
Final Outline (3/19) 1

DATA INTEGRATION SERVICES
Christian Convey, Olga Karpenko, Nesime Tatbul and Jue Yan

1 Introduction

** subject to modi�cations

1.1 De�nition of Data Integration

Data integration systems harmonize data from multiple sources into a single coherent represen-
tation. The goal is to provide an integrated view over all the data sources of interest and to
provide a uniform interface to access all of these data. The access to the integrated data is
usually in the form of querying rather than updating the data.

The data sources to be integrated may belong to the same enterprise or may be arbitrary
sources on the web. Most of the time, each of the sources is independently designed for au-
tonomous operation. Also, the sources are not necessarily databases; they may be legacy sys-
tems (old and obsolescent systems that are diÆcult to migrate to a modern technology) or struc-
tured/unstructured �les with di�erent interfaces. Data integration requires that the di�erences
in modeling, semantics and capabilities of the sources together with the possible inconsistencies
be resolved.

1.2 Motivation for Data Integration Systems

� Historical view: integration-by-hand

� Users can focus on specifying what they want, not on how to obtain what they want.
Instead of �nding relevant sources, interacting with every source and combining data from
di�erent sources, a user can ask queries in a uni�ed way.
Particular examples:

{ Desire for reports that describe all parts of a merged organization (bank mergers, car
dealerships, etc.).

� Facilitates decision support applications (OLAP, Data mining)

OLAP (On-Line Analytical Processing) is making �nancial, marketing or business anal-
ysis to be able to make business decisions on a collection of detailed data from one
or more data sources. The analysis is done through asking large number of aggregate
queries on the detailed data.

Data Mining is discovering knowledge from a large volume of data. Statistical rules or
patterns are automatically found from the raw collection of data.

1.3 Major Issues

� Heterogeneity of data sources

� Availability of data sources

� Dynamicity of individual data sources

� Autonomy of data sources

Final Outline (3/19) 2

� Correctness of the integrated view of the data

� Query performance

1.4 Summary of State of the Art

Final Outline (3/19) 3

2 Data Integration Architectures

2.1 Dimensions to categorize architectural models for integrating data sources

� Autonomy
Autonomy refers to the degree which individual data sources can operate independently.

{ Design autonomy
The source is independent in data models, naming of the data elements, semantic
interpretation of the data, constraints etc.

{ Communication autonomy
The source is independent in deciding what information it provides to the other
components that are part of the integrated system and to which requests it responds.

{ Execution autonomy
The source is independent in execution and scheduling of incoming requests.

� Heterogeneity
Heterogeneity refers to the degree of dissimilarity between the component data sources that
make up the data integration system. It occurs at di�erent levels. On a technical level,
heterogeneity comes from di�erent hardware platforms, operating systems, networking
protocols or similar lower-level concepts. On a conceptual level, heterogeneity comes from
di�erent programming and data models as well as di�erent understanding and modeling
of the same real-world concepts (ex: naming).

� Distribution
Distribution refers to the physical distribution of data over multiple sites.

{ Client/Server
Server does data management, client provides user interface.

{ Peer-to-Peer (fully distributed)
Each machine has full functionality of data management.

� Transparency
Transparency refers to the separation of higher-level semantics of a system from lower-level
implementation issues. A transparent system hides the implementation details from users.

2.2 Major Approaches to Data Integration

Three common approaches that data sources can be made to work together:

� Virtual View Approach
No data is stored in the integrated database. Data is accessed on-demand (lazy approach).

� Materialized View/Warehousing Approach
Information is stored in a repository (warehouse) to be queried later (eager approach).

� Hybrid approach
Data is selectively materialized.

2.3 Virtual View Approach

Problems common to all virtual view systems will be described �rst.

Final Outline (3/19) 4

2.3.1 Federated Database Systems

The sources are semi-autonomous and the distribution is peer-to-peer. Each source asks all
others in the federation to supply information when needed. One-to-one connections between
all pairs of databases, where each database has interface to the others. The software on the top
of federation allows user to access it in uni�ed manner.

� Picture

� Schema integration
** We will brie
y mention it here and refer to the following section about schema integra-
tion.

