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1 Inferring Types
We’ve seen the value of having explicit polymorphism in our language—it lets us write programs that work on may dif-
ferent types of values. Even mainstream languages like C++ have recognized the value of this form of polymorphism
(called parametric polymorphism), and they have noticed that it complements and is not subsumed by the polymor-
phism common to object-oriented languages (called subtype polymorphism). Indeed, a good deal of effort is currently
being spent on adding parametric polymorphism to Java.

That said, it’s pretty painful to write programs such as this:

(define length
〈Λ (τ )

(lambda (l : list(τ )) : number
(cond

[(Empty?〈τ〉 l) 0]
[(Cons?〈τ〉 l) (add1 (length〈τ〉 (Rest〈τ〉 l)))]))〉)

when we could instead write

(define length
(lambda (l)

(cond
[(empty? l) 0]
[(cons? l) (add1 (length (rest l)))])))

As computer scientists, we should ask: Is it possible for a programming environment to convert the latter into the
former? That is, can the environment automatically fill in the types necessary for the former? This would be the best
of both worlds, because the programmer would avoid the trouble of all this typing (in both senses), while getting the
benefits of type checking in a polymorphic manner (which has the advantage of needing to write fewer almost-identical
procedures).

While this would be nice, it also seems nearly magical. It seems hard enough for humans to get this right; can a
program (the environment) do better? Still, we should not despair too much. We’ve already seen several instances such
as closure creation, garbage collection, and so on, where the language implementation was able to do a more accurate
job than a human could have done anyway, thereby providing a valuable feature while reducing the programmer’s
burden. Maybe inserting type annotations could be another of those tasks.

Because this is obviously challenging, let’s try to make the problem easier. Let’s ignore the polymorphism, and
just focus on generating types for monomorphic programs (i.e., those that don’t employ polymorphism). In fact, just
to make life really simple, let’s just consider a program that operates over numbers, such as factorial.

2 Example: Factorial
Suppose we’re given the following program:

(define fact
(lambda (n)

(cond
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[(zero? n) 1]
[true (∗ n (fact (sub1 n)))])))

We’ve purposely written true instead of else for reasons we’ll soon see. It should be clear that using true doesn’t
affect the meaning of the program (in general, else is just a more readable way of writing true).

If we were asked to determine the type of this function and had never seen it before, our reasoning might proceed
roughly along these lines. First, we would name each expression:

(define fact
1 (lambda (n)

2 (cond

[ 3 (zero? n) 4 1]

[ 5 true 6 (∗ n 7 (fact 8 (sub1 n)))])))

We would now reason as follows. We’ll use the notation [[ · ]] to mean the type of the expression within the brackets.

• The type of the expression labeled 1 1 is clearly a function type (since the expression is a lambda). The
function’s argument type is that of n, and it computes a value with the type of 2 . In other words,

[[ 1 ]] = [[n]]→[[ 2 ]]

• Because 2 is a conditional, we want to ensure the following:

– The first and second conditional expressions evaluate to boolean values. That is, we would like the follow-
ing to hold:

[[ 3 ]] = boolean

[[ 5 ]] = boolean

– We would like both branches of the conditional to evaluate to a value of the same type, so we can assign a
meaningful type to the entire conditional expression:

[[ 2 ]] = [[ 4 ]] = [[ 6 ]]

• What is the type of 3 ? We have a constraint on what it can be:

[[zero?]] = [[n]]→[[ 3 ]]

Because we know the type of zero?, we know that the right-hand-side of the above equality must be:

[[n]]→[[ 3 ]] = number→boolean

which immediately tells us that [[n]] = number.

The first response in the cond tells us that [[ 4 ]] = number, which immediately resolves the type of 2 and determines
the type of 1 in atomic terms. That is, the type of fact must be number → number. However, it’s worthwhile to
continue with this process as an illustration:

• We have a constraint on the type of 6 : it must be the same as the result type of multiplication. Concretely,

[[n]] × [[ 7 ]]→[[ 6 ]] = number × number→number

• The type of 7 must be whatever fact returns, while 8 must be the type that fact consumes:

[[ 1 ]] = [[ 8 ]]→[[ 7 ]]

• Finally, the type of 8 must be the return type of sub1:

[[sub1 ]] = [[n]]→[[ 8 ]] = number→number

1We’ll need to use this phrase repeatedly, and it’s quite a mouthful. Therefore, we will henceforth say “the type of n ” when we mean “the
type of the expression labeled by n ”.

