
Chapter 1

Data Integration Services

1 Introduction

... will be written later ...

1.1 Definition of Data Integration

Data integration systems harmonize data from multiple sources into a single
coherent representation. The goal is to provide an integrated view over all the
data sources of interest and to provide a uniform interface to access all of these
data. The access to the integrated data is usually in the form of querying rather
than updating the data.

The data sources to be integrated may belong to the same enterprise or
may be arbitrary sources on the web. Most of the time, each of the sources
is independently designed for autonomous operation. Also, the sources are not
necessarily databases; they may be legacy systems (old and obsolescent systems
that are difficult to migrate to a modern technology) or structured/unstructured
files with different interfaces. Data integration requires that the differences in
modeling, semantics and capabilities of the sources together with the possible
inconsistencies be resolved.

1.2 Motivation for Data Integration Systems

• Historical view: integration-by-hand

• Users can focus on specifying what they want, not on how to obtain what
they want. Instead of finding relevant sources, interacting with every
source and combining data from different sources, a user can ask queries
in a unified way.
Particular examples:

– Desire for reports that describe all parts of a merged organization
(bank mergers, car dealerships, etc.).

1

2 CHAPTER 1. DATA INTEGRATION SERVICES

• Facilitates decision support applications (OLAP, Data mining)

OLAP (On-Line Analytical Processing) is making financial, marketing or
business analysis to be able to make business decisions on a collection
of detailed data from one or more data sources. The analysis is done
through asking large number of aggregate queries on the detailed
data.

Data Mining is discovering knowledge from a large volume of data. Sta-
tistical rules or patterns are automatically found from the raw col-
lection of data.

1.3 Major Issues

• Heterogeneity of data sources

• Availability of data sources

• Dynamicity of individual data sources

• Autonomy of data sources

• Correctness of the integrated view of the data

• Query performance

1.4 Summary of State of the Art

... will be written later ...

2. DATA INTEGRATION ARCHITECTURES 3

2 Data Integration Architectures

2.1 Dimensions to categorize architectural models for in-
tegrating data sources

There are three orthogonal dimensions which are traditionally used in literature
to describe distributed information systems: autonomy, heterogeneity and dis-
tribution. Sometimes transparency is considered as the forth parameter. Below
we are discussing each of these dimensions.

• Autonomy
Autonomy refers to the degree to which individual data sources can oper-
ate independently. According to Verjalainen and Popescu-Zeletin’s classi-
fication, there are three types of autonomy:

– Design autonomy
The source is independent in data models, naming of the data ele-
ments, semantic interpretation of the data, constraints etc.

– Communication autonomy
The source is independent in deciding what information it provides
to the other components that are part of the integrated system and
to which requests it responds.

– Execution autonomy
The source is independent in execution and scheduling of incoming
requests.

• Heterogeneity
Heterogeneity refers to the degree of dissimilarity between the compo-
nent data sources that make up the data integration system. It occurs at
different levels. On a technical level, heterogeneity comes from different
hardware platforms, operating systems, networking protocols or similar
lower-level concepts. On a conceptual level, heterogeneity comes from dif-
ferent programming and data models as well as different understanding
and modeling of the same real-world concepts (ex: naming).

• Distribution
Distribution refers to the physical distribution of data over multiple sites.

– Client/Server
Server does data management, client provides user interface.

– Peer-to-Peer (fully distributed)
Each machine has full functionality of data management.

• Distribution transparency
Transparency refers to the separation of higher-level semantics of a system
from lower-level implementation issues. A transparent system hides the
implementation details from users.

4 CHAPTER 1. DATA INTEGRATION SERVICES

2.2 Major Approaches to Data Integration

Three common approaches to integrate data sources are the following:

• Virtual View Approach
In this case data is accessed from the sources on-demand (when a user
asks a query to the information system). This corresponds to a so-called
lazy approach to data integration.

• Materialized View/Warehousing Approach
Some filtered information from data sources is pre-stored in a repository
(warehouse) and can be queried later by users. This method corresponds
to an eager approach to integration.

• Hybrid approach
Data is selectively materialized, that is, the system is essentially mediator-
based where data is extracted from sources on-demand, but the results of
the most popular queries are precomputed and stored.

When a number of data sources is very large, and/or the sources are prone to
change often (like in the case of web sources), and/or there is no way to predict
what kind of queries users will ask, virtual approach is preferable over data
warehousing approach. If, however, sources are fixed, don’t get upgraded too
often and we know what kind of queries are most popular, we can materialize
some of them.

2.3 Virtual View Approach

2.3.1 Federated Database Systems

Federated Database System (FDBS) consists of semi-autonomous components
(database systems) that operate independently but participate in a federation
to partially share data with each other.

This sharing is controlled by each component and not centralized. The com-
ponents can not be called “fully-autonomous” because each of them is modified
by adding interface to communicate with all other components.

Each of the component database systems can be either centralized DBMS, or
distributed DBMS or another federated database management system, and may
have any of the three types of autonomy mentioned above (design autonomy,
communication or execution autonomy). As a consequence of this autonomy,
heterogeneity issues become the main problem.

FDBS supports local and global operations and treats them differently. Local
operations involve only local data access and correspond to the queries submit-
ted directly to this source. Global operations use FDMS (federated database
management system) to access data from other components. In case of a global
operation, each data source whose data is required must allow access to it.

Depending on how the component database systems are integrated, there
can be loosely coupled FDBSs or tightly coupled FDBSs. Tightly coupled FDBS

2. DATA INTEGRATION ARCHITECTURES 5

has a unified schema (or several unified schemas) which can be either semi-
automatically built by schema integration techniques (see section 3 for details)
or created manually by user. To solve logical heterogeneity, a domain expert
needs to determine correspondences between schemas of the sources. Tightly
coupled FDBS is usually static and difficult to evolve, because schema integra-
tion techniques don’t allow to add or remove components easily. Examples of
this kind of FDBSs are ...

Loosely coupled FDBS does not have a unified schema, but it provides some
unified language for querying sources. In this case, component database systems
have more autonomy, but user has to resolve all semantic heterogeneities him-
self. Only technical metadata is needed by loosely coupled FDBS as opposed to
tightly coupled one, which requires semantic metadata in addition. Requested
data comes from the exporter of this data itself and each component can de-
cide how it will view all the accessible data in the federation. As there is no
global schema, each source can create its own “federated schema” for its needs.
Examples of such systems are MRSDM, Omnibase and Calida.

As pointed out by D. Heimbigner and D. McLeod, in order to remain au-
tonomously functioning systems and provide mutually beneficient sharing of
data at the same time, components of FDBS should have facilities to commu-
nicate in three ways:

• Data exchange
This is the most important purpose of the federation and good mechanisms
of data exchange are a must.

• Transaction sharing
There may be cases where for some reason the component does not want
to provide direct access to some of its data, but can share operations on
its data. Then other components should have ability to specify which
transactions they want to be performed by another component.

• Cooperative activities
As there is no centralized control, cooperation is the key in federation.
Each source should be able to perform a complex query involving accessing
data from other components (?).

The simplest way to achieve interoperability is to map each source’s schema to
all others’ schemas. It is a so-called pair-wise mapping. You can see an example
of such federated database system in Figure 1.1. Unfortunately, it requires n*(n-
1) schema translations and becomes too tedious with the growth of a number of
components in federation. Research is is being done on tools for efficient schema
translation (See section 3 for details).

We should note that the term “Federated Database Systems” is used differ-
ently in literature: some people call only tightly coupled systems FDBSs, some
call only loosely FDBSs, and some take the same approach we did by consid-
ering tight and loose architectures be two kinds of federated database system
architecture.

6 CHAPTER 1. DATA INTEGRATION SERVICES

DB1 DB2

DB3 DB4

Figure 1.1: Example of federated database architecture (taken from tan book,
refer [])

Federated architecture is very appropriate to use when there is a number of
autonomous sources, and we want, on one hand, to retain their “independence”
allowing user to query them separately, and, on the other hand, allow them to
collaborate to answer the query. It is a good compromise between full integration
and no integration.