2.3.2 Mediated Systems

De�nition from David Martin's paper (Information Broker Project):
"Mediation is a process that permits a user to get information from a wide variety of sources,
without having to be aware of the identities, locations, schemas, access mechanisms, or contents
of these sources. A component that performs mediation presents a single schema (called medi-
ated schema - our comment) to its requesters, accepts queries expressed in that schema, and
handles all the details of getting the appropriate data from relevant information sources (each
of which is likely to operate with a di�erent schema)."

� Picture

� Steps in how the queries are answered

{ Receive a query formulated on the uni�ed schema from the user

{ Query reformulation

{ Optimization and execution

{ Translation

(** For detailed description of the steps above refer to the section on query processing)

� Wrapper as an important component - hides technical and data model heterogeneity.

� Additional problems raised by this speci�c architecture

� Known implementations
- TSIMMIS
- Information Manifold
- SIMS
- Carnot
(** very brie
y, may be just mention)

2.4 Materialized View Approach (Data Warehousing)

Filtered data from several sources is stored in a single repository (called "data warehouse").
This data is combined into a uni�ed schema. A data warehouse often contains historical and
summarized data which is used for decision support.

� Picture

Final Outline (3/19) 5

� Motivation: Why would we want to materialize data?
OLTP (On-Line Transaction Processing) vs OLAP

{ Terabytes of data

{ Workloads are query intensive; queries are complex

{ OLAP data is modeled multi-dimensionally

� What is involved in building a data warehouse?
(** For each of this steps mention the main research issues)

{ Modeling and design

{ Maintenance (creation and refreshing)

{ Operation

� Known implementations
- Squirrel
- WHIPS

2.5 Hybrid approach

� What data to materialize?

� How data is maintained

� Known implementations

(** refer to section on Materialized View Management for a detailed discussion of selection
of views to materialize)

2.6 Comparative strengths and weaknesses of each approach/architecture

Final Outline (3/19) 6

3 Data Models and Schema Integration

3.1 Data Models

A data model is an abstract description of how information is encoded in a system. Typically,
people use data models to perform certain reasoning about a system, especially when doing
design work regarding the system.

Data models are helpful because they are simpli�ed versions of the system that the model
corresponds to. Data models can omit details about the modeled system that are irrelevant to
the task at hand. This can make work easier for a person working with the modeled system.

A data model is valid (with respect to its author's intentions) if it accurately describes all
facets of the modeled system that the data model's author intended the model to describe.

For example, an entity-relationship (ER) model can be a valid model of an associated rela-
tional database.

A data model might not represent all of the interesting information that exists in the system
that the model is an abstraction of. For example, an ER model would not likely describe how
many records appear in a given table of the relational database.

A data model (as conceived here) does not necessarily attempt to describe dynamic aspects
of the information encoded a system. For example, a data model might describe that a system
had four explicit states: "STARTING", "RUNNING", "QUIESCING", and "SHUTDOWN".

A data model probably would not describe the possible sequences of state transitions that
the modeled system could undergo. That kind of description would be characteristic of a state
model, not a data model.

Common types of data models used in software

Numerous types of data models have been studied and put into use. Some of the most common
ones are described below.

� Entity-Relationship (ER) data models
These models describe a system as a set of entity classes and a set of classes of potential
relations between entities.

� Object-oriented data models
These models describe classes of objects, relationships that will exist between instances of
those classes, and services that will be provided by objects.

Object-oriented models therefore tend to be more than just data models. Object-oriented
models go one step further by describing to some extent what dynamic behavior the
modeled system can undergo when executing.

� Hierarchical data models
These models represent information as a tree-like hierarchy, composed of nodes and edges.
Information may be encoded in such details as node values, edge labels, and the shape of
the tree.

3.2 Schemas

A schema, as one would expect to �nd in a database management system (DBMS), is a data
model of the information stored in the database.

What typically distinguishes schemas from more general data models is that schemas may
provide storage information that is irrelevant to the data model itself.

Final Outline (3/19) 7

Examples include index de�nition and where database �les reside on the �le system.
Common types of schemas used in software

� Relational schemas
These are much like E-R models, except that they can be speci�c about storage structures.

Example: SQL Data Manipulation Language

It has structure, but is not convenient for software to parse the argument's structure.

� Object-oriented database schemas
These are much like object-oriented data models.

Additional implementation details may include the source code of the methods associated
with classes or instances of objects.

Example: CORBA

In CORBA, bindings are generated between details speci�ed in a generic description of
objects' interfaces (IDL) and the actual program code that implements those objects. That
binding code, as well as the bound-to code itself, could reasonably be considered part of
the schema.

