
Chapter 1

Data Integration Services

1 Introduction

Data integration systems harmonize data from multiple sources into a single
coherent representation. The goal is to provide an integrated view over all the
data sources of interest and to provide a uniform interface to access all of these
data. The access to the integrated data is usually in the form of querying rather
than updating the data.

1.1 Motivation for Data Integration Systems

• Users can focus on specifying what they want, not on how to obtain what
they want. Instead of finding relevant sources, interacting with every
source and combining data from different sources, a user can ask queries
in a unified way.
Particular examples:

– Desire for reports that describe all parts of a merged organization
(bank mergers, car dealerships, etc.).

• Facilitates decision support applications (OLAP, Data mining)

OLAP (On-Line Analytical Processing) is making financial, marketing or
business analysis to be able to make business decisions on a collection
of detailed data from one or more data sources. The analysis is done
through asking large number of aggregate queries on the detailed
data.

Data Mining is discovering knowledge from a large volume of data. Sta-
tistical rules or patterns are automatically found from the raw col-
lection of data.

1



2 CHAPTER 1. DATA INTEGRATION SERVICES

1.2 Major Issues

The data sources to be integrated may belong to the same enterprise, but might
also be arbitrary sources on the World Wide Web. Most of the time, each
of the sources is independently designed for autonomous operation. Also, the
sources are not necessarily databases; they may be legacy systems (old and ob-
solescent systems that are difficult to migrate to a modern technology) or struc-
tured/unstructured files with different interfaces. Data integration requires that
the differences in modeling, semantics and capabilities of the sources together
with the possible inconsistencies be resolved. More specifically, the issues that
make integrating such data difficult include:

• Differences in how data sources model the world

• Differences in how data sources represent data

• Availability of data sources

• Autonomy of data sources - the fact that their data and/or schema can
change without notice

• Conflicting data from two or more data sources

• Correctness of the integrated view of the data

• Query performance

This chapter investigates many of the problems that occur in data integration
systems, and some of the solutions designed to deal with the problems. We
outlined the chapter as follows: First, we present three architectural approaches
to data integration systems in Section 2. Section 3 discusses semantic problems
that arise when multiple heterogeneous sources are integrated. Techniques for
querying the integrated data are presented in Section 4. The data extraction
phase of querying where data is actually obtained from the data sources is
detailed in Section 5. Management of materialized views in datawarehousing
systems is provided in Section 6. Later we present some example systems in the
following section. Finally, we conclude the chapter after a discussion of research
issues and open problems in Section 8.



2. DATA INTEGRATION ARCHITECTURES 3

2 Data Integration Architectures

2.1 Dimensions to Categorize Architectural Models for
Integrating Data Sources

There are three orthogonal dimensions which are traditionally used in literature
to describe distributed information systems: autonomy, heterogeneity and dis-
tribution. Sometimes transparency is considered as the forth parameter. Below
we are discussing each of these dimensions.

• Autonomy
Autonomy refers to the degree to which individual data sources can oper-
ate independently. According to Veijalainen and Popescu-Zeletin’s classi-
fication [MW88] there are three types of autonomy:

– Design autonomy
The source is independent in data models, naming of the data ele-
ments, semantic interpretation of the data, constraints etc.

– Communication autonomy
The source is independent in deciding what information it provides
to the other components that are part of the integrated system and
to which requests it responds.

– Execution autonomy
The source is independent in execution and scheduling of incoming
requests.

• Heterogeneity
Heterogeneity refers to the degree of dissimilarity between the compo-
nent data sources that make up the data integration system. It occurs at
different levels. On a technical level, heterogeneity comes from different
hardware platforms, operating systems, networking protocols, and simi-
lar lower-level concepts. On a conceptual level, heterogeneity comes from
different programming and data models as well as different understanding
and modeling of the same real-world concepts (i. e., naming of relations
and attributes).

• Distribution
Distribution refers to the physical distribution of data over multiple sites.

– Client/Server
Server does data management, client provides user interface.

– Peer-to-Peer (fully distributed)
Each machine has full functionality of data management.

• Transparency
Transparency refers to the separation of higher-level semantics of a system
from lower-level implementation issues. A transparent system hides the
implementation details from users.



4 CHAPTER 1. DATA INTEGRATION SERVICES

2.2 Major Approaches to Data Integration

Three common approaches to integrate data sources are the following:

• Virtual View Approach
In this case data is accessed from the sources on-demand (when a user
submits a query to the information system). This is called a lazy approach
to data integration.

• Materialized View/Warehousing Approach
Some filtered information from data sources is pre-stored in a repository
(warehouse) and can be queried later by users. This method is called an
eager approach to integration.

• Hybrid approach
Integrated data is selectively materialized. The system is essentially mediator-
based where data is extracted from sources on-demand, but the results of
some queries are pre-computed and stored. In order to choose what queries
to materialize, designers should consider many factors, such as “popular-
ity” of queries and cost of maintenance [Ash00].

When the number of data sources in an integrated system is very large, and/or
the sources are prone to change often (like in the case of web sources), and/or
there is no way to predict what kind of queries users will ask, the virtual view
approach is preferable to the data warehousing approach. If, however, sources
are fixed, don’t get upgraded too often and designers of the integrated system
know what kind of queries are most popular, we can materialize some of them.

2.3 Virtual View Approach

2.3.1 Federated Database Systems

A Federated Database System (FDBS) consists of semi-autonomous components
(database systems) that operate independently but participate in a federation
to partially share data with each other [SL90].

This sharing is controlled by each component and is not centralized. The
components can not be called “fully-autonomous” because each component
is modified by adding an interface that allows communication with all other
databases in the federation.

Each of the component database systems can be either a centralized DBMS, a
distributed DBMS, or another federated database management system, and may
have any of the three types of autonomy mentioned above (design autonomy,
communication or execution autonomy). As a consequence of this autonomy,
heterogeneity issues become the main problem.

A FDBS supports local and global operations, and treats them differently.
Local operations involve only local data access and correspond to the queries
submitted directly to this source. Global operations use a FDMS (Federated
Database Management System) to access data from other components. In case



2. DATA INTEGRATION ARCHITECTURES 5

of a global operation, each data source whose data is required must allow access
to that data.

There are loosely coupled FDBSs and tightly coupled FDBSs. A tightly cou-
pled FDBS has a unified schema (or several unified schemas) which can be either
semi-automatically built by schema integration techniques (see Section 3 for de-
tails) or created manually by user. To solve logical heterogeneity, a domain
expert needs to determine correspondences between schemas of the sources.
Tightly coupled FDBS is usually static and difficult to evolve, because schema
integration techniques don’t allow to add or remove components easily. Exam-
ples of this kind of FDBSs are ...

A loosely coupled FDBS does not have a unified schema, but it provides
some unified language for querying sources. In this configuration, component
database systems have more autonomy, but humans must resolve all semantic
heterogeneities. Only technical metadata is needed by loosely coupled FDBS as
opposed to tightly coupled one, which requires semantic metadata in addition.
Requested data comes from the exporter of this data itself and each component
can decide how it will view all the accessible data in the federation. As there
is no global schema, each source can create its own “federated schema” for its
needs. Examples of such systems are MRSDM [Lit85], Omnibase [Rea89] and
Calida [JPSL+88].

As pointed out by D. Heimbigner and D. McLeod [HM85], in order to remain
autonomously functioning systems and provide mutually beneficent sharing of
data at the same time, components of FDBS should have facilities to commu-
nicate in three ways:

• Data exchange
This is the most important purpose of the federation and good mechanisms
of data exchange are a must.

• Transaction sharing
There may be cases where for some reason the component does not want
to provide direct access to some of its data, but can share operations on
its data. Then other components should have the ability to specify which
transactions they want to be performed by another component.

• Cooperative activities
As there is no centralized control, cooperation is the key in federation.
Each source should be able to perform a complex query involving accessing
data from other components (?).

The simplest way to achieve interoperability is to map each source’s schema to
all others’ schemas. It is a so-called pair-wise mapping. You can see an example
of such federated database system in Figure 1.1. Unfortunately, it requires
n · (n − 1) schema translations and becomes too tedious with the growth of a
number of components in federation. Research is being done on tools for efficient
schema translation (See Section 3 for details).

We should note that the term “Federated Database Systems” is used differ-
ently in literature: some people call only tightly coupled systems FDBSs, some



6 CHAPTER 1. DATA INTEGRATION SERVICES

call only loosely coupled systems FDBSs, and some take the same approach
we did by considering tight and loose architectures be two kinds of federated
database system architecture.

DB1 DB2

DB3 DB4

Figure 1.1: Example of federated database architecture (borrowed with some
changes from [GMUW00])

Federated architecture is very appropriate to use when there is a number of
autonomous sources, and we want, on one hand, to retain their “independence”
allowing user to query them separately, and, on the other hand, allow them to
collaborate to answer the query. It is a good compromise between full integration
and no integration.

2.3.2 Mediated Systems

Mediated system integrates heterogeneous data sources (which can be databases,
legacy systems, web sources, etc) by providing virtual view of all this data. Users
asking queries to the mediated system do not have to know about data source
location, schemas or access methods, because such system presents one global
schema to the user (called mediated schema) and users ask their queries on it.

A natural question that arises is how mediation architecture is different from
tightly coupled FDBS? Here are the differences between them [SL90]:

• A mediated architecture may have non-database components

• The query capabilities of sources in mediator-based system can be re-
stricted and the sources do not have to support SQL-querying at all

• Access to the sources in a mediator-based system is usually read-only as
opposed to read-write access in a FDBS



2. DATA INTEGRATION ARCHITECTURES 7

• Development of mediated systems is usually done in top-down way as
opposed to bottom-up approach for tightly coupled FDBS

• Sources in a mediator-based approach have complete autonomy which
means it is easy to add or remove new data sources

Source 1

Wrapper Wrapper

Mediator

query query

query query

query

.  .  .
Source n

Figure 1.2: Mediated architecture (borrowed with some minor changes from
[GMUW00])

A typical architecture for a mediated system (with two sources) is given in
Figure 1.2. Two main components of a mediated system are the mediator and
one wrapper per data source. The mediator (sometimes also called an integrator)
performs the following actions in the system:

• Receives a query formulated on the unified (mediated) schema from a user.

• Decomposes this query into sub-queries to individual sources based on
source descriptions that the mediator has.

• Optimizes the execution plan based on source descriptions.

• Sends sub-queries to the wrappers of individual sources, which will trans-
form these sub-queries into queries over sources’ local models and schemas.
Then it receives answers to these sub-queries from wrappers, combines
them into one answer and sends it to the user.



8 CHAPTER 1. DATA INTEGRATION SERVICES

These steps are described in detail in Section 4.
A wrapper hides technical and data model details from the mediator. It is an

important component of both mediator-based architecture and data warehouse,
but wrappers for mediated systems are usually more complicated. Please refer
to Section 5.1 for more information about wrappers.

Example: Let us assume there are two data sources - two car dealers databases
which both became parts of Acme Cars company. Each of the car dealers has a
separate schema for storing information about cars. Dealer one stores it as one
relation:

Cars(vin, make, model, color, price, year, mileage)

Dealer two also rents some of his cars, so he has separate relations for cars
for sale and cars for rent. He stores information about cars for sale in two rela-
tions:

CarsForSale(vechicalID, carMake, carModel, carColor, carPrice, carYear),
CarsSaleMileage(vechicalID, mileage).

Acme Cars uses a mediated architecture to integrate these two dealers’ databases.
It does it by providing a mediated schema of the two schemas above. The me-
diated schema consists of just one relation:

Automobiles(vin, autoMake, autoModel, autoColor, autoPrice, au-
toYear).

Now if a client of Acme Cars submits an SQL-query:

SELECT vin, autoModel, autoColor, autoYear
FROM Automobiles
WHERE autoMake = “Honda” AND autoPrice < 14,000

The wrapper for the first database will translate this query to:

SELECT vin, model, color, year FROM Cars
WHERE make = “Honda” AND price < 14,000

It also renames model to autoModel, color to autoColor and year to autoYear.

The wrapper for the second dealer will translate this query to:

SELECT vechicalID, carModel, carColor, carYear
FROM CarsForSale
WHERE carMake = “Honda” AND carPrice < 14,000



2. DATA INTEGRATION ARCHITECTURES 9

The wrapper also renames vechicalID to vin, carModel to autoModel, carColor
to autoColor etc.

Some known implementations of mediator-based architecture are: TSIM-
MIS, Information Manifold, SIMS, Carnot ... Some of them are covered in more
details in Section 7.

2.4 Materialized View Approach (Data Warehousing)

In a materialized view approach, data from various sources is integrated by
providing a unified view of this data, like in a virtual view approach, but here this
filtered data is actually stored in a single repository (called “data warehouse”).
How is a data warehouse different from a traditional databases with OLTP
(On-Line Transaction Processing)?

• Warehouse usually contains terabytes of data and may combine data from
many databases, semi-structured and other sources

• Workloads are query intensive; queries are complex and query throughput
is more important than transaction throughput

• A data warehouse often contains historical and summarized data which is
used for decision support. That also implies that users of a data warehouse
are different than users of a traditional DBMS: they will be analysts,
knowledge workers, executives

• Information is usually read-only as opposed to read/write operations in
OLTP.

There are three important steps involved in building a data warehouse:

• Modeling and design

In the stage of designing a warehouse, we need to decide what informa-
tion from each source we are going to use in the warehouse, what views
(queries) over these sources we want to materialize, and what the global
unified schema of the warehouse will be.