2.3.2 Mediated Systems

Mediated system integrates heterogeneous data sources (which can be databases,
legacy systems, web sources, etc) by providing virtual view of all this data. Users
asking queries to the mediated system do not have to know about data source
location, schemas or access methods, because such system presents one global
schema to the user (called mediated schema) and users ask their queries on it.

A natural question that arises is how mediation architecture is different from
tightly coupled FDBS? Here are the differences between them:

• Mediated architecture may have non-database components

• Query capabilities of sources in mediator-based system can be restricted
and the sources don’t have to support SQL-querying at all (semistructured
data)

• Access to the sources in a mediator-based system is read-only as opposed
to read-write access to FDBS

• Development of mediated systems is usually done in top-down way as
opposed to bottom-up approach for tightly coupled FDBS

2. DATA INTEGRATION ARCHITECTURES 7

• Sources in mediator-based approach have complete autonomy which means
it is easy to add or remove new data sources

Source 1 Source 2

Wrapper Wrapper

Mediator

query query

query query

query

Figure 1.2: Mediated architecture (borrowed with some minor changes from tan
book, refer [])

A typical architecture for a mediated system (with two sources) is given in
Figure 1.2. Two main components of a mediated system are mediator and
wrapper. Mediator (can be also called integrator) performs the following actions
in the system:

• Receives a query formulated on the unified (mediated) schema from a user.

• Decomposes this query into sub-queries to individual sources based on
source descriptions which it has.

• Optimizes execution plan based on source descriptions again.

• Sends sub-queries to wrappers of individual sources, which will transform
these sub-queries into queries over sources’ local schemas. Then it re-
ceives answers to these sub-queries from wrappers, combines them into
one answer and sends it to the user.

These steps are described in details in the section on query processing.

8 CHAPTER 1. DATA INTEGRATION SERVICES

Wrapper hides technical and data model heterogeneity from the integrator.
It is an important component of both mediator-based architecture and data
warehouse, but wrappers for mediated systems are usually more complicated.
Please refer to section 5.1 for more information about wrappers.

Example: Let us assume there are two data sources - two car dealers databases
which both became parts of Acme Cars company. Each of the car dealers has a
separate schema for storing information about cars. Dealer one stores it as one
relation:

Cars(vin, make, model, color, price, year, mileage)

Dealer two also rents some of his cars, so he has separate relations for cars
for sale and for rent. He stores information about cars for sale in two relations:

CarsForSale(vechicalID, carMake, carModel, carColor, carPrice, carYear),
CarsSaleMileage(vechicalID, mileage).

Acme Cars uses mediated architecture to integrate these two dealers’ databases.
It does it by providing a mediated schema of the two schemas above, which con-
sists of just one relation:

Automobiles(vin, autoMake, autoModel, autoColor, autoPrice, au-
toYear).

Now if a client of Acme Cars asks a SQL-query:

SELECT vin, autoModel, autoColor, autoYear
FROM Automobiles
WHERE autoMake = “Honda” AND autoPrice < 14,000

The wrapper for the first database will translate this query to:

SELECT vin, model, color, year FROM Cars
WHERE make = “Honda” AND price < 14,000

It also renames model to autoModel, color to autoColor and year to autoYear.

The wrapper for the second dealer will translate this query to:

SELECT vechicalID, carModel, carColor, carYear
FROM CarsForSale
WHERE carMake = “Honda” AND carPrice < 14,000

It also renames vechicalID to vin, carModel to autoModel, carColor to auto-
Color etc.

2. DATA INTEGRATION ARCHITECTURES 9

Known implementations of mediator-based architecture are: TSIMMIS, In-
formation Manifold, SIMS, Carnot ... Some of them are covered in more details
in Systems section.

2.4 Materialized View Approach (Data Warehousing)

In a materialized view approach, data from various sources is integrated by
providing a unified view of this data, like in a virtual approach described above,
but here this filtered data is actually stored in a single repository (called ”data
warehouse”).
How is a data warehouse different from a traditional databases with OLTP
(On-Line Transaction Processing)?

• Warehouse will usually contains terabytes of data and may combine data
from many databases, semi-structured and other sources

• Workloads are query intensive; queries are complex and query throughput
is more important than transaction throughput

• A data warehouse often contains historical and summarized data which
is used for decision support. That also infers that users of a data ware-
house are different than users of a traditional DBS: they will be analysts,
knowledge workers, executives

• Information is usually read-only as opposed to read/write operations in
OLTP.

What is involved in building a data warehouse?

• Modeling and design
In the stage of designing a warehouse, we need to decide information from
which sources we are going to use there, what views (queries) over these
sources we want to materialize, and what the global unified schema of the
warehouse will be.

• Maintenance (refreshing)
Maintenance deals with how we create our warehouse from source data
and how we refresh it when data in the sources is updated. There are
three ways to create a warehouse:
-Do it periodically when no queries to the system are sent (night time for
instance) re-creating a warehouse from scratch from data sources
-Periodically incrementally update it, that is, incorporate changes made to
the sources since last update. In this case, only very small amount of data
will be touched, so it is more efficient, but it is also more complicated, has
a number of issues and is an area of active research.
-Update it after every change made to any of the sources. This approach
does not seem to be too practical though, except for small warehouses
with rarely changing data sources [refer to tan book].

10 CHAPTER 1. DATA INTEGRATION SERVICES

View maintenance is the key research topic specific to data warehousing
and we discuss it in details in Section 6.

• Operation
Operation of a data warehouse involves query processing, storage and
indexing issues.

Example of a two-source data warehouse is given in Figure 1.3.

Data

Warehouse

Metadata

Integrator

Wrapper Wrapper

query

Data source 1 Data source 2

Figure 1.3: A data warehouse

Example: Let’s suppose there is a company X that owes two toy stores. Toys
there are identical and each store has a database where for each date there us
a number of each type of toy (teddy-bear or dog) sold in this store. So store
1 stores relation: Sales(date, typeToy, numberSold) and store 2 has two
relations: TeddyBears(date, numberSold) and DogsToys(date, number-
Sold).
Now assume, that company X would like to have the following relation in the
data warehouse for decision making purposes (future marketing):
ToySales(date, typeToy, numberSold)
In this case, we need to first select appropriate tuples from each source, take
their union and then aggregate, so that for each date and type of a toy we have
a total number of toys of this kind sold on a given date. SQL query to the

2. DATA INTEGRATION ARCHITECTURES 11

first source is straightforward, as the relation is exactly the same apart from the
name it has. It will look like this:

INSERT INTO ToySales1(date, typeToy, numberSold)
SELECT date, typeToy, numberSold
FROM Sales

For the second source, we can ask two queries:

INSERT INTO ToySales2(date, typeToy, numberSold)
SELECT date, “TeddyBear”, numberSold
FROM TeddyBears

INSERT INTO ToySales2(date, typeToy, numberSold)
SELECT date, “Dog”, numberSold
FROM DogsToys

So, wrappers to sources 1 and 2 will return relations ToySales1 and ToySales2
correspondingly. Now integrator component will join them summing the num-
ber of toys of each kind sold on each date:

INSERT INTO ToySales(date, typeToy, numberSold)
SELECT date, typeToy, SUM(numberSold)
FROM ToySales1 s1, ToySales2 s2
WHERE s1.typeToy=s2.type AND s1.date = s2.date

Known implementations of data warehousing approach are Squirrel and WHIPS
systems. Overview of WHIPS is given in Systems section of this chapter.

2.5 Hybrid approach

This approach is usually discussed as a way to improve performance of some
mediator-based systems. When approach to data integration is virtual, but
the queries asked most often are determined and they are materialized in some
repository. This repository then can serve as a new source for this mediated
system. Issues which arise in this case are some of issues for data warehousing
approach:

• What data to materialize?

• How this materialized data is maintained

Such approach discussed in [K.], but otherwise is not too common compared to
data warehousing and mediation.

12 CHAPTER 1. DATA INTEGRATION SERVICES

3 Semantic problems in data integration

Different information systems can use different ways of presenting their infor-
mation to their users. Those differences can make it very difficult for developers
to integrate data from the two systems.