� Semistructured schemas
These are much like hierarchical data models. The additional details provided might in-
clude a canonical name for the schema (to be referred to by individual database instances),
or what character set encoding is used in a database conforming to the schema.

Example: XML DTDs

� Unstructured
Many documents have structure that's easily recognizable to humans, but it very unclear
to software. From a software system's perspective, these documents are unstructured.

Examples

{ Plato's Republic It has structure, but is not convenient for software to parse the
argument's structure.

{ A bitmap image of a molecule's shape The image contains structure, but it's quite
diÆcult for an application to appreciate that fact.

3.3 Data Model Semantics

The semantics of a data model describe how the details of the data model correspond to the
details of the modeled system.

Perhaps the most familiar representation of data model semantics is the use of a data
dictionary in some data models.

3.4 Mapping Between Schemas

Some of the most complicated work of data integration is the construction of techniques that
can map the data from one schema into another.

In mediated database systems and in data warehouse systems, there is a single schema used
when providing the integrated view of the data. In such systems that have n di�erent data
source schemas, at most n di�erent schema mappings must be devised and implemented.

Final Outline (3/19) 8

In data warehouse systems, the schema mapping can generally be one-way. The mapping
just needs to �gure out how to present information in the data source in a way that's consistent
with the integrated view's schema.

In mediated systems, the schema mapping must be two-way. Like with a data warehouse,
a mapping from the data source schema to the integrated schema must be de�ned. However,
mediated systems receive queries from their users, which must then be translated into queries
processed by the data sources. The user formulates the query using terms from the integrated
schema. The query posed to the data source by the mediator must be in terms of the data
source's schema.

3.5 Hard Problems in Schema Mapping

� Onto mappings

Example: Numeric grades to letter grades [give credit to the H.P. paper]

� Di�erent categorizations

I.e., Data model A records (Unit color, Number sold), and data model B records (Unit
weight, Number sold). Unless color => weight or weight => color, there's a serious limit
on any uni�ed data model that wants to represent Number units sold in a useful way.

� Recognizing object identity

Problem: Each schema implies that is only has one data object per object in the modeled
system. When producing a uni�ed database, it's possible to lost this one-data-object-per-
modeled-object quality unless care is taken. Even then, it can be a hard problem to solve
(** Research this better - cjc).

� Con
icting data

Schema semantics often make an implicit claim that data using the schema is absolutely
correct. People usually know to take that claim with a grain of salt. When unifying data
from two or more data sources, contradictions can be reached, leading to an internally
inconsistent view of data.

� Unequal expressive power of schemas

By way of example, object-oriented databases (OODBs) might include their method be-
haviors as part of the schema. However, SQL schemas have only limited support for
expressing system behavior.

In particular, the OODB methods might be written in computationally complete lan-
guages, and SQL is not computationally complete. The important lesson from this is
that care must be taken in the selection of which schema type to use for presenting the
integrated view of the data.

3.6 A Survey of Automatible Schema Mapping

Not all schema mapping is necessarily diÆcult to perform with computers. Some types of
schemas are nicely translatable to other types of schemas, which opens the door for using software
to produce the mappings.

What makes this feasible is that in these cases, mapping patterns have been identi�ed that
preserve data model semantics without requiring the map-writing software to care about the
details of the data model semantics.

Examples appear below.

Final Outline (3/19) 9

� Mapping hierarchical schemas to relational schemas
Consider a hierarchical type schema like HTML, and a relational type schema like SQL.

Generally, HTML has is a tree of nodes. Each node has a set of attributes name/value
pairs and a set of children nodes.

On naive mapping is possible: Create a SQL table where one row corresponds to each
node from the HTML schema. The tree structure is preserved by having a column in the
table that lists the primary key of the row that corresponds to each child node.

� Mapping relational schemas to object-oriented schemas

One solution is to de�ne one object class per relation. Create one instance of each class
to model each row that appear in the corresponding relation.

Relational view de�nitions and calculated values can be expressed with methods in the
object-oriented system.

Final Outline (3/19) 10

4 Querying the Integrated Data

The traditional way of query processing involves: getting a declarative query from the user;
parsing it; passing it through a query optimizer which produces an eÆcient query execution
plan that describes how to exactly evaluate the query (i.e., apply which operators, in what order
using what algorithm); and �nally executing the plan.