• Maintenance (refreshing)

Maintenance deals with how we initially populate our warehouse from
source data and how we refresh it when data in the sources are updated.
There are three ways to create a warehouse:

- Do it periodically when no queries to the system are sent (at night, for
instance) re-populating a warehouse from scratch from its data sources

- Periodically incrementally update the warehouse, that is, incorporate
changes made to the sources since last update. In this case, only very
small amount of data will be touched, so it is more efficient. On the other
hand, it is more complicated, has a number of issues and is an area of
active research.



10 CHAPTER 1. DATA INTEGRATION SERVICES

- Update the warehouse after every change made to any of the sources.
This approach does not seem to be very practical, except in small ware-
houses with rarely changing data sources [GMUW00].

View maintenance is a key research topic specific to data warehousing and
we discuss it in detail in Section 6.

• Operation

Operation of a data warehouse involves query processing, storage and
indexing issues.

Example of a two-source data warehouse is given in Figure 1.3.

Data

Warehouse

Metadata

Integrator

Wrapper Wrapper

query

Data source 1
 .   .   .

Data source n

Figure 1.3: A data warehouse

Example: Let’s suppose there is a company Cute Toys that owns two toy
stores. There are two types of toys at each store: teddy-bears and dogs. Each
store has a database, where they store a number toys sold on each date, for
each kind of a toy. So store 1 stores relation: Sales(date, typeToy, number-
Sold) and store 2 has two relations: TeddyBears(date, numberSold) and
DogsToys(date, numberSold).
Now assume, that the company would like to have the following relation in the
data warehouse for decision making purposes (future marketing):



2. DATA INTEGRATION ARCHITECTURES 11

ToySales(date, typeToy, numberSold)
In this case, we need to first select appropriate tuples from each source, take
their union and then aggregate, so that for each date and type of a toy we have
a total number of toys of this kind sold on a given date. The SQL query to the
first source is straightforward, as the relation is exactly the same apart from the
name it has. It will look like this:

INSERT INTO ToySales1(date, typeToy, numberSold)
SELECT date, typeToy, numberSold
FROM Sales

For the second source, we can ask two queries:

INSERT INTO ToySales2(date, typeToy, numberSold)
SELECT date, “TeddyBear”, numberSold
FROM TeddyBears

INSERT INTO ToySales2(date, typeToy, numberSold)
SELECT date, “Dog”, numberSold
FROM DogsToys

So, wrappers to sources 1 and 2 will return relations ToySales1 and ToySales2
correspondingly. Now integrator component will join them summing the num-
ber of toys of each kind sold on each date:

INSERT INTO ToySales(date, typeToy, numberSold)
SELECT date, typeToy, SUM(numberSold)
FROM ToySales1 s1, ToySales2 s2
WHERE s1.typeToy=s2.type AND s1.date = s2.date

Known implementations of data warehousing approach include Squirrel[] and
WHIPS [] systems. An overview of WHIPS is given in Section 7 of this chap-
ter. Two popular applications of data warehousing are OLAP (online analytical
processing) and data mining. They are discussed in Chapter ??.

2.5 Hybrid Approach

This approach is usually discussed as a way to improve performance of some
mediator-based systems. Approach to data integration in this case is virtual,
but selected queries are materialized in some repository. This repository then
can serve as a new source for this mediated system.

Issues which arise in this case are some of issues for data warehousing ap-
proach:

• What data to materialize?

• How this materialized data is maintained



12 CHAPTER 1. DATA INTEGRATION SERVICES

A hybrid approach is proposed in [Ash00], but otherwise is less commonly dis-
cussed in academic literature than are data warehousing and mediation.



3. SEMANTIC PROBLEMS IN DATA INTEGRATION 13

3 Semantic problems in data integration

3.1 Introduction

Different information systems can use different ways of presenting their infor-
mation to their users. Those differences can make it very difficult for developers
to integrate data from the two systems.

The task of integrating information systems is also sometimes referred to
as database integration [BOT86], schema integration [BLN86], schema merg-
ing [BDKV92], database integration [BOT86], or the creation of multidatabase
systems [Mot99].

This section explores the nature of why this integration can be so difficult,
and presents some (partial) solutions the problem.

3.2 The goal of an information system

3.2.1 Information systems as assertions about our world

An information system can be thought of as a record of some facts about the
world. (Other functionality might also exist in an information system, but that
isn’t relevant to this present discussion.)

If an information system is accurate in what it claims about the world, then
it’s useful. If the information system is inaccurate, the it’s much less useful.

3.2.2 System interfaces

An information system makes its information available to users via its system
interfaces. In modern information systems, these might include any of the
following:

• SQL access and the documentation of the database’s schema

• A CORBA system with corresponding IDL files [OMG]

• A C function library

• A set of URLs and associated query parameters

• A set of XML DTDs and the path of the filesystem directory that will
contain corresponding XML files

3.2.3 Semantics

The semantics of an interface is the specification of how the entities in the
interface are supposed to correlate to:

• entities in some other system, or

• entities in the world we live in.



14 CHAPTER 1. DATA INTEGRATION SERVICES

Example
Consider a table in our car dealership’s customer database. The table is

named tblCustomers, and has the following columns:

• cust num: integer

• street: string(255)

• city: string(60)

• state: string(2)

• car pref: integer FOREIGN KEY(tblCarTypes)

A statement of the table’s semantics may look like the following:
”tblCustomers contains one record for each customer that our dealership has

ever sold a car to. A record is only removed from this table if it is discovered
to refer to the same person that another record in this table refers to.”

”cust num is a unique identifier for each customer record. No two customers
share the same customer number. A customer number is not intended to corre-
spond to any value outside of this database. For a given customer record, this
value will never change.”

”street, city, and state are the mailing address that the customer has most
recently been known to live it. The street field includes an apartment number
specification if needed.”

”car pref is a foreign key into the tblCarTypes table. This field shows what
type of car the customer has most recently expressed preference for.”

3.3 Semantic translation in data integration architectures

The problem of semantic differences arises when information from one informa-
tion system is expressed in terms of the interface of another information system.

We’ll use the term semantic translation to refer to the process of dealing with
the semantic problems that occur when trying to express the information stored
in one information system in the form used by another information system.

3.3.1 Asymmetry of semantic translation between information sys-
tems

Semantic translation between two information systems A and B can be usefully
divided into two parts: The semantic translation required to allow information
to flow from System A to System B, and the semantic translation required to
allow information to flow from System B to System A.

Recognizing the potential asymmetry of information flow between two sys-
tems is useful for the following reasons:

• Saving humans’ time A good semantic translation in one direction may
not work in the other direction.



3. SEMANTIC PROBLEMS IN DATA INTEGRATION 15

An example is when the source information system is more specific in
certain details than the target information system. Moving data from the
source to the target can be lossy without any damage to the quality of the
integration.

If a programmer is assigned the task of writing a function to perform such
a one-way translation, his task is fairly straightforward.

However, if a programmer had to write a translator that also moved infor-
mation from the less-precise information system to the information system
whose model semantics assumed all data was very precisely categorized,
the programmer’s job is much harder and perhaps more time consuming.

• Assisting in selection of an integration architecture Different integration
architectures can result in different information flow patterns between the
constituent information systems.

A choice of integration architecture may be influenced by the architect’s
recognition that for two information systems being integrated, software
supporting the information flow in one direction might be harder to de-
velop than software that supports information flow in the opposite direc-
tion

3.3.2 Data warehousing: one-way information transfer

One-way transfer is typical of the ETL (Extract, Transform, and Load) stage
of maintaining a data warehouse. See Section 2.4 for details.

Example
Consider an integration where information from an individual car dealer’s

inventory system is made available to the inventory system of the dealership’s
parent company via a daily upload of data. However, the parent company
shares no inventory data with the individual dealership, and the parent company
cannot query the dealership’s inventory system.

In this case, some agent (either at the dealership or at the parent company)
must translate the inventory information from the schema of the dealership into
the schema used by the parent company.

For example, the dealership’s inventory system may distinguish between
”light pickup truck” and ”heavy pickup truck”, whereas the owning company
only has one category for such vehicles: ”pickup truck”.

A one-way translation is all that’s required here: The integration system
must be able to represent information from the individual dealer’s inventory
system in terms appropriate for the owning company’s information system, but
not vice versa.

3.3.3 Virtual view / federated databases: Two-way information trans-
fers

Two-way flows of application-specific information are typical of virtual view ar-
chitectures (see Section 2.3) and of federated database systems (see Section 2.3).



16 CHAPTER 1. DATA INTEGRATION SERVICES

Example
Consider the car dealership example above. Suppose that the parent com-

pany wanted the ability to query the car inventory of each car dealership it owns,
so that the parent company can provide a very up-to-date inventory information
on its company web site.

Somewhere in the system will probably be software that translates a query
expressed in terms of the parent company’s schema to a query expressed in
terms of each individual dealership’s inventory system.

For example, suppose a user of the parent company’s web site requests a
listing of all ”pickup trucks” that are in stock at any of the owning company’s
constituent dealerships.

The parent company’s web site will delegate this query to the inventory
system of each the car dealerships it owns. However, those car dealerships’
inventory systems don’t know what a ”pickup truck” is. Somewhere between
the parent company’s web site and the dealership’s inventory system, software
must run that reformulates the query to look for any ”light pickup truck” or
”heavy pickup truck” that’s in stock.

This is an example of a two-way information transfer. The query, which
contained application-specific information, flew from the parent company’s in-
formation system to the dealerships’ information systems. The results, which
also contained application-specific information, flew from the dealerships’ infor-
mation systems to the parent company’s information system.

3.4 Semantic problems in data integration

3.4.1 Simple type differences

System interfaces are usually composed of common-place elements, such as C it
unsigned ints, SQL dates, and Java Strings.

Sometimes there can be a very simple correspondence between a data source’s
exposed interface and the integrated system’s exposed interface.

For example, both systems might provide a mechanism that when given a
car’s VIN (Vehicle Identification Number), yields the date that the car was built.

Suppose that the data source’s interface is a SQL database with a table that
maps cars’ VIN to the car’s manufacture date (presented as a SQL datetime).

If the integrated system’s exposed interface is written in Java, then it would
be desirable for the integrated system to present a car’s construction date as a
java.util.Date object.

3.4.2 Unexpressed semantics of schemas

Properly understanding the semantics of the data sources interfaces is vital to
integrating the data sources.

To illustrate this, consider what would happen if the developer who were in-
tegrating the data sources did not understand the semantics of the data sources’
interfaces:



3. SEMANTIC PROBLEMS IN DATA INTEGRATION 17

The developers, trying to make their integrated information system useful,
would try to tell the users of the system how the data coming out of the inte-
grated information system was supposed to correlate to the user’s lives.

For example, ”The field labelled ’Number sold: ’ is the number of cars sold
on the date that appears in the field labelled, ’Date’, be all of our dealerships
combined.

However, in order to be able to make such semantic claims about the outputs
of the integrated system, the developers would need to know the semantics of
the interfaces that the integrated system got that data from.

If the developers who are writing the software to integrate the data sources
aren’t able to understand the semantics of the data sources’ interfaces, they can’t
justify any semantic claims about the integrated information system’s interface
semantics.

3.4.3 Lossy mappings

Sometimes information systems can use different levels of precision to describe
the same entities. This causes problems when constructing an integrated system.

Example
Consider the customer databases of two car dealerships. In both databases is

a record of the type of car that each customer prefers to drive. This is collected
to help the dealership know how to advertise best to each customer.

At one dealership, the customer preference information is very detailed: A
customer’s preference is expressed in terms of the manufacturer and model line
of the car the user likes best. For example, customer ’Charlie Brown’ prefers
’Ford F150 pickup truck’.

At the other dealership, the customer preference information is less specific:
All that can be specified is the general class of vehicle. For example, ’Lucy
Brown’ prefers ’pickup truck’.

It happens to be the case that every kind of vehicle described in the first
dealer’s customer preferences database can be cleanly mapped into a class of
vehicle in the second dealer’s database. For example, a ’Ford F150 pickup truck’
is a ’pickup truck’.

However, the opposite is not true: A vehicle preference from the second
dealership’s database does not map cleanly into a vehicle preference from the
first dealership’s database. Therefore, the two databases’ vehicle preferences
have an onto mapping.

Now suppose that an organization tries to create in integrated system that
draws customers’ vehicle preference information from the two dealerships’ cus-
tomer databases. The developers of the integrated system are confronted with
the onto relationship described above.

3.4.4 Different categorizations

Different information systems can record similar information in ways that are so
different from each other that integrating the information can be very awkward.



18 CHAPTER 1. DATA INTEGRATION SERVICES

Example
Suppose two car dealerships track the amount of gasoline used at the deal-

ership each month.
One dealership records the monthly use in terms of volume (i.e., gallons)

purchased per month.
The other dealership records the monthly use in terms of money spent on

gasoline per month.
Now suppose that an integrated system is being developed to show the gaso-

line use from all car dealers in the larger organization. The developers of the
integrated system must wrestle with the difference in measurements.

Note that it could be argued that these two values aren’t legitimate candi-
dates for integration, because they actually represent two different details about
the dealerships. However, the reality is that the concepts are so similar that
a developer might genuinely be asked to provide a (numerically) approximate
integration of the values.

3.4.5 Recognizing object identity

Data sources can have an unstated assumption that there’s a one-to-one corre-
spondence between entities in the data source and entities in the outside world.

For example, a car dealership would ideally have only one ”customer” record
per actual human customer. This is an important quality of the system, be-
cause it allows users of the system to perform certain reasoning that otherwise
wouldn’t be sound.

However, what happens if two data sources being integrated might both have
a record for the same customer?

If an integrated system makes a false assumption that the data sources have
disjunct sets of customer records, then the integrated system now has dupli-
cate customer records. Reasoning that assumes non-duplicate customer records
would be impossible with the integrated system although it would be possible
with any of the individual data sources.