This section explores the nature of why this integration can be so difficult,
and presents some (partial) solutions the problem.

3.1 The goal of an information system

3.1.1 Information systems as assertions about our world

An information system can be thought of as a record of some facts about the
world. (Other functionality might also exist in an information system, but that
isn’t relevant to this present discussion.)

If an information system is accurate in what it claims about the world, then
it’s useful. If the information system is inaccurate, the it’s much less useful.

3.1.2 System interfaces

An information system makes its information available to users via its system
interfaces. In modern information systems, these might include any of the
following:

• SQL access and the documentation of the database’s schema

• A CORBA system with corresponding IDL files

• A C function library

• A set of URLs and associated query parameters

• A set of XML DTDs and the path of the filesystem directory that will
contain corresponding XML files

3.1.3 Semantics

The semantics of an interface is the specification of how the entities in the
interface are supposed to correlate to:

• entities in some other system, or

• entities in the world we live in.

Example
Consider a table in our car dealership’s customer database. The table is

named tblCustomers, and has the following columns:

• cust num: integer

• street: string(255)

3. SEMANTIC PROBLEMS IN DATA INTEGRATION 13

• city: string(60)

• state: string(2)

• car pref: integer FK(tblCarTypes)

A statement of the table’s semantics may look like the following:
”tblCustomers contains one record for each customer that our dealership has

ever sold a car to. A record is only removed from this table if it is discovered
to refer to the same person that another record in this table refers to.”

”cust num is a unique identifier for each customer record. No two customers
share the same customer number. A customer number is not intended to corre-
spond to any value outside of this database. For a given customer record, this
value will never change.”

”street, city, and state are the mailing address that the customer has most
recently been known to live it. The street field includes an apartment number
specification if needed.”

”car pref is a foreign key into the tblCarTypes table. This field shows what
type of car the customer has most recently expressed preference for.”

3.2 Problems

3.2.1 Simple type differences

System interfaces are usually composed of common-place elements, such as C it
unsigned ints, SQL dates, and Java Strings.

Sometimes there can be a very simple correspondence between a data source’s
exposed interface and the integrated system’s exposed interface.

For example, both systems might provide a mechanism that when given a
car’s VIN (Vehicle Identification Number), yields the date that the car was built.

Suppose that the data source’s interface is a SQL database with a table that
maps cars’ VIN to the car’s manufacture date (presented as a SQL datetime).
TODO: Make sure I’ve got the right name for the SQL data type

If the integrated system’s exposed interface is written in Java, then it would
be desirable for the integrated system to present a car’s construction date as a
java.util.Date object.

Solution
These are perhaps the most benign problems to deal with during integration,

because:

• the software needed to implement the conversion can probably appear in
a very localized part of the integrated system’s source code, and

• this is a kind of conversion that many other software developers are also
likely to need to do. This implies that it’s quite likely that conversion
libraries will be available to the developers of the integrated system.

14 CHAPTER 1. DATA INTEGRATION SERVICES

3.2.2 Unexpressed or under-expressed semantics of data source inter-
faces

Properly understanding the semantics of the data sources interfaces is vital to
integrating the data sources.

To illustrate this, consider what would happen if the developer who were in-
tegrating the data sources did not understand the semantics of the data sources’
interfaces:

The developers, trying to make their integrated information system useful,
would try to tell the users of the system how the data coming out of the inte-
grated information system was supposed to correlate to the user’s lives.

For example, ”The field labelled ’Number sold: ’ is the number of cars sold
on the date that appears in the field labelled, ’Date’, be all of our dealerships
combined. [TODO: Replace with our running example]

However, in order to be able to make such semantic claims about the outputs
of the integrated system, the developers would need to know the semantics of
the interfaces that the integrated system got that data from.

If the developers who are writing the software to integrate the data sources
aren’t able to understand the semantics of the data sources’ interfaces, they can’t
justify any semantic claims about the integrated information system’s interface
semantics.

Solution
This is a problem that presently requires human involvement to sort out.

Confirming the semantics of data sources may involve talking with developers
who previously worked with the data sources, talking with users, and some
guesswork.

3.2.3 Onto mappings

Sometimes information systems can use different levels of precision to describe
the same entities. This causes problems when constructing an integrated system.

Example
Consider the customer databases of two car dealerships. In both databases is

a record of the type of car that each customer prefers to drive. This is collected
to help the dealership know how to advertise best to each customer.

At one dealership, the customer preference information is very detailed: A
customer’s preference is expressed in terms of the manufacturer and model line
of the car the user likes best. For example, customer ’Charlie Brown’ prefers
’Ford F150 pickup truck’.

At the other dealership, the customer preference information is less specific:
All that can be specified is the general class of vehicle. For example, ’Lucy
Brown’ prefers ’pickup truck’.

It happens to be the case that every kind of vehicle described in the first
dealer’s customer preferences database can be cleanly mapped into a class of
vehicle in the second dealer’s database. For example, a ’Ford F150 pickup truck’
is a ’pickup truck’.

3. SEMANTIC PROBLEMS IN DATA INTEGRATION 15

However, the opposite is not true: A vehicle preference from the second
dealership’s database does not map cleanly into a vehicle preference from the
first dealership’s database. Therefore, the two databases’ vehicle preferences
have an onto mapping.

Now suppose that an organization tries to create in integrated system that
draws customers’ vehicle preference information from the two dealerships’ cus-
tomer databases. The developers of the integrated system are confronted with
the onto relationship described above.

Solution
If uniformity of detail in the integrated system has a high priority, then

probably the most reasonable solution is to have the integrated system provide
only the subset of information about an entity that is available from all relevant
data sources.

A more sophisticated integrated system might allow its interface to provide
additional information about an entity in those special cases where the particular
data source involved has more information than the common subset. [TODO:
Needs better wording.]

3.2.4 Different categorizations

Different information systems can record similar information in ways that are so
different from each other that integrating the information can be very awkward.

Example
Suppose two car dealerships track the amount of gasoline used at the deal-

ership each month.
One dealership records the monthly use in terms of volume (i.e., gallons)

purchased per month.
The other dealership records the monthly use in terms of money spent on

gasoline per month.
Now suppose that an integrated system is being developed to show the gaso-

line use from all car dealers in the larger organization. The developers of the
integrated system must wrestle with the difference in measurements.

Note that it could be argued that these two values aren’t legitimate candi-
dates for integration, because they actually represent two different details about
the dealerships. However, the reality is that the concepts are so similar that
a developer might genuinely be asked to provide a (numerically) approximate
integration of the values.

Solution
This is a very messy problem. Acceptable solutions are likely to be very

application-dependent.

3.2.5 Recognizing object identity

Data sources can have an unstated assumption that there’s a one-to-one corre-
spondence between entities in the data source and entities in the outside world.

16 CHAPTER 1. DATA INTEGRATION SERVICES

For example, a car dealership would ideally have only one ”customer” record
per actual human customer. This is an important quality of the system, be-
cause it allows users of the system to perform certain reasoning that otherwise
wouldn’t be sound.

However, what happens if two data sources being integrated might both have
a record for the same customer?

If an integrated system makes a false assumption that the data sources have
disjunct sets of customer records, then the integrated system now has dupli-
cate customer records. Reasoning that assumes non-duplicate customer records
would be impossible with the integrated system although it would be possible
with any of the individual data sources.

Solution
Some data sources might provide enough information to allow the integration

software to unambiguously detect matches between entities.
For example, two data sources might both use a customer’s Social Security

Number as a customer key. This makes duplicate detection trivial.
Often duplication detection involves guesswork. Software systems are avail-

able that try to make good guesses about duplicate records based on the infor-
mation available. A common application of this is removing duplicate entries
when large mailing lists are merged.

3.2.6 Conflicting data

Interface semantics often make an implicit claim that data using the interface
is absolutely correct. People usually know to take that claim with a grain of
salt. When unifying data from two or more data sources, contradictions can be
reached, leading to an internally inconsistent view of data.

Example
Suppose that two car dealership have, over time, both sold the same car to

a customer.
Each dealership maintains an inventory database that records for each car

ever held by the dealer, the following pair of values: Vehicle Identification Num-
ber, Date-of-manufacture.