In data integration systems this is not so straight forward because the query coming from
the user is not asked on a single source but rather on an integration of data sources, each having
di�erent query formulation and processing mechanisms de�ned on di�erent data models.

4.1 Data Modeling

4.1.1 Languages

Alternatives will be discussed and Datalog will be brie
y introduced as the choice of query and
view language for the following subsections.

4.1.2 Modeling the Mediated Schema

Mediated schema is the single schema of the integrated system which is obtained by unifying
the schemas of the data sources being integrated. Queries to the data integration system are
formulated on this mediated schema.

4.1.3 Modeling the Data Sources

Data source descriptions which specify the relationship between the relations in the mediated
schema and those in the local schemas at the sources should be provided. The description of a
source speci�es its

� contents

� attributes

� constraints on its contents

� completeness and reliability

� query processing capabilities

Besides, using the descriptions of the sources, we should be able to detect the following:

� overlapping and contradictory data among sources

� semantic mismatches among sources

� di�ering naming conventions for data values among sources

4.2 Query Reformulation/Rewriting

Using the source descriptions, user query written in terms of the mediated schema is reformulated
into a query that refers directly to the schemas of the sources (but still in the data model of the
mediated system). Goals to achieve:

Final Outline (3/19) 11

� Semantic Correctness of the Reformulation: The answers obtained from the sources will
be correct answers to the original query.

� Minimizing the Source Access: Sources that can not contribute any answer or partial
answer to the query should not be accessed. In addition to avoiding access to redundant
sources, we should reformulate the queries as speci�c as possible to each of the accessed
sources to avoid redundant query evaluation.

4.2.1 Global As View (GAV) Approach

For each relation R in the mediated schema, a query over the source relations is written which
speci�es how to obtain R's tuples from the sources.

4.2.2 Local As View (LAV) Approach

For each data source S, a rule over the relations in the mediated schema is written that describes
which tuples are found in S. This is an application of a much broader problem called "Answering
Queries using Views". (** It also applies to view design and selection in Data Warehousing.)

Query reformulation in LAV is more complex. However, it has important advantages com-
pared to GAV: adding new sources and specifying constraints in LAV are easier.

- equivalent rewritings vs maximally-contained rewritings

� The Bucket Algorithm

� The Inverse-Rules Algorithm

� The Minicon Algorithm

� The Shared-Variable-Bucket Algorithm

� The CoreCover Algorithm

� Comparison of the Algorithms

4.2.3 Completeness and Complexity of Finding Query Rewritings

� source incompleteness

� recursive rewritings

4.2.4 Using Probabilistic Information

� for source completeness

� for overlap between parts of the mediated schema

� for overlap between information sources

Final Outline (3/19) 12

4.2.5 Alternative Query Reformulation for Dynamic Information Integration

4.3 Query Optimization and Execution

Query optimization refers to the process of translating a declarative query into a query execution
plan, i.e., a speci�c sequence of steps that the query execution engine should follow to evaluate
the query. Why is it diÆcult in data integration systems?

� sources are autonomous; optimizer may not have any statistics or reliability info about the
sources, query planning is diÆcult

� sources are heterogeneous; they may have di�erent query processing capabilities

� data transfer time is not predictable due to the existence of the network environment, it
is diÆcult to make cost estimates

� some sources may become unavailable (?)

4.3.1 Query Plan Generation

4.3.2 Query Execution

4.3.3 Adaptive Query Execution

- interleaving optimization and execution of the query in the Tukwila System

4.3.4 Query Translation

Up to now, the queries are reformulated into a form that refers directly to the data sources
rather than the mediated schema. However, they are still in the data model of the mediated
system. They should be translated into the data models of the data sources. This is performed
by source-speci�c wrappers which will be de�ned in the following section.

(** This is the responsibility of the source wrappers. We will be connecting Query Processing
section to Data Extraction section brie
y discussing the query translation stage inside query
execution.)

(** We should also be discussing the
ow of translation in the reverse direction, i.e., after
the sources successfully perform the local queries, how the resuls are collected and combined
into a single answer to present to the user)

Final Outline (3/19) 13

5 Data Extraction

Combines techniques from DB and AI (NLP, Machine learning).