3.4.6 Conflicting data

Interface semantics often make an implicit claim that data using the interface
is absolutely correct. People usually know to take that claim with a grain of
salt. When unifying data from two or more data sources, contradictions can be
reached, leading to an internally inconsistent view of data.

Example
Suppose that two car dealership have, over time, both sold the same car to

a customer.
Each dealership maintains an inventory database that records for each car

ever held by the dealer, the following pair of values: Vehicle Identification Num-
ber, Date-of-manufacture.

At one dealership, the value was correctly entered:
”123456842”, ”February 14, 2000”



3. SEMANTIC PROBLEMS IN DATA INTEGRATION 19

At the other dealership, the value was incorrectly entered:
”123456842”, ”April 1, 2000”
When these data are integrated into a single information system, the con-

flicting values are detected.

3.5 Approaches to resolving semantic issues in data inte-
gration

Numerous approaches have been proposed to facilitate the integration of existing
and proposed data integration systems.

The automated creation of integrated information systems is an open prob-
lem, and may always require some human involvement to resolve integration
issues.

However, ad-hoc solutions exist for many of the semantic problems men-
tioned earlier in this section, and theory is being developed that may eventually
yield better tools for the task.

3.5.1 Intuitive ad-hoc solutions

While the researchers look for theoretically sound solutions, real organizations
need to integrate systems as best they can. This can lead to dealing with
problems in an ad-hoc manner.

Here are some simple approaches to the semantic problems described earlier
in the section.

Simple type differences
These are perhaps the most benign problems to deal with during integration,

because:

• the software needed to implement the conversion can probably appear in
a very localized part of the integrated system’s source code, and

• this is a kind of conversion that many other software developers are also
likely to need to do. This implies that it’s quite likely that conversion
libraries will be available to the developers of the integrated system.

Unexpressed semantics of schemas
This is a problem that presently requires human involvement to sort out.

Confirming the semantics of data sources may involve talking with developers
who previously worked with the data sources, talking with users, and some
guesswork.

Onto mappings
If uniformity of detail in the integrated system has a high priority, then

probably the most reasonable solution is to have the integrated system provide
only the subset of information about an entity that is available from all relevant
data sources.

A more sophisticated integrated system might allow its interface to provide
additional information about an entity in those special cases where the particular
data source involved has more information than the common subset.



20 CHAPTER 1. DATA INTEGRATION SERVICES

Different categorizations
This is a very messy problem. Acceptable solutions are likely to be very

application-dependent.
Recognizing object identity
Some data sources might provide enough information to allow the integration

software to unambiguously detect matches between entities.
For example, two data sources might both use a customer’s Social Security

Number as a customer key. This makes duplicate detection trivial.
Duplication detection may involve guesswork. Software systems are available

that try to make good guesses about duplicate records based on the information
available. A common application of this is removing duplicate entries when large
mailing lists are merged.

Conflicting data
Various approaches might be reasonable depending on the situation:

• When a conflict is detected, bring it to the attention of a human. The
human can look for problems such as data entry errors and make a judge-
ment. This audit might also lead to a correction of the original data in
one of the data sources.

• If one system is considered more trustworthy than the other, use the an-
swer provided by the more trusted system.

• If more than two systems provided conflicting answers, treat each data
source’s answer as a vote.

• If the answer is a real number, then allow mathematical interpolation
(perhaps the arithmetic mean) to be the final answer presented by the
integrated system.

3.5.2 Generalized solutions

Generalized solutions to solving semantic problems in data integration appear to
be entirely academic as of this writing, and appear to be limited in the semantic
problems they can deal with.

Examples include SchemaLog [LSS93] and Enterprise Requirements Analysis
[GL].



4. QUERYING THE INTEGRATED DATA 21

4 Querying the Integrated Data

The main purpose of building data integration systems is to facilitate the access
to the multitude of data sources. The ability to correctly and efficiently process
the queries to the integrated data lies in the heart of the system. The traditional
way of query processing involves the following basic steps:

• getting a declarative query from the user and parsing it

• passing it through a query optimizer which produces an efficient query
execution plan that describes how to exactly evaluate the query, i.e., apply
which operators, in what order, using what algorithm

• executing the plan on the data physically stored on disk

The procedure described above also applies to query processing in data in-
tegration systems in general terms. However, the task is more challenging due
to the complexities brought by the existence of multiple sources with differing
characteristics. First of all, we need to decide which sources are relevant to
the query and hence should participate in query evaluation. These chosen data
sources will participate in the process by their own query processing mecha-
nisms. Second, due to potential heterogeneity of the sources, there may exist
various access methods and query interfaces to the sources. In addition to being
heterogeneous, the sources are usually autonomous as well and therefore not all
of the them may provide full query capability. Third, the sources might con-
tain inter-related data. There may be both overlapping and inconsistent data.
Overlapping data may lead to information redundancy and hence unnecessary
computations during query evaluation. Especially in the case where there are
large number of sources and the probability of overlap is high, we may need to
choose the most beneficial sources for query evaluation. The last but not the
least, the sources may be incomplete in terms of their content. Therefore, it
may be impossible to present a complete answer to user’s query. This list of
complications is extensible.

As discussed in Section 2, a data integration system may be built in two
major ways: by defining a mediated schema on the participating data sources
without actually storing any data at the integration system (virtual view ap-
proach) or by materializing the data defined by the mediated schema at the
integration system (materialized view approach). In both of the approaches,
the user query is formulated in terms of the mediated schema. However, in the
latter approach, since the data is stored at the integration system according to
the mediated schema, query evaluation is no more difficult than traditional way
of query processing. The major issue there, is the synchronization of data with
the changes to the original data at the data sources, i.e., maintenance of the
materialized views. We discuss this issue in Section 6. During maintenance,
views defined on the data sources have to be processed on the data sources
to re-materialize the updated data. In other words, query processing on the
original data sources is realized usually ”off-line”. 1 On the other hand, in the

1For immediate view maintenance policy, it is actually ”on-line”.



22 CHAPTER 1. DATA INTEGRATION SERVICES

virtual view approach, every time a user asks a query, source access is required.
Therefore, query processing for the virtual approach includes the issues that
would arise for the maintenance stages of the materialized view approach. In
this regard, we discuss mainly the query processing problem for the virtual view
approach in this section.

In this section, first we briefly discuss the modeling issues which forms the
basis of all the following arguments. Then we present the main stages in query
processing in data integration systems in order, namely, query reformulation,
query optimization and query execution.

4.1 Data Modeling

Traditionally, to build a database system, we first model the requirements of
the application and design a schema to support the application. In a data
integration system, rather than starting from scratch, we have a set of pre-
existing data sources which would form the basis of the application. However,
each of these data sources may have different data models and schemas. In other
words, each source presents a partial view of the application in its own way of
modeling. In fact, if we were to design a database system for the application
starting from scratch, we would have another model, which would have the
complete and ideal view of the world. To simulate this ideal, we need to design
a unifying schema in a single data model based on the schemas of the data
sources being integrated. Then each source needs to be mapped to relevant parts
of this unified schema. This single schema of the integrated system is called the
”mediated schema”. Having a mediated schema facilitates the formulation of
queries to the integrated system. The users simply pose queries in terms of the
mediated schema, rather than directly in terms of the source schemas. Although
this is very practical and effective in terms of transparency of the system to the
user, it brings the problem of mapping the query in mediated schema to one or
more queries in the schemas of the data sources.

The below figure shows the main stages in query processing in data integra-
tion systems. There is a global data model that represents the data integration
system and each of the data sources has its own local data model. There are two
conceptual translation steps: (i) from the mediated schema to exported source
schemas, (ii) from exported source schemas to source schemas. The difference
comes from the data models used. In the former one, the user query is refor-
mulated as queries towards individual sources, but they are still in the global
data model. In the latter one, source queries are translated into a form that is
understandable and processable by the data sources directly, i.e., data model
translation is achieved in this latter step. These two steps are performed by
the mediator and the wrapper components in the system, respectively. In this
section, we will be focusing on the operation of the mediator and the details of
the wrapper will be presented in Section 5.

As Figure 1.4 indicates, in addition to modeling the mediated schema, we
need to model the sources so that we can establish an association between the
relations in the mediated schema and the relations in the source schemas. This



4. QUERYING THE INTEGRATED DATA 23

Descriptions

Query

Mediated
Schema

Source 

Source
Statistics

WrapperWrapperWrapper

Query (in mediated schema)

Query
Reformulation

Optimization

Execution
Engine

Query

logical plan
(source queries in exported source schemas)

physical plan
(distributed query execution plan)

source query
in exported
source schema

Source
Data
Source Source

Data

query in
source 
schema

global data

model

local data models

Data

Figure 1.4: Stages of Query Processing

is achieved through source descriptions. The description of a source should
specify its contents and constraints on its contents. Moreover, we need to know
the query processing capabilities of the data sources. Because in general, in-
formation sources may permit only a subset of all relational queries over their
relations. Source capability descriptions include which inputs can be given to
the source, minimum and maximum number of inputs allowed, possible outputs
of the source, selections the source can apply and acceptable variable bindings
[].

To be able to present the methods for querying the integrated data, we need
to choose a data model and language to express the mediated schema, source
descriptions and the queries. Due to its simplicity for illustrating the concepts,
we will be using relational model as our global data model and Datalog as our
language.



24 CHAPTER 1. DATA INTEGRATION SERVICES

4.1.1 Datalog

We can express queries and views as datalog programs. A datalog program
consists of a set of rules each having the form:

q(X̄) : −r1(X̄1), . . . , rn(X̄n)

where q and r1, . . . , rn are predicate names and X̄, X̄1, . . . , X̄n are either vari-
ables or constants. The atom q(X̄) is called the head of the rule and the atoms
r1(X̄1), . . . , rn(X̄n) are called the subgoals in the body of the rule. It is assumed
that each variable appearing in the head also appears somewhere in the body.
That way, the rules are guaranteed to be safe, meaning that when we use a
rule, we are not left with undefined variables in the head. The variables in
X̄ are universally quantified and all other variables are existentially quantified.
Queries may also contain subgoals whose predicates are arithmetic comparisons.
A variable that appears in such a comparison predicate must also appear in an
ordinary subgoal so that it has a binding.

.... explain the semantics of the rules, IDB, EDB predicates, conjunctive
queries, recursive rules, etc ...

4.1.2 Modeling the Data Sources

To reformulate a query in mediated schema as queries on the source schemas,
we need the relationship between the relations in the mediated schema and the
source relations. This is achieved through modeling the sources using source
descriptions.

There are three approaches to describing the sources:

Global As View (GAV) Approach
For each relation R in the mediated schema, a query over the source
relations is written which specifies how to obtain R’s tuples from the
sources.

example will come here

This approach was taken in the TSIMMIS System [].

Local As View (LAV) Approach
For each data source S, a rule over the relations in the mediated schema
is written that describes which tuples are found in S.

example will come here

This is an application of a much broader problem called ”Answering
Queries using Views”. We will further discuss this problem in the next
section.

One of the systems that used this approach was the Information Manifold
System [].



4. QUERYING THE INTEGRATED DATA 25

Description Logics (DL) Approach
Description Logics are languages designed for building schemas based on
hierarchies of collections. In this approach, a domain model of the applica-
tion domain is created. This model describes the classes of information in
the domain and the relationships among them. All available information
sources are defined in terms of this model. This is done by relating the
concepts defining the information sources to appropriate concepts defin-
ing the integrated system. Queries to the integrated system is also asked
in terms of this domain model. In other words, the model provides a
language or terminology for accessing the sources.

example will come here

This approach was taken in the SIMS System [].

Each of these approaches has certain advantages and disadvantages over the
others. The main advantage of GAV is that query reformulation in GAV is very
easy. Since the relations in the mediated schema are defined in terms of the
source relations, it is enough to unfold the definitions of the mediated schema
relations. Another advantage is the reusability of views as if they were sources
themselves to construct hierarchies of mediators as in the TSIMMIS System
[]. However, it is difficult to add a new source to the system. It requires that
we consider the relationship between the new source and all the other sources
and the mediated schema and then change the GAV rules accordingly. Query
reformulation in LAV is more complex. As we shall see in the next section, the
most important work done on query reformulation focus on the LAV approach.
However, LAV has important advantages compared to GAV: adding new sources
and specifying constraints in LAV are easier. To add a new source, all we need
to do is describe that source in terms of the mediated schema through one or
more views. We do not need to consider the other sources. Moreover, if we want
to specify constraints on the sources, we simply add predicates to the source
view definitions.

Compared to GAV and LAV approaches, DL approach has the benefit of
being more flexible.

... need to learn DL more to compare ...

4.1.3 Using Probabilistic Information

... will be written later ...

• for source completeness

• for overlap between parts of the mediated schema

• for overlap between information sources

4.2 Query Reformulation

Using the source descriptions, user query written in terms of the mediated
schema is reformulated into a query that refers directly to the schemas of the



26 CHAPTER 1. DATA INTEGRATION SERVICES

sources (but still in the global data model). There are two important criteria
to be met in query reformulation:

• Semantic correctness of the reformulation: The answers obtained from the
sources will be correct answers to the original query.

• Minimizing the source access: Sources that can not contribute any answer
or partial answer to the query should not be accessed. In addition to
avoiding access to redundant sources, we should reformulate the queries
as specific as possible to each of the accessed sources to avoid redundant
query evaluation.

In this section, we will mainly discuss query reformulation techniques for
the LAV approach of source modeling. The reason for this is that query refor-
mulation in LAV is not straight forward and also it is one of the applications
of an important problem called ”Answering Queries using Views”. In what fol-
lows, first we briefly summarize this problem together with its other important
applications. Then we present various query reformulation algorithms for LAV.