At one dealership, the value was correctly entered:
”123456842”, ”February 14, 2000”
At the other dealership, the value was incorrectly entered:
”123456842”, ”April 1, 2000”
When these data are integrated into a single information system, the con-

flicting values are detected.
Solution
Various approaches might be reasonable depending on the situation:

• When a conflict is detected, bring it to the attention of a human. The
human can look for problems such as data entry errors and make a judge-
ment. This audit might also lead to a correction of the original data in
one of the data sources.

3. SEMANTIC PROBLEMS IN DATA INTEGRATION 17

• If one system is considered more trustworthy than the other, use the an-
swer provided by the more trusted system.

• If more than two systems provided conflicting answers, treat each data
source’s answer as a vote.

• If the answer is a real number, then allow mathematical interpolation
(perhaps the arithmetic mean) to be the final answer presented by the
integrated system.

18 CHAPTER 1. DATA INTEGRATION SERVICES

4 Querying the Integrated Data

The main purpose of building data integration systems is to facilitate the access
to the multitude of data sources. The ability to correctly and efficiently process
the queries to the integrated data lies in the heart of the system. The traditional
way of query processing involves the following basic steps:

• getting a declarative query from the user and parsing it

• passing it through a query optimizer which produces an efficient query
execution plan that describes how to exactly evaluate the query, i.e., apply
which operators, in what order, using what algorithm

• executing the plan on the data physically stored on disk

The procedure described above also applies to query processing in data in-
tegration systems in general terms. However, the task is more challenging due
to the complexities brought by the existence of multiple sources with differing
characteristics. First of all, we need to decide which sources are relevant to
the query and hence should participate in query evaluation. These chosen data
sources will participate in the process by their own query processing mecha-
nisms. Second, due to potential heterogeneity of the sources, there may exist
various access methods and query interfaces to the sources. In addition to being
heterogeneous, the sources are usually autonomous as well and therefore not all
of the them may provide full query capability. Third, the sources might con-
tain inter-related data. There may be both overlapping and inconsistent data.
Overlapping data may lead to information redundancy and hence unnecessary
computations during query evaluation. Especially in the case where there are
large number of sources and the probability of overlap is high, we may need to
choose the most beneficial sources for query evaluation. The last but not the
least, the sources may be incomplete in terms of their content. Therefore, it
may be impossible to present a complete answer to user’s query. This list of
complications is extensible.

As discussed in Section ??, a data integration system may be built in two
major ways: by defining a mediated schema on the participating data sources
without actually storing any data at the integration system (virtual view ap-
proach) or by materializing the data defined by the mediated schema at the
integration system (materialized view approach). In both of the approaches,
the user query is formulated in terms of the mediated schema. However, in the
latter approach, since the data is stored at the integration system according to
the mediated schema, query evaluation is no more difficult than traditional way
of query processing. The major issue there, is the synchronization of data with
the changes to the original data at the data sources, i.e., maintenance of the
materialized views. We discuss this issue in Section ??. During maintenance,
views defined on the data sources have to be processed on the data sources to
rematerialize the updated data. In other words, query processing on the orig-
inal data sources is realized usually ”off-line”. 1 On the other hand, in the

1For immediate view maintenance policy, it is actually ”on-line”.

4. QUERYING THE INTEGRATED DATA 19

virtual view approach, every time a user asks a query, source access is required.
Therefore, query processing for the virtual approach includes the issues that
would arise for the maintenance stages of the materialized view approach. In
this regard, we discuss mainly the query processing problem for the virtual view
approach in this section.

In this section, first we briefly discuss the modeling issues which forms the
basis of all the following arguments. Then we present the main stages in query
processing in data integration systems in order, namely, query reformulation,
query optimization and query execution.

4.1 Data Modeling

Traditionally, to build a database system, we first model the requirements of
the application and design a schema to support the application. In a data
integration system, rather than starting from scratch, we have a set of pre-
existing data sources which would form the basis of the application. However,
each of these data sources may have different data models and schemas. In other
words, each source presents a partial view of the application in its own way of
modeling. In fact, if we were to design a database system for the application
starting from scratch, we would have another model, which would have the
complete and ideal view of the world. To simulate this ideal, we need to design
a unifying schema in a single data model based on the schemas of the data
sources being integrated. Then each source needs to be mapped to relevant parts
of this unified schema. This single schema of the integrated system is called the
”mediated schema”. Having a mediated schema facilitates the formulation of
queries to the integrated system. The users simply pose queries in terms of the
mediated schema, rather than directly in terms of the source schemas. Although
this is very practical and effective in terms of transparency of the system to the
user, it brings the problem of mapping the query in mediated schema to one or
more queries in the schemas of the data sources.

The below figure shows the main stages in query processing in data integra-
tion systems. There is a global data model that represents the data integration
system and each of the data sources has its own local data model. There are two
conceptual translation steps: (i) from the mediated schema to exported source
schemas, (ii) from exported source schemas to source schemas. The difference
comes from the data models used. In the former one, the user query is refor-
mulated as queries towards individual sources, but they are still in the global
data model. In the latter one, source queries are translated into a form that is
understandable and processable by the data sources directly, i.e., data model
translation is achieved in this latter step. These two steps are performed by
the mediator and the wrapper components in the system, respectively. In this
section, we will be focusing on the operation of the mediator and the details of
the wrapper will be presented in Section ??.

As Figure 1.4 indicates, in addition to modeling the mediated schema, we
need to model the sources so that we can establish an association between the
relations in the mediated schema and the relations in the source schemas. This

20 CHAPTER 1. DATA INTEGRATION SERVICES

Descriptions

Query

Mediated
Schema

Source

Source
Statistics

WrapperWrapperWrapper

Query (in mediated schema)

Query
Reformulation

Optimization

Execution
Engine

Query

logical plan
(source queries in exported source schemas)

physical plan
(distributed query execution plan)

source query
in exported
source schema

Source
Data
Source Source

Data

query in
source
schema

global data

model

local data models

Data

Figure 1.4: Stages of Query Processing

is achieved through source descriptions. The description of a source should
specify its contents and constraints on its contents. Moreover, we need to know
the query processing capabilities of the data sources. Because in general, in-
formation sources may permit only a subset of all relational queries over their
relations. Source capability descriptions include which inputs can be given to
the source, minimum and maximum number of inputs allowed, possible outputs
of the source, selections the source can apply and acceptable variable bindings
[].

To be able to present the methods for querying the integrated data, we need
to choose a data model and language to express the mediated schema, source
descriptions and the queries. Due to its simplicity for illustrating the concepts,
we will be using relational model as our global data model and Datalog as our
language.

4. QUERYING THE INTEGRATED DATA 21

4.1.1 Datalog

We can express queries and views as datalog programs. A datalog program
consists of a set of rules each having the form:

q(X̄) : −r1(X̄1), . . . , rn(X̄n)

where q and r1, . . . , rn are predicate names and X̄, X̄1, . . . , X̄n are either vari-
ables or constants. The atom q(X̄) is called the head of the rule and the atoms
r1(X̄1), . . . , rn(X̄n) are called the subgoals in the body of the rule. It is assumed
that each variable appearing in the head also appears somewhere in the body.
That way, the rules are guaranteed to be safe, meaning that when we use a
rule, we are not left with undefined variables in the head. The variables in
X̄ are universally quantified and all other variables are existentially quantified.
Queries may also contain subgoals whose predicates are arithmetic comparisons.
A variable that appears in such a comparison predicate must also appear in an
ordinary subgoal so that it has a binding.

.... explain the semantics of the rules, IDB, EDB predicates, conjunctive
queries, recursive rules, etc ...

4.1.2 Modeling the Data Sources

To reformulate a query in mediated schema as queries on the source schemas,
we need the relationship between the relations in the mediated schema and the
source relations. This is achieved through modeling the sources using source
descriptions.

There are three approaches to describing the sources:

Global As View (GAV) Approach
For each relation R in the mediated schema, a query over the source
relations is written which specifies how to obtain R’s tuples from the
sources.

example will come here

This approach was taken in the TSIMMIS System [].