5.1 Techniques for Extracting Data (Wrappers)

To access information from di�erent heterogeneous data sources, we have to translate queries
and data from one data model to another. This function is provided by wrappers around each
individual data source. Wrapper converts queries into one or more queries understandable by
the underlying data source and transforms results into the format understood by application
(mediator).

5.1.1 Wrapper generation

� Issues
- refer to the section on Data Models and Schema Integration
- Mediator systems usually require more complex wrappers than do most warehouse sys-
tems

� Ways of creating wrappers

{ Manual

Why is it impractical for some sources?
In case of Web sources:
- big number of sources
- new sources are added frequently
- format of sources change
So, high maintenance costs.

{ Semi-automatic (interactive)

Noted that only small part of the code deals with the speci�c access details of the
source. The rest is common among wrappers or data transformation can be ex-
pressed in a declarative fashion (high-level). Graphical interface, programming by
demonstration.

{ Automatic

� site-speci�c or generic

� usually needs training often supervised learning

� Tools for semi-automatic/automatic wrapper construction for structured/semistructured
data

{ Template-based wrappers

{ Inductive learning techniques for automatically learning a wrapper (using labeled
data)
Inductive learning - task of computing some generalization from a set of examples
Methods:

� zero-order (decision tree learners)

� �rst-order (inductive logic programming)
- bottom-up/top-down approaches

Final Outline (3/19) 14

� Tools for data extraction from unstructured documents

{ Using ontologies and conceptual models to extract and structure information from
data-rich, unstructured documents.

{ Using heuristic approaches to �nd record boundaries in web documents.

5.1.2 Filters

If a wrapper returns a superset of what query wants, we can �lter the results of the query.

5.2 Interfaces of Sources to the World

(** This section has the purpose of showing what kind of interfaces the sources provide so that
wrappers can communicate with them)

5.2.1 General issues with interfaces

� Standardized interfaces

Many interfaces are intended for reuse by many applications. Therefore, they separate
their functionality into two groups.

{ Information regarding the reusable aspects of the interface (i.e., connections, sessions,
supported units of transfer (�les, whole records, etc.)).

{ Application-speci�c information (i.e., record layouts of tabular text �les, the set of
�les, speci�c objects instances).

� Data resolution

Division of application data encoding in up to two levels

{ Addressable by the interface (i.e., �les via FTP, record column values via ODBC)

{ Not addressable by the interface (i.e., the FTP interface to retrieve an XML �le, but
FTP doesn't provide speci�c element extraction from that XML �le.)

Applications may have some freedom about where to encode information. For example, a
FTP server for image �les could serve one �le per image (with a helpful �lename), or could
serve just one .zip �le which must be opened by the client to choose the desired image �le.

� Data types

{ Interface basic data types may or may not correspond well to the basic data types
used to describe data at the data source.

{ Example In HTTP, all data is represented as a string. This works great for web
pages. But if HTTP is being used to transfer a sound �le, the string data type isn't
particularly useful.

� Interface semantics

{ Data sources and data integrators are capable of encoding whatever information they
choose in terms of an interface.

Final Outline (3/19) 15

{ Some interface designs help provide hints to the semantics of application data moved
across the interface. (I.e., ODBC allows its users to refer to speci�c table name, and
those names might provide helpful hints as to the application semantics of the table
contents.)

{ Why di�erent interfaces suit di�erent application data models Some interfaces are
designed in a way that allows for obvious mapping between application data models
and the interface. (I.e., ODBC with a relational database, or CORBA with an object-
oriented system.)

{ Dealing with semantics of the application-speci�c data is covered in a another section
(needs an xref)

5.2.2 Survey of Common Interfaces

It's instructive to consider some di�erent kinds of non-application-speci�c interfaces.

� Non-network interfaces

{ DiÆculties

� Data integration may involve two or more computers that must communicate.

� A data source that only has local interfaces may therefore require some integra-
tion software to be installed on the data source's computer

{ Examples

� Writing to �les on a local disk drive.

� Displaying information on a local GUI only (i.e., MS Windows, not X).

� Network-capable interfaces

Interfaces that allow an application to readily communicate with other applications that
are either local or on a di�erent computer.