4.2.1 Answering Queries Using Views

Informally, the problem is defined as follows: Given a query Q over a database
schema, and a set of view definitions V1, . . . , Vn over the same schema, rewrite
the query using the views as Q′ such that the subgoals in Q′ refer only to view
predicates. If we can find such a rewriting of Q into Q′, then to answer Q, it is
enough that we answer Q′ using the answers of the views.

Interpreted in terms of the query reformulation problem for the LAV ap-
proach, this means the following: By using the views describing the sources in
terms of the mediated schema, we can answer a user query written in terms
of the same schema by rewriting the query as another query referring to the
views rather than the mediated schema itself. Each view referred by the new
query can be evaluated at the corresponding source this way. Basically we are
decomposing the query into several subqueries each of which is referring to a
single source.

Answering queries using views has many other important applications which
include query optimization [], database design [], data warehouse design [] and
semantic data caching []. For example, query optimization may be achieved by
using previously materialized views for answering a query in order to save from
recomputation. We are discussing data warehouse design issues in Section 6.

The ideal rewriting we expect to find would be an ”equivalent” rewriting.
However, this may not always be possible. In data integration systems in partic-
ular, source incompleteness and limited source capability would lead to rewrit-
ings that approximate the original query. Among the many possible approxi-
mate rewritings, we need to find the ”best” one. The technical term for this
best rewriting is ”maximally-contained” rewriting. Note that we do not sacrifice
from semantic correctness criterion here, rather we are preferring an incomplete
answer to no answer at all. The below definitions formalize these terms:



4. QUERYING THE INTEGRATED DATA 27

Equivalent Rewritings Let Q be a query and V = V1, . . . , Vm be a set of
view definitions. The query Q′ is an equivalent rewriting of Q using V if:

• Q′ refers only to the views in V , and

• Q′ is equivalent to Q.

Maximally-contained Rewritings Let Q be a query and V = V1, . . . , Vm

be a set of view definitions in a query language L. The query Q′ is a
maximally-contained rewriting of Q using V with respect to L if:

• Q′ refers only to the views in V ,

• Q′ is contained in Q, and

• there is no rewriting Q1 such that Q′ ⊆ Q1 ⊆ Q and Q1 is not
equivalent to Q′.

A query Q′ is contained in another query Q if, for all databases D, Q′(D) is
a subset of Q(D). A query Q is equivalent another query Q′ if Q′ and Q are
contained in one another.

4.2.2 Completeness and Complexity of Finding Query Rewritings

... will be written later ...

• source incompleteness

• recursive rewritings

4.2.3 Reformulation Algorithms

Given a query Q and a set of views V1 . . . Vn, to rewrite Q in terms of Vis, we
have to perform an exhaustive search among all possible conjunctions of m or
less view atoms where m is the number of subgoals in the query. The following
algorithms propose alternative ways of finding query rewritings to avoid the
exhaustive search.

The Bucket Algorithm (Information Manifold)
The main idea underlying the Bucket Algorithm is that the number of
query rewritings that need to be considered can be drastically reduced
if we first consider each subgoal in the query in isolation, and determine
which views may be relevant to each subgoal. Given a query Q, the Bucket
Algorithm proceeds in two steps:

1. The algorithm creates a bucket for each subgoal in Q, containing the
views (i.e., data sources) that are relevant to answering the particular
subgoal. More formally a view V is put in the bucket of a subgoal g
in the query if the definition of V contains a subgoal g1 such that

• g and g1 can be unified, and



28 CHAPTER 1. DATA INTEGRATION SERVICES

• after applying the unifier to the query and to the variables of the
view that appear in the head, the predicates in Q and in V are
mutually satisfiable.

The actual bucket contains the head of the view V after applying the
unifier to the head of the view.

2. The algorithm considers query rewritings that are conjunctive queries,
each consisting of one conjunct from every bucket. For each possible
choice of element from each bucket, the algorithm checks whether
the resulting conjunction is contained in the query Q or whether it
can be made to be contained if additional predicates are added to
the rewriting. If so, the rewriting is added to the answer. Hence, the
result of the Bucket Algorithm is a union of conjunctive rewritings.

example will come here

The Inverse-Rules Algorithm (InfoMaster)
The key idea underlying this algorithm is to construct a set of rules that
invert the view definitions, i.e., rules that show how to compute tuples for
the mediated schema relations from tuples of the views. One inverse rule
is constructed for every subgoal in the body of the view. While invert-
ing the view definitions, the existential variables that appear in the view
definitions are mapped using Skolem functions to ensure that the value
equivalences between the variables are not lost. The following examples
illustrates the algorithm:

example will come here

In general, one function is created for each existential variable that appears
in the view definitions. These function symbols are used in the heads of
the inverse rules. The rewriting of a query Q using the set of views V is
the datalog program that includes the inverse rules for V and the query
Q.

The MiniCon Algorithm
MiniCon Algorithm looks at the problem from another perspective. In-
stead of building rewritings by combining rewritings for each query sub-
goal or mediated schema relation, we consider how each of the variables
in the query can interact with the available views. This way the num-
ber of view combinations to be considered can be considerably reduced.
The MiniCon Algorithm, like the Bucket Algorithm, first tries to identify
which views contain subgoals that correspond to subgoals in the query.
However, rather than building buckets, MiniCon Descriptions (MCDs)
are built. MCDs are generalized buckets. Each correspond to a set of
subgoals from the query mapped to subgoals from a set of views. First
the algorithm finds a partial mapping from a subgoal g in the query to a
subgoal g1 in a view V . Then it looks at the variables that appear in join
predicates in the query. The minimal additional set of subgoals that need
to be mapped to subgoals in V given the partial mapping between g and



4. QUERYING THE INTEGRATED DATA 29

g1 is found. These subgoals together with their mappings form an MCD.
The following example clarifies the algorithm.

example will come here

The Shared-Variable-Bucket Algorithm
This algorithm, like the MiniCon Algorithm, also aims at recovering the
weak aspects of the Bucket Algorithm to obtain a more efficient algorithm.
Like the Bucket Algorithm, there are two steps: bucket construction and
solution generation.

During the bucket construction step, Shared-Variable-Bucket Algorithm
considers the equality constraints introduced by the ”shared variables”,
i.e., variables that occur across multiple subgoals. Additional buckets are
constructed called Shared Variable Buckets (SVBs) in order to handle the
equality constraints. Each bucket contains only views that cover all the
subgoals in which the shared variables representing the bucket appear.

In the solution generation step, a set of buckets is chosen such that each
subgoal is represented by a single bucket in the set. From each bucket, a
view is selected. Consequently, the solution to the query is expressed as a
conjunctive query whose body is the conjunct of the selected views. The
extra buckets ensure that the all generated solutions are sound solutions
and this way the conjunctive query containment test at the end of the
Bucket Algorithm is avoided.

example will come here

The CoreCover Algorithm
In this algorithm, closed-world assumption is taken where views are ma-
terialized from base relations. Among the possibly infinite number of
rewritings, the aim is to find the ones that are guaranteed to produce an
optimal physical plan if there exists any. Contrary to the other algorithms,
this algorithm aims at finding equivalent rewritings rather than contained
rewritings. Three different cost models are considered with the following
motivations:

• Cost model M1 tries to minimize the number of join operations

• Cost model M2 additionally aims at minimizing the number of disk
IO’s by minimizing the size of the relations use in the plan

• Cost model M3 aims at improving M2 by dropping irrelevant at-
tributes from the intermediate relations during evaluation.

We will be discussing the basic CoreCover Algorithm for the cost model
M1 and refer the interested readers to [] for modified versions developed
for M2 and M3.

Intuitively, the first step in the algorithm is to find the set of query subgoals
that can be covered by a view tuple, called ”tuple-core”. The second step
is to find a minimum number of view tuples to cover query subgoals.



30 CHAPTER 1. DATA INTEGRATION SERVICES

Rather than a technical discussion, we will present the algorithm with the
following example:

example will come here

Comparison of the Algorithms
It is important that the algorithm scales well when the number of views
increase.

after I write the examples ...

4.2.4 Alternative Query Reformulation for Dynamic Information In-
tegration

... will be written later ...

4.3 Query Optimization and Execution

Query optimization refers to the process of translating a declarative query into
an efficient query execution plan, i.e., a specific sequence of steps that the query
execution engine should follow to evaluate the query. In addition to the op-
erators and their application order specified in the query execution plan, the
optimizer should also decide on the specific algorithms that implement the op-
erators and which indices to use with them. There may be many possible ex-
ecution plans. The best execution plan can be chosen in two ways: cost-based
or heuristics-based. In the cost-based approach, the optimizer has to estimate
the costs of candidate plans and choose the cheapest of them. Cost estimations
are done using statistical information about the underlying data such as sizes of
the relations and the selectivity of predicates. Heuristics-based plan generation
involves using some rules of thumb like doing selections before joins. Usually
heuristics-based technique is easier and cheaper than the cost-based one, be-
cause it does not need to consider and evaluate the cost of all possible plans.
However, the optimal plan is not guaranteed.

As discussed in the previous section, query reformulation step already pro-
vides some optimizations on the query by pruning irrelevant sources and distin-
guishing the overlapping sources to avoid redundant computation. Furthermore,
the rewritten queries are to be as specific as possible. However, these are logical
or higher level optimizations. There are still many optimizations to be done
when it comes to actually executing the logical plan generated by the reformu-
lator physically on the data.

Query optimization in data integration systems is more difficult than the
optimization problem in traditional databases because:

• Sources are autonomous. Optimizer may not have any statistics or either
has few or unreliable statistics about the data stored in each of the sources.

• Sources are heterogeneous. They may have different query processing
capabilities. The optimizer needs to exploit these capabilities as much
as it can. In addition to what kind of queries the sources can process



4. QUERYING THE INTEGRATED DATA 31

and how they can process them, it is also relevant that what kind of
processing power they have underlying their data management system
and performance changes due to workload changes (??).

• In traditional databases, it is easy to estimate the data transfer time since
it is between the local disk and the main memory. In data integration
systems however, data transfer time is not predictable due to the existence
of the network environment. Both delays and bursts may occur.

• On one hand, the sources are overlapping and there is redundancy for
most of the time. That is why access to redundant sources should be
minimized. On the other hand, some sources may become unavailable
without any notice. Query optimizer should be able to handle these cases
flexibly by replacing overlapping sources for each other to compensate for
unavailability of any of them.

An additional problem that may cause inefficient query execution is that the
logical plan produced by the reformulator tends to have a lot of disjunctions,
i.e., union operations.

The bottom line is that it is difficult to decide statically what the optimum
strategy would be to execute a query due to insufficient information and dynam-
icity of the environment. Therefore, the traditional approach of first generating
a query execution plan and then executing it is no more applicable. [?] pro-
poses an adaptive query execution approach in which query optimization and
execution are interleaved. In this section we mainly discuss this approach.

4.3.1 Adaptive Query Execution

In addition to the above listed problems, [?] makes the following observations
about query optimization in data integration systems:

• It is more important to aim at minimizing the time to get the first answers
to the query rather than trying to minimize the total amount of work to
be done to execute the whole query.

• Usually the amount of data coming from the data sources is smaller com-
pared to case of querying a single source as in traditional database systems.

Adaptivity in [?] exists in two levels:

• interleaved planning and execution

• adaptive operators for execution engine

At a higher level, the former is achieved by creating partial plans called frag-
ments rather than complete plans. The optimizer decides how to proceed next
only after executing a fragment. Once a fragment is completed, the optimizer
would know more about the sources and the environment so that it could do
better planning for the rest of the query.



32 CHAPTER 1. DATA INTEGRATION SERVICES

The latter includes using new operators during execution depending on the
observations listed above. Two important operators used in [] are double-
pipelined hash join and the collector operator.

Double-pipelined hash join is a join implementation that allows Tukwila to
quickly return the first answers to the query in spite of the fact that some sources
may be responding very slowly. In contrary to the conventional hash join where
smaller of the two relations to be joined is chosen as the inner relation to hash
by the join attribute, in double-pipelined hash join, both relations are hashed.
This way, result tuples are produced as soon as the data from sources arrive.
This masks the slow data transmission rates of some sources. The optimizer
no longer has to make a decision about which relation should be the inner one
(Normally, it would have to know the size of the relations to be able to choose
the smaller one as the inner). Also, the processing is not blocked due to delays
at the sources.

The collector operator is used to facilitate union over large number of over-
lapping sources. Using the estimates about the overlap relationships between
the sources and depending on the run-time behavior of the sources (delays, er-
rors) optimizer adapts its policy about how the unions should be performed and
the collector operator achieves the application of this dynamic policy. Policies
are specified using rules.

Both levels of adaptivity are realized through event-condition-action rules.
Events are raised by execution of the operators or completion of some fragments
and obtaining some partial results. When an event triggers a rule, first the as-
sociated condition is checked. If it is true, then the defined action is executed.
Possible actions include reordering of operators, re-optimization, changing the
policy of the collector operator and so on. The rules accompany the operator
tree generated by the optimizer. They specify how to modify the implementa-
tion of some operators (for example, the collector) during run-time if needed
and conditions to check at points where fragments complete in order to detect
opportunities for re-optimization.

4.3.2 Query Translation

One thing we have treated as a black box until now is how actually the source
queries in exported schemas (in schema of the sources but in the global data
model) are translated into their actual schemas (in their local data models) and
then get executed by their native query processors. This step is called the query
translation step. It is achieved by the source-specific wrappers. Data extraction
from sources by the wrappers is the topic of the next coming section.