Local As View (LAV) Approach
For each data source S, a rule over the relations in the mediated schema
is written that describes which tuples are found in S.

example will come here

This is an application of a much broader problem called ”Answering
Queries using Views”. We will further discuss this problem in the next
section.

One of the systems that used this approach was the Information Manifold
System [].

22 CHAPTER 1. DATA INTEGRATION SERVICES

Description Logics (DL) Approach
Description Logics are languages designed for building schemas based on
hierarchies of collections. In this approach, a domain model of the applica-
tion domain is created. This model describes the classes of information in
the domain and the relationships among them. All available information
sources are defined in terms of this model. This is done by relating the
concepts defining the information sources to appropriate concepts defin-
ing the integrated system. Queries to the integrated system is also asked
in terms of this domain model. In other words, the model provides a
language or terminology for accessing the sources.

example will come here

This approach was taken in the SIMS System [].

Each of these approaches has certain advantages and disadvantages over the
others. The main advantage of GAV is that query reformulation in GAV is very
easy. Since the relations in the mediated schema are defined in terms of the
source relations, it is enough to unfold the definitions of the mediated schema
relations. Another advantage is the reusability of views as if they were sources
themselves to construct hierarchies of mediators as in the TSIMMIS System
[]. However, it is difficult to add a new source to the system. It requires that
we consider the relationship between the new source and all the other sources
and the mediated schema and then change the GAV rules accordingly. Query
reformulation in LAV is more complex. As we shall see in the next section, the
most important work done on query reformulation focus on the LAV approach.
However, LAV has important advantages compared to GAV: adding new sources
and specifying constraints in LAV are easier. To add a new source, all we need
to do is describe that source in terms of the mediated schema through one or
more views. We do not need to consider the other sources. Moreover, if we want
to specify constraints on the sources, we simply add predicates to the source
view definitions.

Compared to GAV and LAV approaches, DL approach has the benefit of
being more flexible.

... need to learn DL more to compare ...

4.1.3 Using Probabilistic Information

... will be written later ...

• for source completeness

• for overlap between parts of the mediated schema

• for overlap between information sources

4.2 Query Reformulation

Using the source descriptions, user query written in terms of the mediated
schema is reformulated into a query that refers directly to the schemas of the

4. QUERYING THE INTEGRATED DATA 23

sources (but still in the global data model). There are two important criteria
to be met in query reformulation:

• Semantic correctness of the reformulation: The answers obtained from the
sources will be correct answers to the original query.

• Minimizing the source access: Sources that can not contribute any answer
or partial answer to the query should not be accessed. In addition to
avoiding access to redundant sources, we should reformulate the queries
as specific as possible to each of the accessed sources to avoid redundant
query evaluation.

In this section, we will mainly discuss query reformulation techniques for
the LAV approach of source modeling. The reason for this is that query refor-
mulation in LAV is not straight forward and also it is one of the applications
of an important problem called ”Answering Queries using Views”. In what fol-
lows, first we briefly summarize this problem together with its other important
applications. Then we present various query reformulation algorithms for LAV.

4.2.1 Answering Queries Using Views

Informally, the problem is defined as follows: Given a query Q over a database
schema, and a set of view definitions V1, . . . , Vn over the same schema, rewrite
the query using the views as Q′ such that the subgoals in Q′ refer only to view
predicates. If we can find such a rewriting of Q into Q′, then to answer Q, it is
enough that we answer Q′ using the answers of the views.

Interpreted in terms of the query reformulation problem for the LAV ap-
proach, this means the following: By using the views describing the sources in
terms of the mediated schema, we can answer a user query written in terms
of the same schema by rewriting the query as another query referring to the
views rather than the mediated schema itself. Each view referred by the new
query can be evaluated at the corresponding source this way. Basically we are
decomposing the query into several subqueries each of which is referring to a
single source.

Answering queries using views has many other important applications which
include query optimization [], database design [], data warehouse design [] and
semantic data caching []. For example, query optimization may be achieved by
using previously materialized views for answering a query in order to save from
recomputation. We are discussing data warehouse design issues in Section ??.

The ideal rewriting we expect to find would be an ”equivalent” rewriting.
However, this may not always be possible. In data integration systems in partic-
ular, source incompleteness and limited source capability would lead to rewrit-
ings that approximate the original query. Among the many possible approxi-
mate rewritings, we need to find the ”best” one. The technical term for this
best rewriting is ”maximally-contained” rewriting. Note that we do not sacrifice
from semantic correctness criterion here, rather we are preferring an incomplete
answer to no answer at all. The below definitions formalize these terms:

24 CHAPTER 1. DATA INTEGRATION SERVICES

Equivalent Rewritings Let Q be a query and V = V1, . . . , Vm be a set of
view definitions. The query Q′ is an equivalent rewriting of Q using V if:

• Q′ refers only to the views in V , and

• Q′ is equivalent to Q.

Maximally-contained Rewritings Let Q be a query and V = V1, . . . , Vm

be a set of view definitions in a query language L. The query Q′ is a
maximally-contained rewriting of Q using V with respect to L if:

• Q′ refers only to the views in V ,

• Q′ is contained in Q, and

• there is no rewriting Q1 such that Q′ ⊆ Q1 ⊆ Q and Q1 is not
equivalent to Q′.

A query Q′ is contained in another query Q if, for all databases D, Q′(D) is
a subset of Q(D). A query Q is equivalent another query Q′ if Q′ and Q are
contained in one another.

4.2.2 Completeness and Complexity of Finding Query Rewritings

... will be written later ...

• source incompleteness

• recursive rewritings

4.2.3 Reformulation Algorithms

Given a query Q and a set of views V1 . . . Vn, to rewrite Q in terms of Vis, we
have to perform an exhaustive search among all possible conjunctions of m or
less view atoms where m is the number of subgoals in the query. The following
algorithms propose alternative ways of finding query rewritings to avoid the
exhaustive search.

The Bucket Algorithm (Information Manifold)
The main idea underlying the Bucket Algorithm is that the number of
query rewritings that need to be considered can be drastically reduced
if we first consider each subgoal in the query in isolation, and determine
which views may be relevant to each subgoal. Given a query Q, the Bucket
Algorithm proceeds in two steps:

1. The algorithm creates a bucket for each subgoal in Q, containing the
views (i.e., data sources) that are relevant to answering the particular
subgoal. More formally a view V is put in the bucket of a subgoal g
in the query if the definition of V contains a subgoal g1 such that

• g and g1 can be unified, and

4. QUERYING THE INTEGRATED DATA 25

• after applying the unifier to the query and to the variables of the
view that appear in the head, the predicates in Q and in V are
mutually satisfiable.

The actual bucket contains the head of the view V after applying the
unifier to the head of the view.

2. The algorithm considers query rewritings that are conjunctive queries,
each consisting of one conjunct from every bucket. For each possible
choice of element from each bucket, the algorithm checks whether
the resulting conjunction is contained in the query Q or whether it
can be made to be contained if additional predicates are added to
the rewriting. If so, the rewriting is added to the answer. Hence, the
result of the Bucket Algorithm is a union of conjunctive rewritings.

example will come here

The Inverse-Rules Algorithm (InfoMaster)
The key idea underlying this algorithm is to construct a set of rules that
invert the view definitions, i.e., rules that show how to compute tuples for
the mediated schema relations from tuples of the views. One inverse rule
is constructed for every subgoal in the body of the view. While invert-
ing the view definitions, the existential variables that appear in the view
definitions are mapped using Skolem functions to ensure that the value
equivalences between the variables are not lost. The following examples
illustrates the algorithm:

example will come here

In general, one function is created for each existential variable that appears
in the view definitions. These function symbols are used in the heads of
the inverse rules. The rewriting of a query Q using the set of views V is
the datalog program that includes the inverse rules for V and the query
Q.