{ DiÆculties

� Potentially independent failures of communication applications

� Potentially signi�cant communications costs / performance issues

{ Examples

� FTP

� CORBA

� ODBC

Final Outline (3/19) 16

6 Materialized View Management

We are going to discuss two major subtopics under this heading with giving higher emphasis to
the second one:

� Design and selection of views to materialize

� Maintenance of the materialized views

6.1 Design and Selection of Views to Materialize

Major Goals:

� to minimize total query response time

� to minimize the cost of maintaining the selected views

6.2 The Problem of View Maintenance

6.2.1 De�nition

� traditional view update problem and why this one is di�erent and more diÆcult

� As the database changes because of updates applied to the base relations, the materialized
views may also require change. A materialized view can always be brought up to date by
re-evaluating the view de�nition. However, complete re-evaluation is wasteful.
"heuristic of inertia"- only a part of the view changes in response to changes in the base
relations

� steps of view maintenance:

{ propagation (computing changes to the view)

{ refreshing (applying changes to the mat. view)

6.2.2 Dimensions

� Available Information
materialized view, base relations, other views, integrity constraints, etc.

� Allowable Modi�cations
insertions, deletions, updates, sets of each, group updates, change view de�nition, etc.

� Expressiveness of the View De�nition Language
conjunctive queries, duplicates, aggregation, union, recursion, negation, select, project,
join, spj, etc.

� Database Instance

� Complexity

{ Complexity of the View Maintenance Language

{ Complexity of the View Maintenance Algorithm

{ Complexity of Auxiliary Information (in terms of space)

Final Outline (3/19) 17

6.2.3 View Maintenance Policies

when to apply maintenance procedures on the materialized views

� Immediate View Maintenance
Refreshing is done within the transaction that changes the base data. slow transactions;
faster queries and always up to date results.

� Deferred View Maintenance

{ lazily, at query time
fast transactions; slow query speed.

{ forced, after a certain amount of change to the base data
non up to date results; good transaction and query time.

{ periodically, in certain time intervals
non up to date results; good transaction and query time.

comparison of all in general; how the decision when to use which one is made.

6.3 Incremental View Maintenance

� pre-update vs post-update algorithms

� various algorithms will be summarized

6.4 View Maintenance Anomalies(Consistency Issues)

� caused by decoupling btw view de�nition and base data

� de�nition of correctness and levels of correctness

� solutions:

{ recomputing the views

{ storing copies of base relations

{ ECA (Eager Compensating Algorithm)

6.5 Update Filtering

Detection of base data updates that are irrelevant to the view (i.e., have no e�ect on the state
of the view) wil be discussed. For such updates, we do not need to perform any maintenance.
Thus, update �ltering makes maintenance more eÆcient by preventing redundant work.

6.6 View Self-Maintenance

In general, Self-Maintenance refers to views being maintained without using all the base data.
There exists di�erent notions of its exact meaning depending on how much information is ava-
iable. At minimum, the view update is performed at the integrated system by only knowing the
particular base data update that has occurred, the view de�nitions and the materialied data.
We will be describing the alternative notions in detail here.

� Questions

Final Outline (3/19) 18

{ Given a view, is it self-maintainable?

{ If it is self-maintainable, how?

� Single-View Self-Maintenance
does not consider the materialized views

� Multiple-View Self-Maintenance
makes use of contents of the other materialized views to minimize base data access

� Updates as a whole
i.e., batch updates; may make maintenance easier and more eÆcient

� Making views self-maintainable
When the answer to the �rst question listed above is No, we can de�ne and materialize a
minimal set of auxiliary views to make the original non-maintainable view maintainable.
Here, basically we are increasing the amount of information available at the integrated
system level.

6.7 Dynamic View Management

� problems of static view selection and maintenance

� dynamic view selection and maintenance

� performance parameters

{ space (taken up by the materialized views)

{ workload (changing query workload)

{ maintenance window (how often we would like to perform maintainance and how long
is the system tolerated to be unfunctional)

� the solution in DynaMat

Final Outline (3/19) 19

7 Systems

� TSIMMIS (Stanford)

� Ariadne (USC)

� Araneus (Web-Bases, University of Rome, Italy)

� Infomaster (Stanford)

� Information Manifold (AT & T)

� Tukwila (University of Washington)

� SIMS (USC)

� Carnot (MCC)

� WHIPS (Stanford)

� Squirrel

** subject to modi�cations

8 Open Questions and Research Issues

** will be formed later from everybody's list of research issues from the above sections

9 Concluding Remarks

** will be written later