2



3 Example: Numeric-List Length
Now let’s look at a second example:

(define nlength
(lambda (l)

(cond
[(nempty? l) 0]
[(ncons? l) (add1 (nlength (nrest l)))])))

First, we annotate it:

(define nlength
1 (lambda (l)

2 (cond

[ 3 (nempty? l) 4 0]

[ 5 (ncons? l) 6 (add1 7 (nlength 8 (nrest l)))])))

We can begin by deriving the following constraints:

[[ 1 ]] = [[l ]]→[[ 2 ]]

[[ 2 ]] = [[ 4 ]] = [[ 6 ]]

[[ 3 ]] = [[ 5 ]] = boolean

Because 3 and 5 are each applications, we derive some constraints from them:

[[nempty?]] = [[l ]]→[[ 3 ]] = nlist→boolean

[[ncons?]] = [[l ]]→[[ 5 ]] = nlist→boolean

The first conditional’s response is not very interesting:

[[ 4 ]] = [[0]]2 = number

Finally, we get to the second conditional’s response, which yields several constraints:

[[add1 ]] = [[ 7 ]]→[[ 6 ]] = number→number

[[ 1 ]] = [[ 8 ]]→[[ 7 ]]

[[nrest ]] = [[l ]]→[[ 8 ]] = nlist→nlist

Notice that in the first and third set of constraints above, because the program applies a primitive, we can generate an
extra constraint which is the type of the primitive itself. In the second set, because the function is user-defined, we
cannot generate any other meaningful constraint just by looking at that one expression.

Solving all these constraints, it’s easy to see both that the constraints are compatible with one another, and that
each expression receives a monomorphic type. In particular, the type of 1 is nlist → number, which is therefore the
type of nlength also (and proves to be compatible with the use of nlength in expression 7 ).

2Note that the 0 inside the [[ · ]] is an expression itself, not a number labeling an expression.
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4 Formalizing Constraint Generation
What we’ve done so far is extremely informal. Let’s formalize it.

Constraints relate different portions of the program by determining how they should be compatible for the pro-
gram to execute without error. Consequently, a single program point may result in multiple constraints. Each set of
constraints represents a “wish list” about that particular point in the program. Consequently, a program may lead to
contradictory constraints; hopefully we will be able to find these later. One slightly confusing aspect of constraints
is that we write them to look like equations, but they reflect what we hope will be true, not what we know is true.
Specifically, they represent what suffices for safe program execution.3

For each expression n in the program’s abstract syntax tree, we introduce a variable of the form [[n]]. That is, if the
program has the form (foo 1 2), we would want to introduce variables for 1, 2 and (foo 1 2). Because abstract syntax
tree nodes are unwieldy to write down explicitly, we will associate the node with the expression at that node. We use
[[ · ]] to represent the type of a node, so the types of the expressions in the example above would be [[1]], [[2]] and [[(foo 1
2)]].4

Each expression type generates different constraints. We present below a table that relates the type of expression at
a node to the (set of) constraints generated for that node. Remember to always read [[ · ]] as “the type of the expression”
(within the brackets):

Expression at Node Generated Constraints
n, where n is a numeral [[n]] = number

true [[true]] = boolean

false [[false]] = boolean

(add1 e) [[(add1 e)]] = [[e]] = number

(+ e1 e2) [[(+ e1 e2)]]=number [[e1 ]] = number [[e2 ]] = number

(zero? e) [[(zero?e)]] = boolean [[e]] = number

(ncons e1 e2) [[(ncons e1 e2)]]=nlist [[e1 ]] = number [[e2 ]] = nlist

(nfirst e) [[(nfirst e)]]=number [[e]] = nlist

(nrest e) [[(nrest e)]]=nlist [[e]] = nlist

(nempty? e) [[(nempty? e)]]=boolean [[e ]] = nlist

nempty [[nempty]]=nlist
(if c t e) [[(if c t e)]]=[[t]] [[(if c t e)]]=[[e]] [[c]]=boolean

(lambda (x) b) [[(lambda (x) b)]]= [[x ]]→[[b]]
(f a) [[f ]] = [[a ]]→[[(f a)]]

Notice that in the two prior examples, we did not create new node numbers for those expressions that consisted
of just a program identifier; correspondingly, we have not given a rule for identifiers. We could have done this, for
consistency, but it would have just created more unnecessary variables.