The MiniCon Algorithm
MiniCon Algorithm looks at the problem from another perspective. In-
stead of building rewritings by combining rewritings for each query sub-
goal or mediated schema relation, we consider how each of the variables
in the query can interact with the available views. This way the num-
ber of view combinations to be considered can be considerably reduced.
The MiniCon Algorithm, like the Bucket Algorithm, first tries to identify
which views contain subgoals that correspond to subgoals in the query.
However, rather than building buckets, MiniCon Descriptions (MCDs)
are built. MCDs are generalized buckets. Each correspond to a set of
subgoals from the query mapped to subgoals from a set of views. First
the algorithm finds a partial mapping from a subgoal g in the query to a
subgoal g1 in a view V . Then it looks at the variables that appear in join
predicates in the query. The minimal additional set of subgoals that need
to be mapped to subgoals in V given the partial mapping between g and

26 CHAPTER 1. DATA INTEGRATION SERVICES

g1 is found. These subgoals together with their mappings form an MCD.
The following example clarifies the algorithm.

example will come here

The Shared-Variable-Bucket Algorithm
This algorithm, like the MiniCon Algorithm, also aims at recovering the
weak aspects of the Bucket Algorithm to obtain a more efficient algorithm.
Like the Bucket Algorithm, there are two steps: bucket construction and
solution generation.

During the bucket construction step, Shared-Variable-Bucket Algorithm
considers the equality constraints introduced by the ”shared variables”,
i.e., variables that occur across multiple subgoals. Additional buckets are
constructed called Shared Variable Buckets (SVBs) in order to handle the
equality constraints. Each bucket contains only views that cover all the
subgoals in which the shared variables representing the bucket appear.

In the solution generation step, a set of buckets is chosen such that each
subgoal is represented by a single bucket in the set. From each bucket, a
view is selected. Consequently, the solution to the query is expressed as a
conjunctive query whose body is the conjunct of the selected views. The
extra buckets ensure that the all generated solutions are sound solutions
and this way the conjunctive query containment test at the end of the
Bucket Algorithm is avoided.

example will come here

The CoreCover Algorithm
In this algorithm, closed-world assumption is taken where views are ma-
terialized from base relations. Among the possibly infinite number of
rewritings, the aim is to find the ones that are guaranteed to produce an
optimal physical plan if there exists any. Contrary to the other algorithms,
this algorithm aims at finding equivalent rewritings rather than contained
rewritings. Three different cost models are considered with the following
motivations:

• Cost model M1 tries to minimize the number of join operations

• Cost model M2 additionally aims at minimizing the number of disk
IO’s by minimizing the size of the relations use in the plan

• Cost model M3 aims at improving M2 by dropping irrelevant at-
tributes from the intermediate relations during evaluation.

We will be discussing the basic CoreCover Algorithm for the cost model
M1 and refer the interested readers to [] for modified versions developed
for M2 and M3.

Intuitively, the first step in the algorithm is to find the set of query subgoals
that can be covered by a view tuple, called ”tuple-core”. The second step
is to find a minimum number of view tuples to cover query subgoals.

4. QUERYING THE INTEGRATED DATA 27

Rather than a technical discussion, we will present the algorithm with the
following example:

example will come here

Comparison of the Algorithms
It is important that the algorithm scales well when the number of views
increase.

after I write the examples ...

4.2.4 Alternative Query Reformulation for Dynamic Information In-
tegration

... will be written later ...

4.3 Query Optimization and Execution

Query optimization refers to the process of translating a declarative query into
an efficient query execution plan, i.e., a specific sequence of steps that the query
execution engine should follow to evaluate the query. In addition to the op-
erators and their application order specified in the query execution plan, the
optimizer should also decide on the specific algorithms that implement the op-
erators and which indices to use with them. There may be many possible ex-
ecution plans. The best execution plan can be chosen in two ways: cost-based
or heuristics-based. In the cost-based approach, the optimizer has to estimate
the costs of candidate plans and choose the cheapest of them. Cost estimations
are done using statistical information about the underlying data such as sizes of
the relations and the selectivity of predicates. Heuristics-based plan generation
involves using some rules of thumb like doing selections before joins. Usually
heuristics-based technique is easier and cheaper than the cost-based one, be-
cause it does not need to consider and evaluate the cost of all possible plans.
However, the optimal plan is not guaranteed.

As discussed in the previous section, query reformulation step already pro-
vides some optimizations on the query by pruning irrelevant sources and distin-
guishing the overlapping sources to avoid redundant computation. Furthermore,
the rewritten queries are to be as specific as possible. However, these are logical
or higher level optimizations. There are still many optimizations to be done
when it comes to actually executing the logical plan generated by the reformu-
lator physically on the data.

Query optimization in data integration systems is more difficult than the
optimization problem in traditional databases because:

• Sources are autonomous. Optimizer may not have any statistics or either
has few or unreliable statistics about the data stored in each of the sources.

• Sources are heterogeneous. They may have different query processing
capabilities. The optimizer needs to exploit these capabilities as much
as it can. In addition to what kind of queries the sources can process

28 CHAPTER 1. DATA INTEGRATION SERVICES

and how they can process them, it is also relevant that what kind of
processing power they have underlying their data management system
and performance changes due to workload changes (??).

• In traditional databases, it is easy to estimate the data transfer time since
it is between the local disk and the main memory. In data integration
systems however, data transfer time is not predictable due to the existence
of the network environment. Both delays and bursts may occur.

• On one hand, the sources are overlapping and there is redundancy for
most of the time. That is why access to redundant sources should be
minimized. On the other hand, some sources may become unavailable
without any notice. Query optimizer should be able to handle these cases
flexibly by replacing overlapping sources for each other to compensate for
unavailability of any of them.

An additional problem that may cause inefficient query execution is that the
logical plan produced by the reformulator tends to have a lot of disjunctions,
i.e., union operations.

The bottom line is that it is difficult to decide statically what the optimum
strategy would be to execute a query due to insufficient information and dynam-
icity of the environment. Therefore, the traditional approach of first generating
a query execution plan and then executing it is no more applicable. [?] pro-
poses an adaptive query execution approach in which query optimization and
execution are interleaved. In this section we mainly discuss this approach.

4.3.1 Adaptive Query Execution

In addition to the above listed problems, [?] makes the following observations
about query optimization in data integration systems:

• It is more important to aim at minimizing the time to get the first answers
to the query rather than trying to minimize the total amount of work to
be done to execute the whole query.

• Usually the amount of data coming from the data sources is smaller com-
pared to case of querying a single source as in traditional database systems.

Adaptivity in [?] exists in two levels:

• interleaved planning and execution

• adaptive operators for execution engine

At a higher level, the former is achieved by creating partial plans called frag-
ments rather than complete plans. The optimizer decides how to proceed next
only after executing a fragment. Once a fragment is completed, the optimizer
would know more about the sources and the environment so that it could do
better planning for the rest of the query.

4. QUERYING THE INTEGRATED DATA 29

The latter includes using new operators during execution depending on the
observations listed above. Two important operators used in [] are double-
pipelined hash join and the collector operator.

Double-pipelined hash join is a join implementation that allows Tukwila to
quickly return the first answers to the query in spite of the fact that some sources
may be responding very slowly. In contrary to the conventional hash join where
smaller of the two relations to be joined is chosen as the inner relation to hash
by the join attribute, in double-pipelined hash join, both relations are hashed.
This way, result tuples are produced as soon as the data from sources arrive.
This masks the slow data transmission rates of some sources. The optimizer
no longer has to make a decision about which relation should be the inner one
(Normally, it would have to know the size of the relations to be able to choose
the smaller one as the inner). Also, the processing is not blocked due to delays
at the sources.

The collector operator is used to facilitate union over large number of over-
lapping sources. Using the estimates about the overlap relationships between
the sources and depending on the run-time behavior of the sources (delays, er-
rors) optimizer adapts its policy about how the unions should be performed and
the collector operator achieves the application of this dynamic policy. Policies
are specified using rules.

Both levels of adaptivity are realized through event-condition-action rules.
Events are raised by execution of the operators or completion of some fragments
and obtaining some partial results. When an event triggers a rule, first the as-
sociated condition is checked. If it is true, then the defined action is executed.
Possible actions include reordering of operators, reoptimization, changing the
policy of the collector operator and so on. The rules accompany the operator
tree generated by the optimizer. They specify how to modify the implementa-
tion of some operators (for example, the collector) during run-time if needed
and conditions to check at points where fragments complete in order to detect
opportunities for reoptimization.