5. DATA EXTRACTION 33

5 Data Extraction

Data extraction deals with the issues arising during the process of getting data
from the different sources to the integration system. It combines techniques from
the areas of database systems and artificial intelligence (such as natural language
processing and machine learning). In this section, at first we discuss wrappers
that, as we have seen in the previous sections, are important components of the
integration system. Then we review some work on the tools for semi-automatic
and automatic wrapper generation, and conclude by discussing communication
protocols used to access data sources on the network.

5.1 Techniques for Extracting Data (Wrappers)

During information integration from different heterogeneous data sources, we
have to translate queries and data from one data model to another and from
one data schema to another. As we mentioned in Section 2, this is done by
wrappers that are written for each data source in the integration system. Each
wrapper transforms queries in the unified schema to the queries in the format
of the the underlying data source and then translates the results back to the
unified schema. We would like to note, that mediator systems usually require
more complex wrappers than do most warehouse systems.

5.1.1 Wrapper generation approaches

Wrapper designers can either construct the wrappers manually, or use the tools
facilitating the wrapper code development. Three approaches are usually con-
sidered:

• Manual
Hard-coded wrappers are often tedious to create and may be impractical
for some sources. For example, in case of web sources: the number of them
can be very big, new sources are added frequently and both the structure
and the content of any source may change [AK97]. All these factors lead
to the high maintenance costs of manually generated wrappers.

• Semi-automatic (interactive)
It was noted that the part of a wrapper code which deals with the details
specific to a particular source is often small [HGMN+97]. The other part
is either the same among wrappers or can be generated semi-automatically
based on the declarative description given by a user. Techniques such as
programming by example can be used for this purpose [].

• Automatic
Tools for automatic wrapper generation can be site-specific or generic.
They usually need training in the initial stage and are based on the su-
pervised learning algorithms.



34 CHAPTER 1. DATA INTEGRATION SERVICES

5.1.2 Tools for semi-automatic/automatic wrapper construction for
structured/semistructured data

Here we review several techniques for semi-automatic wrapper generation.

• Using formatting information in the semistructured pages on the
web

The approach we describe here was designed for the case of web sources.
As we mentioned above, writing wrapper code for web sources may be
particularly hard due to the frequent changes of content and structure
of the sources. On the other hand, data on the web often has a partial
structure. That is, HTML documents often have some internal hierarchy
of information, but this hierarchy is not specified explicitly. For example,
a site of a travel agency may have information about several countries
and hotels in the semistructured format. Some records, such as “a cap-
ital”, “money units”, “a language” will appear for all countries, while
some others like “states” are country-specific. The presence of a partial
structure in many web sources gives an integration system designer an
opportunity to generate wrappers for the sources of a particular domain
semi-automatically. Often this semistructured information may come to
the web from the databases underlying the web sources. This raises the
question of why could not we query these databases directly in this case?
Unfortunately, a source may not set permissions for the outside users to
query it for a number of subjective reasons.

The approach was proposed by [AK97] and is used for semi-automatically
generating wrappers for both multiple-instance sources and single-instance
sources. Multiple-instance source contains information on several pages all
of the same format. An example is cnn’s weather pages for every city -
pages for all cities have the same structure (for instance, there is always
a Current Conditions section with temperature, humidity and wind
specified). Wrapper must be able to answer queries about all sections of
the individual page. Single-instance source contains a single page with
semi-structured information.

The authors identify three steps of a wrapper generation process for the
types of sources mentioned above: “structuring the source; building a
parser; adding communication capabilities between sources, a wrapper,
and a mediator” [AK97] .

– Structuring the source
The first step refers to the finding heading tokens on a page, such as
“Current Condition”, “Temperature”, “Wind”, and organizing them
in a hierarchy tree. Such sections are usually stressed in the document
by the size of font (big), the type of font (bold, italic), by noticing
a colon following such a token, etc. All these simple heuristics, used
by the authors, proved to work well for the domains they specified.
After a system has suggested the set of headings, a user may interfere



5. DATA EXTRACTION 35

by correcting the output. The hierarchy of the found headings is
determined based on indentation spaces and font size. The grammar
describing the structure of pages of a web source is produced as the
result of this step. Results published by the authors show that usually
just few corrections made by a user are needed for a web source.

– Building a parser
A parser for extracting any structured portion of data can be gener-
ated automatically given the output grammar of the first step.

– Adding communication capabilities
First, a wrapper needs some mechanisms to fetch the appropriate
pages from the sources. In the case of a single page for each source,
it is not a problem as long as URL of this page is known. In the case
of multiple pages for a source, we need to map a query to the URL
or set of URLs. In the case of the cnn weather site, for example,
we can specify that for a given state and a city in it, the URL of
the page containing the weather forecast can be obtained by adding
the abbreviation of the region (for instance, ne stands for the north
east), the abbreviation of the state and the name of the city to the
end of the http://www.cnn.com/WEATHER/ string. For example,
the URL for Providence, RI is
http://www.cnn.com/WEATHER/ne/RI/ProvidencePWD.html.

Second, a wrapper relies on some protocols to deliver data over the
network. We discuss some of these protocols in Section ??. Authors
of the paper were using Perl scripts.

Third, a wrapper and a mediator need to communicate between
themselves in the integrated system. In the reviewed system, a
KQML language was used for this.

• Template-based wrappers

The approach proposed by J. Hammer et. al. [HGMN+97] is applicable
to several types of data sources: relational databases, legacy systems, and
web sources. Their wrapper implementation toolkit is based on the idea
of template-based translation. A designer of a wrapper uses a declarative
language to define the rules (templates) which specify the types of queries
handled by a particular source. For each rule he also defines an action to
be taken in case a query sent by the mediator of an integration system
matches the rule. This action will cause a native query - a query in the
format of the underlying source - to be executed.

Filter queries are used to extend the set of queries a source can handle. If
a source does not support some predicates, the query will be turned into
two queries: the native query (that will contain only those predicates that
are supported by the source) and the filtered query that will “postprocess”
the results of the native query.



36 CHAPTER 1. DATA INTEGRATION SERVICES

The process of query transformation consists of the following steps. First,
a query from the mediator is parsed, then it is matched against the tem-
plates in the system. If the matching rule was found, the native query
is processed by the data source, and the result is filtered with the filter
query.

A rule-based language MSL [PGMA96] is used by the authors for query
formulation. Below we give an example of an MSL query, a template
matching it, and a corresponding native query and a filter query. For
the purpose of the example (that is based on the example presented in
[HGMN+97]) the data source is a relation database.

Example. Let us refer again to the example of Acme Cars company that
has a relation
Automobiles(vin, autoMake, autoModel, autoPrice, autoYear).
This relational database consisting of just one relation, is our data source.
We need to write a wrapper supporting MSL queries to this source. We
further assume, that the source does not support comparison predicates
on the autoPrice attribute. Let a user A ask the query about all Honda
cars for sale whose price is less than 12,000$:

C :– C:<Automobiles
{<autoMake “Honda”><autoPrice P>}>
AND LessThan(P, 12,000)

One of the templates, matching this query is:
C :– C:<Automobiles{<autoMake $A >}>
Notice, that the result of this template query is a superset of the results
asked by the user query. The action corresponding to this template is
to select all automobiles with the autoMake = $A. In the system, $A
is substitued with “Honda” and a native SQL query for the relational
database is produced:

SELECT *
FROM Automobiles
WHERE autoMake = “Honda”.

The only thing remained, is to postprocess the results of this query using
the following filter query:

C :– C:<Automobiles{<autoPrice P>}>
AND LessThan(P, 12,000)

After that, the result can be returned back to the mediator of the integra-
tion system.

• Inductive learning techniques for automatically learning a wrap-
per (using labeled data)

These techniques are sometimes called wrapper induction techniques [Eik99]
and are based on inductive learning. According to [Eik99], inductive learn-
ing is the task of computing a generalization from a set of examples of some



5. DATA EXTRACTION 37

unknown concept. This generalization should suggest the model explain-
ing all of the examples.

A very simple example of an inductive inference is when a teacher says a
sequence of numbers: 2, 4, 6, 8, 10; and then asks a pupil to guess the
rule he used to produce the next number from the previous (in this case
pn+1 = pn + 2.

Line Eikvil [Eik99] points out the following classification of the inductive
learning methods used for wrapper induction:

– Zero-order learning
They are also called decision tree learners as their solutions are rep-
resented as decision trees. The drawback of these methods is coming
from the fact that they are based on the propositional logic that has
a number of limitations. For example, they can not deal with several
relations in a relational database [Eik99].

– First-order learning
Methods of this type can deal with first-order logical predicates.
Inductive logic programming is a method of this class, widely used
due to the ability to deal with complex structures such as recursion.
Two approaches - bottom-up and top-down - are often used as a part
of the first-order learning.
The bottom-up approach first suggests a generalization based on few
examples. Then this generalized model is corrected based on the
other examples.
The top-down approach starts with a very general hypothesis and
then distills it learning from negative examples.

Some known systems for inductive learning of wrappers are STALKER
[MMK98] and the system described by N. Kushmerick et. al.1¡ [KWD97].
An exellent overview of some other systems for information extraction by
inductive learning is given in [Eik99].

5.2 Data Source Interfaces

The integration of information systems will almost always result in the devel-
opment of software that accesses those information systems’ public interfaces.

A plethora of options is available for how data sources expose their data to
other computer systems. This subsection will explore some of the issues that
differentiate various types of interfaces.

5.2.1 General issues with interfaces

• Separation of interface into application-specific and reusable lay-
ers

Interfaces can often be divided into two parts:



38 CHAPTER 1. DATA INTEGRATION SERVICES

– a set of primitive components that is used in numerous applications,
and

– a set of application-specific components.

This distinction is made in the OSI network protocol stack and elsewhere.

For the remainder of this section, we’ll use the term primitive interface
to refer to these multi-application, reusable interfaces.

For example, consider a car dealership’s customer database system. Sup-
pose that the system exposes its data via a CORBA interface.

CORBA, and perhaps TCP/IP, could be considered the primitive compo-
nents of the interface that appear in many applications. Thanks to the
support of outside organizations, CORBA and TCP/IP are available for
use in many different applications.

However, the set of objects and methods exposed with CORBA for the
customer database system is application specific. (For example, a Cus-
tomer object or a Customer.scheduleForTuneup() method.) Few if any
other applications are likely to ever use the same application-specific in-
terface.

• Resolution of data addressability

Primitive interfaces are often ignorant of the structure of the data that
the interface helps to transfer between the interface user and the interface
implementor.

For example, one could move car inventory data over FTP in binary trans-
fer mode. The design of FTP is such that the protocol doesn’t interpret
the structure of the transferred data when using binary transfer mode.

However, it’s possible that the structure of the file being transferred is
very rich indeed. For example, the file could be a serialized Java object
with a well-defined structure.

This raises the issue of the resolution of addressability provided by an
interface.

In the example above, the FTP interface was capable of providing data
addressability down to the file level.

However, the FTP interface does not support the selection of a particular
XML element from the XML document.

• Data types

Primitive interfaces typically provide a set of one or more primitive data
types that the interface explicitly recognizes.

For example, SQL offers varchar, int, etc. C APIs offer int, float, char*,
etc.

These primitive types may be given special treatment in the language
bindings that let a programming language use the interface.



5. DATA EXTRACTION 39

For example, big-endian and little-endian computers use different bit-level
representations of integer data. The SQL bindings for programming envi-
ronments on various computers will convert the bit-level representations
of SQL int data into a format that’s appropriate for the computer using
the interface.

Application-level constructs must be expressed (directly or indirectly) in
terms of these primitive data types.

• Interface semantics

Primitive interfaces are designed with the intention that the primitive
interface itself assigns no meaning to the particular data moving across
the interface.

A result of this is that primitive interfaces are powerless to express application-
level semantics of the data.

See Section 3 for more details on interface semantics.

5.2.2 Network vs. non-network primitive interfaces

In data integration, an important aspect of primitive interfaces is whether or
not network communications are used.

• Non-network interfaces

These interfaces do not explicitly support network communications. This
is a problem because data integration may involve two or more computers
that must communicate.

If data integration requires that two or more computers communicate,
but one or more data source does not offer a network-friendly interface,
work-arounds may be painful:

– Adding network connectivity may introduce yet more software to add
network connectivity.

– Using off-line data transfer mechanisms (tape, CD-RW, etc.) can lead
to undesirable latencies in the transfer of data from a data source to
the integrating system.

• Network-capable interfaces

These interfaces explicitly support network communications.

Unfortunately, many modern networks (both short-distance and long-
distance) have a set of problems that can be difficult to deal with from a
software level.

– Failures of network links
Various problems can and do occur in the connections between com-
puters. In the modern Internet, it’s common to hear of a backhoe



40 CHAPTER 1. DATA INTEGRATION SERVICES

operator accidentally digging through a bundle of optic cable used by
an Internet service provider, or of a necessary router malfunctioning.
In naively integrated systems, a network link failure can cripple the
entire integrated system or cause the loss of data.

– Potentially independent failures of communicating applica-
tions
If the software for integrating data executes on a different computer
than one of the data sources, it’s possible for only one of the com-
puters to fail.
This possibility raises very similar problems in system design to those
problems arising from fallible network links.

– Potentially significant communications costs / performance
issues
In long-distance communications between computer systems, trans-
ferring data is often expensive. Businesses that have multiple offices
often lease expensive network connections to allow the computers at
each site to communicate quickly with computers at other sites.
Fiscal cost may need to be a consideration in system design when
data integration involves computers at separate sites.

Examples

– FTP - File Transfer Protocol
This protocol gives one computer access to part of another computer’s
file-system. It also offers a username/password form of access control.