5 Errors
Here’s an erroneous program:

(define nlsum
(lambda (l)

(cond
[(nempty? l) 0]
[(ncons? l) (+ (nrest l)

(nlsum (nrest l)))])))

Can you spot the problem?
First, we’ll annotate the sub-expressions:

3We use the term “suffices” advisedly: these constraints are sufficient but not necessary. They may reject some programs that might have run
without error had the type system not intervened. This is inherent in the desire to statically approximate dynamic behavior: the Halting Problem is
an insurmountable obstacle. An important constraint on good type system design is to maximize the set of legal problems while still not permitting
errors: balancing programmer liberty with execution safety.

4Puzzle: Using the expression at the node, rather than the node itself, introduces a subtle ambiguity. Do you see why?
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(define nlsum
1 (lambda (l)

2 (cond

[ 3 (nempty? l) 4 0]

[ 5 (ncons? l) 6 (+ 7 (nrest l)
8 (nlsum 9 (nrest l)))])))

Generating constraints as usual, we get the following (amongst others):

[[ 8 ]] = number

because the function returns a number in both branches of the conditional, and

[[ 9 ]] = nlist

from the type of nrest. Consequently, it appears we can infer that the value bound to nlsum has the type nlist →
number. This is indeed the type we expect for this procedure.

We should not, however, annotate any types before we’re generated, examined and resolved all the constraints: we
must make sure there are no inconsistencies. In fact, doing so results in a failure for this program. In particular, we
have

[[ 7 ]] = nlist

from the type of nrest, while
[[ 7 ]] = number

from the type of +. Indeed, the latter is the type we want: the nlist only materializes because of the faulty use of nrest.
Had the programmer used nfirst instead of nrest in the left-hand-side argument to the addition, the entire program
would have checked correctly. Instead, the type checker prints an error indicating that there is a type conflict: the
expression (nrest l) is expected to have both the type number and the type nlist. Because these are not compatible
types, the type “checker” halts with an error.5

6 Example: Using First-Class Functions
We will consider one final example of constraint generation, to show that the process scales in the presence of functions
as arguments. Consider the following program:

(define nmap
1 (lambda (f l)

2 (cond

[ 3 (nempty? l) 4 nempty]

[ 5 (ncons? l) 6 (ncons 7 (f 8 (nfirst l))
9 (nmap f 10 (nrest l)))])))

This program generates the following constraints:

[[ 1 ]] = [[f ]] × [[l ]]→[[ 2 ]]

We get the usual constraints about boolean conditional tests and the type equality of the branches (both must be of
type nlist due to the first response). From the second response, we derive

[[ncons ]] = [[ 7 ]] × [[ 9 ]]→[[ 6 ]] = number × numlist→numlist

5We use quotes because the checker has, in some sense, disappeared. Instead of checking types annotated by the programmer, the type system
now tries to fill in the programmer’s annotations. If it succeeds, it can do so only by respecting the types of operations, so there is no checking left
to be done; if it fails, the type inference engine halts with an error.
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The most interesting constraint is this one:
[[f ]] = [[ 8 ]]→[[ 7 ]]

In other words, we don’t need a sophisticated extension to handle first-class functions: the constraint generation phase
we described before suffices.

Continuing, we obtain the following three constraints also:

[[nfirst ]] = [[l ]]→[[ 8 ]] = nlist→number

[[nmap]] = [[f ]] × [[ 10 ]]→[[ 9 ]]

[[nrest ]] = [[l ]]→[[ 10 ]] = nlist→nlist

Since l is of type nlist, we can substitute and solve to learn that f has type number → number. Conseqently, nmap
has type

(number → number) × nlist → nlist

which is the type we would desire and expect!
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