4.3.2 Query Translation

One thing we have treated as a black box until now is how actually the source
queries in exported schemas (in schema of the sources but in the global data
model) are translated into their actual schemas (in their local data models) and
then get executed by their native query processors. This step is called the query
translation step. It is achieved by the source-specific wrappers. Data extraction
from sources by the wrappers is the topic of the next coming section.

30 CHAPTER 1. DATA INTEGRATION SERVICES

5 Data Extraction

Combines techniques from DB and AI (NLP, Machine learning).

5.1 Techniques for Extracting Data (Wrappers)

... will be written later ...

To access information from different heterogeneous data sources, we have to
translate queries and data from one data model to another. This function is
provided by wrappers around each individual data source. Wrapper converts
queries into one or more queries understandable by the underlying data source
and transforms results into the format understood by application (mediator).

5.1.1 Wrapper generation

• Issues
- refer to the section on Data Models and Schema Integration
- Mediator systems usually require more complex wrappers than do most
warehouse systems

• Ways of creating wrappers

– Manual
Why is it impractical for some sources?
In case of Web sources:
- big number of sources
- new sources are added frequently
- format of sources change
So, high maintenance costs.

– Semi-automatic (interactive)
Noted that only small part of the code deals with the specific access
details of the source. The rest is common among wrappers or data
transformation can be expressed in a declarative fashion (high-level).
Graphical interface, programming by demonstration.

– Automatic

∗ site-specific or generic
∗ usually needs training often supervised learning

• Tools for semi-automatic/automatic wrapper construction for structured/semistructured
data

– Template-based wrappers

– Inductive learning techniques for automatically learning a wrapper
(using labeled data)
Inductive learning - task of computing some generalization from a

5. DATA EXTRACTION 31

set of examples
Methods:

∗ zero-order (decision tree learners)
∗ first-order (inductive logic programming)

- bottom-up/top-down approaches

• Tools for data extraction from unstructured documents

– Using ontologies and conceptual models to extract and structure in-
formation from data-rich, unstructured documents.

– Using heuristic approaches to find record boundaries in web docu-
ments.

5.1.2 Filters

If a wrapper returns a superset of what query wants, we can filter the results of
the query.

5.2 Data Source Interfaces

Integrating information systems will almost always result in the development of
software that accesses data sources’ public interfaces.

A plethora of options is available for how data sources expose their data to
other computer systems. This subsection will explore some of the issues that
differentiate various types of interfaces.

5.2.1 General issues with interfaces

• Separation of interface into application-specific and reusable lay-
ers

Interfaces can often be divided into two parts:

– a set of primitive components that is used in numerous applications,
and

– a set of application-specific components.

This distinction is made in the OSI network protocol stack an elsewhere.

For the remainder of this section, we’ll use the term primitive interface
to refer to these multi-application, reusable interfaces.

For example, consider a car dealership’s customer database system. Sup-
pose that the system exposes its data via a CORBA interface.

CORBA, and perhaps TCP/IP, could be considered the primitive compo-
nents of the interface that appear in many applications. Thanks to the
support of outside organizations, CORBA and TCP/IP are available for
use in many different applications.

32 CHAPTER 1. DATA INTEGRATION SERVICES

However, the set of objects and methods exposed with CORBA for the
customer database system is application specific. (For example, a Cus-
tomer object or a Customer.scheduleForTuneup() method.) Few if any
other applications are likely to ever use the same application-specific in-
terface.

• Resolution of data addressability

Primitive interfaces are often ignorant of the structure of the data that
the interface helps to transfer between the interface user and the interface
implementor.

For example, one could move car inventory data over FTP in binary trans-
fer mode. The design of FTP is such that the protocol doesn’t interpret
the structure of the transferred data when using binary transfer mode.

However, it’s possible that the structure of the file being transferred is
very rich indeed. For example, the file could be a serialized Java object
with a well-defined structure.

This raises the issue of the resolution of addressability provided by an
interface.

In the example above, the FTP interface was capable of providing data
addressability down to the file level.

However, the FTP interface does not support the selection of a particular
XML element from the XML document.

• Data types

Primitive interfaces typically provide a set of one or more primitive data
types that the interface explicitly recognizes.

For example, SQL offers varchar, int, etc. C APIs offer int, float, char*,
etc.

These primitive types may be given special treatment in the language
bindings that let a programming language use the interface.

For example, big-endian and little-endian computers use different bit-level
representations of integer data. The SQL bindings for programming envi-
ronments on various computers will convert the bit-level representations
of SQL int data into a format that’s appropriate for the computer using
the interface.

Application-level constructs must be expressed (directly or indirectly) in
terms of these primitive data types.

• Interface semantics

Primitive interfaces are designed with the intention that the primitive
interface itself assigns no meaning to the particular data moving across
the interface.

5. DATA EXTRACTION 33

A result of this is that primitive interfaces are powerless to express application-
level semantics of the data.

See

TO DO: Give a reference to Section 3, once section 3 has a
referrable label

for more details on interface semantics.

5.2.2 Network vs. non-network primitive interfaces

In data integration, an important aspect of primitive interfaces is whether or
not network communications are used.

• Non-network interfaces

These interfaces do not explicitly support network communications. This
is a problem because data integration may involve two or more computers
that must communicate.

If data integration requires that two or more computers communicate,
but one or more data source does not offer a network-friendly interface,
work-arounds may be painful:

– Adding network connectivity may introduce yet more software to add
network connectivity.

– Using off-line data transfer mechanisms (tape, CD-RW, etc.) can lead
to undesirable latencies in the transfer of data from a data source to
the integrating system.

Examples

– Using a removable disk for file transfers (”sneaker net”)
A data source writes to files on a local disk drive. The files are
then copied to a CD-RW disk, which is phyisically transported to a
computer that’s performing data integration. The files are then read
from the CD-RW by the integration software.

– Information available only via a local GUI only (i.e., MS
Windows)
Suppose that a GUI application is the only exposed interface to a
particular data source. Developers of an integrated system may have
quite a difficult time accessing the data in an automated manner,
because poor bindings exist to allow one application to manipulate
the GUI of another application intelligently.

• Network-capable interfaces

These interfaces explicitly support network communications.

34 CHAPTER 1. DATA INTEGRATION SERVICES

Unfortunately, many modern networks (both short-distance and long-
distance) have a set of problems that can be difficult to deal with from a
software level.

– Failures of network links
Various problems can and do occur in the connections between com-
puters. In the modern Internet, it’s common to hear of a backhoe
operator accidentally digging through a bundle of optic cable used by
an Internet service provider, or of a necessary router malfunctioning.
In naively integrated systems, a network link failure can cripple the
entire integrated system or cause the loss of data.

– Potentially independent failures of communicating applica-
tions
If the software for integrating data executes on a different computer
than one of the data sources, it’s possible for only one of the com-
puters to fail.
This possibility raises very similar problems in system design to those
problems arising from fallible network links.

– Potentially significant communications costs / performance
issues
In long-distance communications between computer systems, trans-
ferring data is often expensive. Businesses that have multiple offices
often lease expensive network connections to allow the computers at
each site to communicate quickly with computers at other sites.
Fiscal cost may need to be a consideration in system design when
data integration involves computers at separate sites.

Examples

– FTP - File Transfer Protocol
This protocol gives one computer access to part of another computer’s
file-system. It also offers a username/password form of access control.

– CORBA - Common Object Request Broker Architecture
This architecture allows software systems to expose objects, methods,
and other details to provide object-oriented network services.

– ODBC - Open DataBase Connectivity
This protocol is designed to allow applications to access relational
database data without regard to the vendor of the database.

6. MATERIALIZED VIEW MANAGEMENT 35

6 Materialized View Management

... this whole section will be written later ...