– CORBA - Common Object Request Broker Architecture
CORBA is a an architecture designed to allow computers to inter-
operate regardless of what operating systems, programming languages,
network protocols, and application domains are involved [?].
CORBA allows software applications to present their services to
client applications. CORBA is an object-oriented system, so appli-
cation services are represented as CORBA objects and the methods
on those objects.
IDL
A CORBA server application must define the details of its exposed
interface using OMG IDL (Object Management Group’s Interface
Definition Language).
IDL defines objects and methods in a manner that’s very syntactically
similar to how classes or interfaces are defined in C++ and Java.
IDL is programming language- and operating system-neutral, how-
ever. The basic data types available in CORBA IDL have well-defined
bindings to various programming languages. This allows tools ven-
dors, rather than application programmers, deal with the issues such
portability of number and string representations.



5. DATA EXTRACTION 41

IDL can be compiled into client stubs and object skeletons. Client
stubs are language- / platform-specific bindings that application pro-
grams use to invoke the services of a particular CORBA object. Ob-
ject skeletons are language- / platform-specific bindings that the im-
plementer of a CORBA object must complete.
CORBA server applications (a.k.a. object implementations)
CORBA is like many other client/server protocols such as DCOM
(Microsoft’s Distributed Common Object Model), RPC (Remote Pro-
cedure Call), or Java RMI (Remote Method Invocation), in that it
defines how an application can expose its functionality to other (pos-
sibly distant) applications.
To make a service available via application, a server application is de-
veloped that provides implementations for the object skeletons pro-
duced when the service’s IDL was compiled.
At runtime, a CORBA server application registers its availability
with a an Object Request Broker (see below) to make the server
application to client applications.
CORBA client applications
Once a service’s IDL has been compiled into appropriate client stubs,
a client application can be written to invoke the stub’s methods.
The stub acts as a proxy. When the client application invokes a
stub method (using the programming language’s normal technique
for calling methods / functions, the CORBA infrastructure will do
the necessary work of translating that method / function call into
the network messaging needed to invoke the corresponding method
in the server application.
ORB (Object Request Broker)
We’ve seen how IDL is used to define the syntax of an interface that
a server application wishes to expose. We’ve seen how, from a client’s
and server’s perspective, the invocation of a stub method in the client
somehow results in the invocation of a corresponding method in the
server application.
An Object Request Broker is the piece of software that lets clients
detect server’s availability on the network, and that routes client
request to the appropriate server.

– ODBC - Open DataBase Connectivity
This protocol is designed to allow applications to access relational
database data without regard to the vendor of the database.
An application program using ODBC can formulate SQL statements
to submit to a database server.
ODBC provides the client application with the programming inter-
face to submit the SQL statement to the server, and to retrieve the
query results from the server.



42 CHAPTER 1. DATA INTEGRATION SERVICES

In this sense, ODBC is like CORBA: It doesn’t provide application
semantics, but it does provide language bindings to the client appli-
cation to simplify the invocation of (possibly remote) services.



6. MATERIALIZED VIEW MANAGEMENT 43

6 Materialized View Management

A view defines a derived relation from a set of database relations. It is actually a
query whose result is given a name that can be used like other ordinary relation
names stored in the database. When the tuples of the virtual relation defined
by a view are physically stored in a database, we call such a view materialized
view.

Use of materialized views dates back to early 1980s [GM99]. They were
first proposed to be used as a tool to speed up queries on views. Then they
were also used to maintain integrity constraints and to detect rule violations in
active databases. They gained serious reconsideration by the emergence of new
applications like data warehousing. In this section, we discuss issues related to
use of materialized views in data integration systems.

We presented the materialized view approach to data integration in Sec-
tion 2. The term comes from the fact that a set of views are derived from the
data sources and the answers to those views are actually stored in a repository
called a data warehouse. The main purpose of this pre-computation is to improve
query response time. None of the complex query processing steps described in
Section 4 is needed to be able to answer a user query in data warehouses at the
time the query is asked. Those steps are completed and the results are collected
in advance of the queries. This not only provides the ability to answer many
queries very quickly, but also increases the availability of the system since the
warehouse continues to answer queries even if the underlying data sources may
become inaccessible for some reason at the time of querying.

Of course the benefits mentioned above does not come for free. First, the
views to be materialized need to be determined. Usually it is both costly and
redundant to materialize all the derived relations defined by the views which
constitute the unified schema of the integrated system. The most beneficial
views need to be selected based on criteria like frequently asked queries. Second
and more importantly, the views that are selected to be materialized need to be
maintained. View maintenance refers to the process of synchronizing derived
data stored at the warehouse with the updates on the base data stored at the
underlying data sources. The naive way of maintaining views would be to re-
materialize the views when a relevant update occurs. However, this is not
desirable for good performance.

In this section, we first present the materialized view selection problem to-
gether with the proposed solutions. Then we discuss various approaches for
maintaining the selected views efficiently.

6.1 Design and Selection of Views to Materialize

The problem of materialized view selection can be defined as follows: Given
a set of queries to the integrated system with their access frequencies and a
set of source relations with their update frequencies, find a set of views to be
materialized such that the total query response time (i.e. query processing time)
and the cost of maintaining the selected views are minimized [YKL97]. There



44 CHAPTER 1. DATA INTEGRATION SERVICES

may also be other resource constraints to be considered such as disk space, but
the most important of all is the maintenance cost/time.

Previous research on this problem has concentrated on Multiple-Query Op-
timization (MQO) techniques. MQO is the problem of finding an optimal query
execution plan for evaluating a set of queries simultaneously. Techniques used
involve identifying the common subexpressions among queries, executing those
once and reusing later. In general, there may be many possible plans for each
query and there may also be many possible ways of combining them. Thus, the
search space is really large. Two general approaches are: (i) producing local op-
timal plans for each query and then merging them, which does not guarantee an
optimal solution, and (ii) generating a globally optimal plan, which has a larger
search space. [SG90] has proven that MQO problem is NP-complete. Proposed
solutions usually make use of heuristics to find a solution as close as possible to
the optimal solution. The related work on materialized view selection follows a
similar path.

[YKL97] proposes a method where a Multiple View Processing Plan (MVPP)
is constructed from the set of queries. Then some parts of this plan are selected
to be materialized. The cost comparisons are based on the following cost mea-
sures: Cost of a query is the number of rows in the table used to construct
that query. Cost of query processing is the frequency of the query multiplied
by cost of query access from materialized nodes. Cost of view maintenance is
equal to the cost of constructing the view, i.e. re-materialization is assumed.
Total cost is equal to the sum of the cost of query processing and the cost of
view maintenance.

There are two stages to view selection:

1. finding a good MVPP
MVPP is the global query execution plan in which local execution plans
for individual queries are merged based on shared operations on common
sets [YKL97]. There are two ways of finding the MVPP:

• merging local optimal query plans
Local optimal plans are computed for each query. Then the queries
are ordered in a descending fashion based on their query processing
costs multiplied by their access frequencies. If there are k queries, k
MVPPs are constructed as follows:

for i=1 to k do
take the ith local query plan and
incorporate all the others to it in order

The view selection algorithm at stage 2 will be run on these k MVPPs
and then the least costly one will be chosen. This approach takes
linear time in terms of the number of queries.

• generating a globally optimal plan
Rather than the locally optimal plans, all possible plans for each
query are considered. The problem is mapped to a 0-1 integer linear



6. MATERIALIZED VIEW MANAGEMENT 45

programming problem which is stated as follows: Select a subset
of the join plan trees such that all queries can be executed and the
total query processing cost is minimum [YKL97]. Then the set of join
trees found are used to construct the MVPP. Solution to the linear
programming problem is the optimal solution. However, solving it is
exponential in the number of queries. Therefore, usually near-optimal
solution is found.

2. selecting views to materialize from the MVPP
An execution tree is built for the given MVPP whose nodes correspond to
intermediate results to the queries. We can simply choose the complete
tree or all the leaf nodes for materialization. These correspond to mate-
rializing all the queries and all the base relations, respectively. However,
our aim is to find a set of intermediate nodes to materialize such that the
total cost for query processing and view maintenance is minimized. The
brute force way of finding this set is to compare the cost of every possible
combination of nodes. This is not efficient. We have to use some heuris-
tics. The algorithm presented in [YKL97] is based on the following idea:
Whenever a new node is considered to be materialized, we calculate the
saving it brings in accessing all the queries involved, subtracting the cost
for maintaining this node. If the value is positive, then this node will be
materialized and added into the solution set.

A somewhat similar approach is presented in [Gup97] which is based on using
greedy heuristics and AND-OR graphs. An AND-OR graph represents a set of
query plans. AND-OR graphs of the queries are merged to obtain an AND-OR
view graph. Each node in the AND-OR view graph represents a view that could
be selected for materialization. The problem is to choose among the nodes of
the AND-OR view graph such that sum of total query response time and total
maintenance time is minimized. [Gup97] states that the minimum set cover
problem can be reduced to this problem and it is NP-hard. A near-optimal
algorithm is presented which uses greedy heuristics. The set of the selected
views has a benefit and at each step views that would increase the benefit of
this set would be added to the set. Special cases of AND view graphs, OR view
graphs, view graphs with indices are also investigated in [Gup97].

[RSS96] and [MRRS00], which mainly focus on the view maintenance prob-
lem, indirectly cover some methods that are applicable to view selection. [RSS96]
proposes to augment a given set of materialized views with an additional set of
views that may reduce the total maintenance cost. The selection problem here
is to determine the additional views. [MRRS00] applies MQO techniques both
to view selection and maintenance. Selection comes into play where additional
views are to be materialized temporarily for efficient maintenance. The claim
is that the same techniques are also applicable to selection of permanent views
to materialize.

There are also research studies in materialized view selection for the special
case of data cubes [HRU96] and multidimensional datasets [SDN98] in OLAP.
We do not present them in detail here.



46 CHAPTER 1. DATA INTEGRATION SERVICES

6.2 The Problem of View Maintenance

Materialized views are derived from data originally stored at multiple data
sources. As primary copies of data at the data sources get updated, materi-
alized views become stale or inconsistent with the underlying data. We call the
process of bringing the materialized views up-to-date with the changes in the
underlying data view maintenance. A materialized view can always be brought
up-to-date by re-evaluating the view definition. However, recomputing the views
every time the base data changes is not very efficient. Besides, [GM95] points
out that in general only a part of the view changes in response to changes in the
base relations, which is called the heuristic of inertia. Thus, only the parts of
the views that are affected from the changes need to be computed and updated.
This is called incremental view maintenance. In this subsection, we present
the dimensions of the problem and alternative policies for view maintenance.
Incremental view maintenance techniques will be discussed in the following sub-
sections.

6.2.1 Dimensions of the Problem

The following parameters determine the complexity of the view maintenance
problem [GM99]:

• Available Information
It refers to the amount of information available to the view maintenance
algorithm. The view definition and the actual update occurred on base
data have to be known to the algorithm. In addition to that, informa-
tion like the content of the materialized views, the contents of the base
relations, the definitions of other views and integrity constraints at the
data sources might also be accessible to the algorithm. Depending on how
much information is available, the task of view maintenance might be fa-
cilitated. For example, if we knew that a certain attribute is a key at the
underlying data source, then we would know also know that every inser-
tion would have a different value for that attribute. Hence, an insertion at
the source would require an insertion at the materialized view that refers
to that attribute.

• Allowable Modifications
It determines what modifications can be handled by the view maintenance
algorithm given other parameters. These might include insertions, dele-
tions, updates, group updates, etc.

• Expressiveness of the View Definition Language
View definition language may also facilitate or complicate the task of view
maintenance. Views might be defined at various levels of expressiveness
through languages including conjunctive queries, aggregation, recursion,
negation, etc.



6. MATERIALIZED VIEW MANAGEMENT 47

• Database and Modification Instance
Current contents of the data sources or the materialized views and the
modification may also determine the capabilities of the maintenance algo-
rithm.

• Complexity
A dimension that is somewhat at a different level than the others is the
complexity dimension which refers to the efficiency of the view mainte-
nance algorithm. Complexity can be measured in multiple sub-dimensions
including complexity of view maintenance language, view maintenance al-
gorithm or amount of extra information needed.

6.2.2 View Maintenance Policies

There are two main steps in materialized view maintenance: propagate and
refresh [GM99]. Propagate step involves computing changes to be done on
the materialized views upon changes to the base data and in refresh step the
computed changes are actually applied on the materialized views. Propagate
step always precedes the refresh step. The decision of when to perform the
refresh step is called a view maintenance policy. Maintenance policies can be
categorized as follows:

• Immediate View Maintenance
Refreshing is done within the transaction that changes the base data. The
advantages of this policy are that queries are processed fast and always
return up-to-date results. The reason for this is that materialized views
are brought up-to-date in advance of the queries. On the other hand, this
policy slows down the transactions at the data sources since propagation
and refreshing are to be done in the transaction’s scope. Besides, this
policy may not always be applicable when the data sources are fully au-
tonomous and their commit decisions can not be delayed by the integrated
system.

• Deferred View Maintenance
Refreshing on the views is done later than the transaction that changes
the base data. Log of changes to the base data are to be kept. This policy
allows batch updates by applying all the changes collected in the log to
the views at the same time. There are three deferred view maintenance
policies:

– Views are refreshed lazily at query time. It is guaranteed that query
answers will be consistent with the base data and this is done without
slowing down the transactions at the sources. However, queries to
the integrated system are processed more slowly.

– Changes to views are forced after a certain amount of change to the
base data have been done. Both transaction and query performances
are good, but queries may return non-up-to-date results.



48 CHAPTER 1. DATA INTEGRATION SERVICES

– Refreshing is done periodically in certain time intervals. This is also
called the snapshot maintenance. Again, in spite of the good trans-
action and query time, queries may return non-up-to-date results.

