do with the packets you receive?

Some Resources

TUN/TAP Interfaces
— TunTap package for Mac OSX

Websocket Server
— Twisted

 NAT
— Scapy

Base64 Encoding
— http://www.ietf.org/rfc/rfc3548.txt