We are going to discuss two major subtopics under this heading with giving
higher emphasis to the second one:

• Design and selection of views to materialize

• Maintenance of the materialized views

6.1 Design and Selection of Views to Materialize

Major Goals:

• to minimize total query response time

• to minimize the cost of maintaining the selected views

6.2 The Problem of View Maintenance

6.2.1 Definition

• traditional view update problem and why this one is different and more
difficult

• As the database changes because of updates applied to the base relations,
the materialized views may also require change. A materialized view can
always be brought up to date by re-evaluating the view definition. How-
ever, complete re-evaluation is wasteful.
”heuristic of inertia”- only a part of the view changes in response to
changes in the base relations

• steps of view maintenance:

– propagation (computing changes to the view)

– refreshing (applying changes to the mat. view)

6.2.2 Dimensions

• Available Information
materialized view, base relations, other views, integrity constraints, etc.

• Allowable Modifications
insertions, deletions, updates, sets of each, group updates, change view
definition, etc.

• Expressiveness of the View Definition Language
conjunctive queries, duplicates, aggregation, union, recursion, negation,
select, project, join, spj, etc.

36 CHAPTER 1. DATA INTEGRATION SERVICES

• Database Instance

• Complexity

– Complexity of the View Maintenance Language

– Complexity of the View Maintenance Algorithm

– Complexity of Auxiliary Information (in terms of space)

6.2.3 View Maintenance Policies

when to apply maintenance procedures on the materialized views

• Immediate View Maintenance
Refreshing is done within the transaction that changes the base data. slow
transactions; faster queries and always up to date results.

• Deferred View Maintenance

– lazily, at query time
fast transactions; slow query speed.

– forced, after a certain amount of change to the base data
non up to date results; good transaction and query time.

– periodically, in certain time intervals
non up to date results; good transaction and query time.

comparison of all in general; how the decision when to use which one is made.

6.3 Incremental View Maintenance

• pre-update vs post-update algorithms

• various algorithms will be summarized

6.4 View Maintenance Anomalies(Consistency Issues)

• caused by decoupling btw view definition and base data

• definition of correctness and levels of correctness

• solutions:

– recomputing the views

– storing copies of base relations

– ECA (Eager Compensating Algorithm)

6. MATERIALIZED VIEW MANAGEMENT 37

6.5 Update Filtering

Detection of base data updates that are irrelevant to the view (i.e., have no
effect on the state of the view) wil be discussed. For such updates, we do not
need to perform any maintenance. Thus, update filtering makes maintenance
more efficient by preventing redundant work.

6.6 View Self-Maintenance

In general, Self-Maintenance refers to views being maintained without using all
the base data. There exists different notions of its exact meaning depending on
how much information is avaiable. At minimum, the view update is performed at
the integrated system by only knowing the particular base data update that has
occurred, the view definitions and the materialied data. We will be describing
the alternative notions in detail here.

• Questions

– Given a view, is it self-maintainable?

– If it is self-maintainable, how?

• Single-View Self-Maintenance
does not consider the materialized views

• Multiple-View Self-Maintenance
makes use of contents of the other materialized views to minimize base
data access

• Updates as a whole
i.e., batch updates; may make maintenance easier and more efficient

• Making views self-maintainable
When the answer to the first question listed above is No, we can define
and materialize a minimal set of auxiliary views to make the original non-
maintainable view maintainable. Here, basically we are increasing the
amount of information available at the integrated system level.

6.7 Dynamic View Management

• problems of static view selection and maintenance

• dynamic view selection and maintenance

• performance parameters

– space (taken up by the materialized views)

– workload (changing query workload)

– maintenance window (how often we would like to perform main-
tainance and how long is the system tolerated to be unfunctional)

38 CHAPTER 1. DATA INTEGRATION SERVICES

• the solution in DynaMat

7. SYSTEMS 39

7 Systems

There are a huge bunch of existent systems which intend to develop tools to
facilitate the integration of heterogeneous sources. In this section, we present
some typical examples. We focus on some university projects, instead of com-
mercial systems.

7.1 Mediated systems

I.TSIMMIS

TSIMMIS stands for ”the Stanford-IBM Manager of Multiple Information
Sources.”

TSIMMIS consists of two main components, one is the source specific transla-
tors (wrappers), the other is the “intelligent” mediators. Translators(wrappers)
are responsible to convert queries over information in some common model into
request that the source can execute, and convert the data returned from the
source back into the common model. Mediators are some programs that assem-
ble information from sources, process and combine it, and transmit the final
information to the end user.

In Tsimmis, they use a simple-describing object model, the Object Exchange
Model, or OEM. OEM allows simple objects’ nesting and all objects have labels
to describe their meaning. They also have developed the OEM-QL query lan-
guage to request OEM objects. OEM-QL is a SQL-like language specified to
deal with labels and object nesting. In Tsimmis, both mediators and translators
are automatically or semi-automatically generated from their high level request
of the information process.

For interface, mediators and translators both take as input OEM-QL queries
and return OEM objects. The good point here is that it allows new sources
useful once a translator is supplied. There are two ways for end users to get
information, one is to write applications that ask for OEM objects, the other is
to use their developed browsing tool, named MOBIE(MOsaic Based Information
Explorer), to specify queries using OEM-QL.

Another important issue in Tsimmis is that there is no global schema. A
mediator does not need to know details all of the data it used. It is not necessary
for any person or software component to have a global view of all the information
managed by the system.

In Tsimmis, constraint management is more difficult than those centralized
systems. Usually they do not have transactions among different sources. Each
source may have different policies to those data involved in a constraint. It is
not guaranteed that consistent data will be accessed at each time it interacts
with the system.

In summary, we list three main difference between Tsimmis and other sys-
tems.

40 CHAPTER 1. DATA INTEGRATION SERVICES

• Tsimmis concentrates on providing an integrated system which deals with
very diverse and dynamic information.

• In Tsimmis, information access and integration are intertwined.

• Tsimmis requires more human participation in their integration system.

II.SIMS

SIMS stands for the ”Services and Information Management for decision
Systems”.

SIMS is an information mediator for processing queries to multiple informa-
tion sources. This system takes a domain-level query and dynamically chooses
the useful sources, generates a query plan which describes the operations and
some specific orders to deal with the data, and performs semantic query opti-
mization.

The application domain models are defined by nodes, representing each
class of objects, and their relations, defining relationships between the objects.
Queries in SIMS are represented by the general domain model. The system
translates the domain-level query into a set of source-level queries. The informa-
tion source model define both the contents of the objects and their relationship.

To answer a query, SIMS first selects the appropriate information sources.
The system provides a set of reformulation operators that are responsible to
transform the domain-level concepts into concepts that the information source
could accept. The operators include Select-Information-Source, Generalize-
Concept, Specialize-Concept, and Decompose-Relation.

The next step is to generate a query plan for the data process. The query
plan defines the concrete operations that need to be executed and the order
in which they will be executed. The system searches all possible plans with a
best-first method until a complete one is found.

Finally, the system performs the semantic query optimization. ”A set of
applicable rules for the query is constructed. These rules would either be learned
by the system or provided as semantic integrity constraints. Based on these
rules, the system infers a set of additional constraints and merges them with the
input query. The resulting query is semantically equivalent to the input query
but is not necessary more efficient. The set of constraints in this resulting query
is called the inferred set. The system will then select a subset of constraints
in the inferred set to complete the optimization.”

In summary, SIMS provides some ideas which are different to other integra-
tion systems.

• In SIMS, the integration problem is shifted from building a single inte-
grated model to how to map between the domain and the information
source models.

• The planning in SIMS is performed by an AI planner.

8. OPEN QUESTIONS AND RESEARCH ISSUES 41

• Compared to other related works to search optimized queries, their algo-
rithm considers ”all possible optimizations by firing all applicable rules
and collecting candidate constraints in an inferred set. Then the system
selects the most efficient set of the constraints from the inferred set to
form the optimized subqueries”.

II.Infomaster

7.2 Data warehousing

I. Whips

The goal of WHIPS (Warehouse Information Prototype at Stanford) is to
develop algorithms and tools for the creation and maintenance of data ware-
houses.

8 Open Questions and Research Issues

... will be formed later from everybody’s list of research issues from the above
sections ...

9 Concluding Remarks

... will be written later ...

42 CHAPTER 1. DATA INTEGRATION SERVICES

Bibliography

43