In general, immediate maintenance does not scale with the number of mate-
rialized views, but deferred maintenance does. Therefore the decision of which
views to maintain immediately has to be made very selectively. If real-time
queries are asked on a view for which consistent results are crucial, then that
view should be maintained immediately. Views which are queried relatively in-
frequently can be maintained in a deferred fashion. Usually decision support
applications, where a stable copy of the derived data is more important than
freshness, use periodical deferred policy. [CKL+97] provides a decent study on
consistency and performance issues in supporting multiple view maintenance
policies. Materialized views that are related to each other may become in-
consistent if they are maintained under different policies. Mutual consistency
between views has to be settled.

The next question to ask is how view maintenance is applied. In the next
subsections, we discuss how actually the maintenance should be performed.

6.3 Incremental View Maintenance

Incremental view maintenance algorithms have been investigated for a long time
as an efficient alternative to re-materialization. Most of the work in this area
consider the problem for centralized database systems where materialized views
are used for purposes like speeding up queries on views or implementing rule
checking efficiently. The problem has additional facets when considered in the
scope of data integration systems. However, previous work still applies to some
cases and form the basis of algorithms for data integration applications. We
believe the following categorization of incremental view maintenance algorithms
clarifies the link between the two cases:

• pre-update algorithms: maintenance is performed before the base rela-
tions have been actually updated, as in the case of immediate mainte-
nance policy where maintenance is performed within the transaction that
is updating the source.

• post-update algorithms: maintenance is performed after the transaction
that updates the relevant base relations is over.

Previous methods that apply to centralized databases naturally involve pre-
update algorithms because the base relations and the materialized views are
parts of the same system. However, data integration systems have to use post-
update algorithms since the underlying sources are autonomous and they are
unaware of the maintenance procedures that are occurring in the integrated sys-
tem. We can not force them to include maintenance procedures within their up-
date transactions. As stated in [ZGMHW95], information sources are decoupled
from the data warehouse. This brings additional problems about consistency.



6. MATERIALIZED VIEW MANAGEMENT 49

In this section, our focus is on methods devised for incremental view mainte-
nance in general. We present techniques specifically on data integration systems
in the next subsection.

[GM95] provides a survey of incremental view maintenance algorithms clas-
sifying them according to view language and available information dimensions.
Here we discuss some of them without giving an explicit classification. Our aim
is to give a flavor of the important issues that are addressed in many of those
algorithms.

[BLT86] handles Select (S), Project (P) and Join (J) views in isolation first
and then considers them together as SPJ views. For each case, both insertions
and deletions are considered. For S views, inserted tuples are simply unioned
and deleted tuples are simply subtracted from the materialized view data set.
Updating P views when deletion occurs in the base relation is more complicated.
The problem stems from the fact that a tuple in the view that is projected
on some particular attribute may be there due to multiple tuples in the base
relations. If one of these base tuples is deleted, the derived tuple may not have
to be deleted since there are other existing base tuples that it is derived from.
This problem is solved by using counters for view tuples. A view tuple would
have to be deleted when the counter dropped to 0. Upon insertions of new
tuples to one of the join relations, J views should only perform join between
the newly added tuples and the other join relation rather than computing the
join between two relations from scratch. Deletions are handled in a similar way
by only joining the deleted tuples and then subtracting those from the original
view. These methods are further combined together for SPJ views [BLT86].

[GMS93] presents two algorithms: Counting algorithm and DRed (Deletion
and Re-derivation) algorithm. In both of these algorithms, the emphasis is on
deletion since it is more problematic. Counting algorithm is proposed for non-
recursive views with negation and aggregate functions. It is based on the counter
method of [BLT86], but the view language is more general. For each tuple in
the materialized view, number of alternative derivations is stored as the count.
Relevant insertions increment the count and relevant deletions decrement the
count by 1. When the count drops to 0, the tuple need not be stored in the
materialized view any more. This algorithm also works with recursive views
only if every tuple has finite number of derivations. DRed algorithm works for
general recursive views with negation and aggregation. This algorithm involves
three basic steps: (i) ignore the alternative derivations and put the view tuple
into the delete set if it gets invalidated at least by one of its derivations, (ii)
remove the tuples from the delete set if they have other derivations, (iii) compute
the tuples to be inserted to the views due to insertions to base relations.

In addition to the algorithmic approaches as summarized above, there are
algebraic approaches to incremental view maintenance. [GL95] presents an ap-
proach based on multi-set/bag semantics. All the arguments are based on the
equivalence of bag-valued expressions. Bag algebra expressions are used to rep-
resent the materialized views. Given a transaction that changes the state of the
database and a set of bag expressions, they try to derive delta expressions which
represent how the bag algebra expressions need to be updated. The goal is to



50 CHAPTER 1. DATA INTEGRATION SERVICES

find a minimal set of such delta expressions. [GL95] also emphasizes that proper
handling of duplicates is important for computing the aggregate functions (like
averaging a list of values) correctly.

[RSS96] explores what additional views should be materialized for optimal in-
cremental maintenance of a given materialized view. [MRRS00] generalizes this
idea to how to maintain a set of views efficiently by using additional temporar-
ily or persistently materialized views. Approach involves materializing common
subexpressions between view maintenance expressions as in multi query opti-
mization algorithms. We mentioned this approach before in this section as we
presented the selection of views to materialize.

6.4 View Maintenance in Data Integration Systems

The main problem in data integration systems in terms of incremental view
maintenance is that maintenance has to be done after the updates at the data
sources have occurred. Later, when the maintenance has to take place, the
integrated system may need to ask additional queries to the data sources when
it does not have all the information needed to perform the maintenance. If the
data sources continue to change in the time between the updates known by the
integrated system and the maintenance time, then the additional queries will
be answered according to the new state of the data sources which is different
than the one at the time of initial update (i.e., the update which is trying to
be fixed at the integrated system). This is called a state bug [CGL+96] or view
maintenance anomaly [ZGMHW95]. This problem stems from the fact that pre-
update maintenance algorithms can not be used for data integration systems as
they are. [CGL+96] proposes two ways of avoiding the state bug:

• using the pre-update algorithms but restricting the updates and views so
that correctness is guaranteed

• developing specific algorithms for the post-update case

[CGL+96] proposes new algorithms for post-update case which are based on
the usage of database invariants, i.e. conditions that are guaranteed to hold at
every state of the database. These are used to maintain correctness. As [GL95],
algebraic approach based on bag semantics is taken. [CGL+96] also emphasizes
the minimization of the view down-time. Usually views become inaccessible for
queries during maintenance. [QW97] addresses this problem through a two-
version no locking (2VNL) algorithm. Two concurrent versions of the materi-
alized views provide continuous and consistent access to the warehouse during
maintenance.

[ZGMHW95], on the other hand, is based on a pre-update view mainte-
nance algorithm. The algorithm in [BLT86], which we briefly summarized in
the preceding subsection, is used as basis. [ZGMHW95] proposes ECA (Ea-
ger Compensating Algorithm) in which extra compensating queries are used to
eliminate anomalies. In fact anomalies would not occur if we re-computed the
views or stored the copies of base relations referenced in the views, but both



6. MATERIALIZED VIEW MANAGEMENT 51

of these options are too costly and not good options compared to incremental
view maintenance. In ECA, the basic idea is to send compensating queries to
the data sources to avoid the potential anomalies that may occur according to
query answers coming from the data sources. In other words, the warehouse
eagerly forces data sources to send correct information. This is done by an-
ticipating what kind of anomalies can occur beforehand and preparing view
maintenance queries which contain compensating expressions in addition to the
view maintenance expressions that would avoid the anomalies.

Next subsections discuss how the incremental maintenance process could be
made more efficient.

6.5 Update Filtering

Not all the updates at the data sources cause updates at the materialized views.
We can speed up the maintenance process if we can detect which base data
updates have no effect on the views, and hence need not be maintained. Such
updates are called irrelevant updates and the procedure of pruning irrelevant
updates from the maintenance plan is called update filtering. [BCL89] calls
queries/views that are not affected from the updates queries independent of
updates.

Most of the work in this area aims at theoretically defining necessary and
sufficient conditions for the detection of irrelevant updates for the cases of in-
sertions, deletions and modifications [BLT86, BCL89, LS93]. [BCL89] defines
irrelevant updates as update operations applied to a base relation has no effect
on the state of a derived relation independently of the database state. [LS93]
reduces the update independence problem to equivalence problem for Datalog
programs and provides decidability results for different cases. [BLT86] presents
more practical algorithms for detecting irrelevant updates. The views considered
are in the form of PSJ queries. Selection condition is the primary determinant
for deciding relevance. For insertions at the base relations, we substitute the
values of the inserted tuple in the selection condition of the view. If the selection
condition becomes unsatisfiable, then the insertion is irrelevant to the view, i.e.,
no tuple needs to be inserted to the view. Else, the insertion may be relevant
to the view. Similarly, for deletions, we substitute the values of the deleted
tuple in the selection condition of the view. If the selection condition becomes
unsatisfiable, then the deletion is irrelevant to the view, i.e., no tuple from the
view needs to be deleted. In general, satisfiability of boolean expressions is
NP-complete. [BLT86] assumes boolean expressions that are conjunctions of
inequalities. Then the problem can be solved in polynomial time. It can also
be generalized to disjunctions of conjunctions, which adds a linear factor to the
complexity.

In conventional database systems, update filtering can be implemented using
integrity constraints or triggers. The base relations are not decoupled from the
derived relations. View definitions are known to the whole system. However, in
data integration systems, the filtering has to be done at the integration system
level. Data sources can not perform filtering since they are not aware of the



52 CHAPTER 1. DATA INTEGRATION SERVICES

view definitions.

6.6 View Self-Maintenance

Another way to speed up maintenance is to minimize external data source access.
As we mentioned earlier, to maintain a view, we may need to ask queries to
the data sources in addition to the update information itself. This requires
to communicate with the sources. We should try to exploit the information
available at the integrated system (data warehouse) as much as we can to avoid
this communication.

In general, self-maintenance refers to views being maintained without using
all the base data. There exists different notions of its exact meaning depending
on how much information is available. The ideal case is that the view update is
performed locally at the integrated system by only knowing the particular base
data update that has occurred, the view definitions and the materialized data.
Whenever this is not possible, we need additional techniques to minimize base
data access.

The first thing to do is to decide whether a given view is self-maintainable or
not. If it is, then we need to know how to achieve self-maintenance. Otherwise,
techniques may be developed to make it self-maintainable. Self-maintainability
can be both investigated on a single view or on multiple views. Initially, we can
consider each view in isolation. It should also be noted that self-maintainability
is an issue specific to data integration systems. In traditional (centralized)
databases, since all information is known to the system, there is no context for
self-maintainability.

[GJM96] aims at defining self-maintenance rules for SPJ views. Self-maintain-
ability algorithms are highly dependent on the view definition language. Three
issues are investigated: (i) which relation is modified, (ii) what type of modifi-
cation, and (iii) if key information can be exploited. The results they have come
up with are as follows:

• For insertions, SP views are self-maintainable. SPJ views are self-maintain-
able only if join is a self-join (i.e. relation R is joined with itself) and join
attribute is the key of R. Other SPJ views are not self-maintainable.

• For deletions, SPJ views are self-maintainable.

• For updates, if modeled as deletion followed by insertion, the rules for
insertions and deletions hold. Otherwise, SPJ views are self-maintainable
if updates are on non-exposed (i.e. not involved in any predicate in the
view definition) attributes.

[BCL89] explores similar conditions for a more general view definition language.
[Huy97] investigates the meaning of self-maintainability at different contexts.

They show that self-maintainability can be reduced to the problem of deciding
query containment.

There are several techniques to make views locally maintainable [Huy97]:



6. MATERIALIZED VIEW MANAGEMENT 53

• Multiple-View Self-Maintenance
Views that are not self-maintainable when considered in isolation may
become collectively maintainable at the integrated system when they are
considered together [Huy97]. In other words, the information available to
each view is extended to all the materialized views at the warehouse in
addition to its own definition and materialization.

• Batch Updates
Rather than maintaining each update operation separately, if we save the
updates and maintain them all together, then the amount of work may
be reduced. For example, if an update operation deletes a tuple and
a following update inserts the same tuple back, then these two updates
have no effect on the state of the materialized views when considered as
a whole.

• Auxiliary Materialized Views
By materializing additional views, other views may become self-maintainab-
le. The basic idea here is to increase the amount of information available
at the integrated system level.

Lastly, one important point to note is that self-maintenance also removes the
situations where anomalies can occur when the maintenance is totally performed
locally at the integrated system. The reason for this is that anomalies are caused
by additional queries asked to the data sources some time after the related
update has occurred. If a view is self-maintainable, then no additional querying
is necessary.

6.7 Dynamic View Management

As stated earlier, materialized view management has two important compo-
nents: view selection and view maintenance. Until now we assumed that views
to materialize are selected once at the beginning according to some statistics on
frequently asked queries and base data update frequencies and then the selec-
tion is over. From that point on, the system concentrates on the maintenance of
those selected views. This kind of view management is called static view man-
agement. The major problem with this approach is that if the query workload
or base data update patterns change, then the decisions about view selection
become invalid.

The solution proposed in [KR99] is dynamic view management in which
view selection and view maintenance stages are unified. The query workload
is continuously monitored by the system and view selection decisions are up-
dated dynamically. The constraints to be considered in addition to the changing
workload patterns include disk space and maintenance window. Maintenance
window has more importance than space because usually the system is unavail-
able for queries while the maintenance is being carried out. This time window
has to be kept as short as possible. The more number of views materialized,



54 CHAPTER 1. DATA INTEGRATION SERVICES

the longer the maintenance window is. However, more materialization speeds
up the query processing. Therefore, a compromise has to be made.



7. SYSTEMS 55

7 Systems

There exists many systems which intend to develop tools to facilitate the in-
tegration of both structured and unstructured data from heterogeneous data
sources. In this section, we present some examples. We focus on some research
projects, rather than commercial ones.

7.1 Mediated Systems

7.1.1 TSIMMIS

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) con-
sists of two main components: (i) the source specific translators (wrappers),
and (ii) the intelligent mediators. Translators are responsible for converting a
user query in the common global model into queries in the local models of the
sources that the sources can execute and then converting the answer returned
from the sources back to the common model. Mediators assemble information
from sources, process and combine it, and transmit the final information to the
end user.

In TSIMMIS, a simple-describing object model is used called the Object
Exchange Model (OEM). OEM allows simple objects’ nesting and all objects
have labels to describe their meaning. OEM-QL query language is developed
to request OEM objects. OEM-QL is an SQL-like language specified to deal
with labels and object nesting. In TSIMMIS, both mediators and translators
are automatically or semi-automatically generated from their high level request
of the information process.

For interface, mediators and translators both take as input OEM-QL queries
and return OEM objects. The good point here is that it allows new sources
useful once a translator is supplied. There are two ways for end users to get
information, one is to write applications that ask for OEM objects, the other is
to use the browsing tool, named MOBIE (MOsaic Based Information Explorer),
to specify queries using OEM-QL.

Another important issue in TSIMMIS is that there is no global schema. A
mediator does not need to know details of all of the data it use. It is not
necessary for any person or software component to have a global view of all the
information managed by the system.

In TSIMMIS, constraint management is more difficult than the centralized
systems. Usually they do not have transactions among different sources. Each
source may have different policies to those data involved in a constraint. It is
not guaranteed that consistent data will be accessed at each time it interacts
with the system.

In summary, we can list three main differences between TSIMMIS and other
systems:

• TSIMMIS concentrates on providing an integrated system which deals
with very diverse and dynamic information.



56 CHAPTER 1. DATA INTEGRATION SERVICES

• In TSIMMIS, information access and integration are intertwined.

• TSIMMIS requires more human participation.

For more information about the TSIMMIS project, please refer to [CGMH+94].

7.1.2 SIMS

SIMS (Services and Information Management for decision Systems) is an infor-
mation mediator for processing queries to multiple information sources. This
system takes a domain-level query and dynamically chooses the useful sources,
generates a query plan which describes the operations and some specific orders
to deal with the data, and performs semantic query optimization.

The application domain models are defined by nodes, representing each
class of objects, and their relations, defining relationships between the objects.
Queries in SIMS are represented by the general domain model. The system
translates the domain-level query into a set of source-level queries. The informa-
tion source model define both the contents of the objects and their relationship.

To answer a query, SIMS first selects the appropriate information sources.
The system provides a set of reformulation operators that are responsible for
transforming the domain-level concepts into concepts that the information source
could accept. The operators include Select-Information-Source, Generalize-
Concept, Specialize-Concept, and Decompose-Relation.

The next step is to generate a query plan for the data process. The query
plan defines the concrete operations that need to be executed and the order
in which they will be executed. The system searches all possible plans with a
best-first method until a complete one is found.

Finally, the system performs the semantic query optimization. ”A set of
applicable rules for the query is constructed. These rules would either be learned
by the system or provided as semantic integrity constraints. Based on these
rules, the system infers a set of additional constraints and merges them with the
input query. The resulting query is semantically equivalent to the input query
but is not necessary more efficient. The set of constraints in this resulting query
is called the inferred set. The system will then select a subset of constraints in
the inferred set to complete the optimization.”

In summary, SIMS provides some ideas which are different from other inte-
gration systems:

• In SIMS, the integration problem is shifted from building a single inte-
grated model to how to map between the domain and the information
source models.

• The planning in SIMS is performed by an AI planner.

• Compared to other related works to search optimized queries, their algo-
rithm considers ”all possible optimizations by firing all applicable rules
and collecting candidate constraints in an inferred set. Then the system



7. SYSTEMS 57

selects the most efficient set of the constraints from the inferred set to
form the optimized subqueries”.

Details about SIMS project can be found in [ACHK93].

7.1.3 ARIADNE

ARIADNE is an integration system, which is developed to extract, query and
integrate data from semi-structured web sources.

ARIADNE project is based on an earlier work on the SIMS information me-
diator. However, web sources are different from databases in many ways, which
means that it is required to construct new mediator query planning techniques
to efficiently process web-based sources.

In ARIADNE, each web page was treated as a relational information source
- a small database, thus it gives a simple and uniform representation to facilitate
the integration of data.

In ARIADNE, query processing is decomposed into two phases: preprocess-
ing phase and query planning phase. The ARIADNE source selection algorithm
preprocess the domain model in order to efficiently select the sources, according
to the classes and attributes in the query. ARIADNE uses a method named
Planning-by-Rewriting to generate a plan. The initial, suboptimal plan is im-
proved by applying rewriting rules.

Modeling the information on a page. In ARIADNE, most semistruc-
tured web pages are described as embedded catalogs, in which special markers
are needed to locate information on a page. ARIADNE has a demonstration-
oriented user interface for users to let the system know what information to
extract from example pages. There is a machine learning system underneath
the interface to induce grammar rules.

Modeling the information on a site - the connection between pages.
To locate a page on a web site, the approach is to model the information needed
to navigate through a web site. Then the planner can automatically decide how
to locate a page. The developer uses the same approach as above to create
wrapper for the index page, but this wrapper only wraps a single page. There
are two common types of navigation methods used on web - direct indexing and
form-based retrieval.

Modeling information across sites. Across different sites, the same
entities may be referred to by different names. In ARIADNE, their approach is
to choose a basic source for an entity’s name and then apply a mapping from
this source to each one of the other sources which have different scheme to name
the entity. A mapping table is created for each entity in one data source, and
if the mapping is computable, it will be represented by a mapping function, a
program to convert one form into another form.

Details about ARIADNE project could be found in ARIADNE web page at
[ARI].



58 CHAPTER 1. DATA INTEGRATION SERVICES

7.2 Data Warehousing

7.2.1 WHIPS

There are two major components in data warehouse system: the integration
component, and the query and analysis component. Compared to most com-
mercial warehouse systems, which focus on the query and analysis component,
WHIPS (WareHouse Information Prototype at Stanford) focuses on the inte-
gration component.

The system consists of dissimilar modules which could communicate with
each other. Each module is implemented as a CORBA object, and each object
has a set of methods available to other objects.

In WHIPS, the warehouse data is represented by the relational model, and
views are defined in the relational model. The source monitor and wrapper are
responsible for converting the underneath source data to the relational model
before it is sent to any other module.

Each source is encapsulated by a source-specific monitor and wrapper. The
functionality of monitor is to detect any modifications on the source data and
inform the integrator of them.

Views are defined in a subset of SQL. They have Select-Project-Join views
and aggregate views over all of the source data. Sometimes the view definition
may also state in detail which algorithm to use for view consistency. Currently,
they are adding simple SQL aggregate operators (min,max,count,sum, and av-
erage) to the view language.

The integrator is responsible for both the system startup, containing new
source addition, and view initialization. But the main functionality of integrator
is to assist view maintenance, by distributing different modifications used by
different views. To do so, the integrator uses a set of rules which are generated
automatically from the view tree when they are defined. The current integrator
is carried out as an index over the view managers.

Each view has one view manager module, using one of the Strobe algorithms
to keep the view consistency. There are two advantages to do that. First, the
work can be done in parallel on different machines. Second, each view could
make use of a distinct Strobe algorithm for its level’s consistency.

”The query processor receives global queries from the view managers and
poses the appropriate single-source queries to the source wrappers to answer
them. it then passes the composite global query processor, performs distributed
query processing, using standard techniques such as sideways information pass-
ing and filtering of selection condition to prune the queries it poses to the
wrappers”.

To sum up, WHIPS System allows views over heterogeneous sources and
supplies incremental view maintenance in a modular and scalable fashion.

8 Open Questions and Research Issues

... will be formed later from everybody’s list of research issues from the above



9. CONCLUDING REMARKS 59

sections ...

9 Concluding Remarks

... will be written later ...



60 CHAPTER 1. DATA INTEGRATION SERVICES



Bibliography

[ACHK93] Y. Arens, C. Y. Chee, C. Hsu, and C. A. Knoblock. Retrieving
and Integrating Data from Multiple Information Sources. Interna-
tional Journal of Intelligent and Cooperative Information Systems
(IJCIS), 2(2):127–158, 1993.

[AK97] Naveen Ashish and Craig Knoblock. Semi-automatic Wrapper
Generation for Internet Information Sources. In Second IFCIS
International Conference on Cooperative Information Systems
(CoopIS), Charleston, SC, 1997.

[ARI] http://www.isi.edu/ariadne.

[Ash00] Naveen Ashish. Optimizing Information Mediators By Selectively
Materializing Data. PhD thesis, USC, March 2000.

[BCL89] J. A. Blakeley, N. Coburn, and P. Larson. Updating Derived
Relations: Detecting Irrelevant and Autonomously Computable
Updates. Transactions on Database Systems (TODS), 14(3):369–
400, September 1989.

[BDKV92] O. Buneman, S. Davidson, A. Kosky, and M. VanInwegen. A
Basis for Interactive Schema Merging. In Hawaii International
Conference on System Sciences, pages 311–322, 1992.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Anal-
ysis of Methodologies for Database Schema Integration. ACM
Computing Surveys, 18(4):323–364, 1986.

[BLT86] J. A. Blakeley, P. Larson, and F. Wm. Tompa. Efficiently Updat-
ing Materialized Views. In ACM SIGMOD International Confer-
ence on Management of Data, pages 61–71, Washington, D.C.,
May 1986.

[BOT86] Yuri Breitbart, Peter L. Olson, and Glenn R. Thompson.
Database Integration in a Distributed Heterogeneous Database
System. In ICDE, pages 301–310, 1986.

61



62 BIBLIOGRAPHY

[CGL+96] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey.
Algorithms for Deferred View Maintenance. In ACM SIGMOD
International Conference on Management of Data, pages 469–480,
Montreal, Canada, June 1996.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
Project: Integration of Heterogeneous Information Sources. In
10th Meeting of the Information Processing Society of Japan
(IPSJ), pages 7–18, Tokyo, Japan, October 1994.

[CKL+97] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and
K. A. Ross. Supporting Multiple View Maintenance Policies.
In ACM SIGMOD International Conference on Management of
Data, pages 405–416, Tucson, AZ, June 1997.

[Eik99] Line Eikvil. Information Extraction from World Wide Web. A
Survey, July 1999.

[GJM96] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data Integration us-
ing Self-Maintainable Views. In International Conference on Ex-
tending Database Technology (EDBT), pages 140–144, Avignon,
France, March 1996.

[GL] Nectarios Georgalas and Pericles Loucopoulos. Integration of
Business Operational Data using a Schema Integration Technique.

[GL95] T. Griffin and L. Libkin. Incremental Maintenance of Views with
Duplicates. In ACM SIGMOD International Conference on Man-
agement of Data, pages 328–339, San Jose, CA, June 1995.

[GM95] A. Gupta and I. S. Mumick. Materialized Views: Problems, Tech-
niques, and Applications. Data Engineering Bulletin, 18(2):3–18,
June 1995.

[GM99] A. Gupta and I. S. Mumick, editors. Materialized Views: Tech-
niques, Implementations, and Applications. MIT Press, 1999.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining
Views Incrementally. In ACM SIGMOD International Conference
on Management of Data, pages 157–166, Washington, D.C., May
1993.

[GMUW00] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database System Implementation, chapter 11: Information Inte-
gration. Prentice Hall, 2000.

[Gup97] H. Gupta. Selection of Views to Materialize in a Data Warehouse.
In International Conference on Database Theory (ICDT), pages
98–112, Delphi, Greece, January 1997.



BIBLIOGRAPHY 63

[HGMN+97] Joachim Hammer, Hector Garcia-Molina, Svetlozar Nestorov, Ra-
mana Yerneni, Marcus Breunig, and Vasilis Vassalos. Template-
based wrappers in the TSIMMIS system. In Workshop on Man-
agement of Semistructured Data, Tucson, Arizona, May 1997.

[HM85] Dennis Heimbigner and Dennis McLeod. A Federated Architec-
ture for Information Management. ACM Transactions on Office
Information Systems, 3(3):253–278, July 1985.

[HRU96] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
data cubes efficiently. In ACM SIGMOD International Conference
on Management of Data, pages 205–216, Montreal, Canada, June
1996.

[Huy97] N. Huyn. Multiple-View Self-Maintenance in Data Warehousing
Environments. In International Conference on Very Large Data
Bases (VLDB), pages 26–35, Athens, Greece, August 1997.

[JPSL+88] G. Jacobsen, G. Piatetsky-Shapiro, C. Lafond, M. Rajinikanth,
and J. Hernandez. CALIDA: A Knowledge–Based System for
Integrating Multiple Heterogeneous Databases. In Third Inter-
national Conference on Data and Knowledge Bases, pages 3–18,
Jerusalem, Israel, 1988.

[KR99] Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View
Management System for Data Warehouses. In ACM SIGMOD
International Conference on Management of Data, pages 371–382,
Philadelphia, Pennsylvania, June 1999.

[KWD97] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos.
Wrapper induction for information extraction. In Intl. Joint con-
ference on Aritificial Intelligence (IJCAI), pages 729–737, 1997.

[Lit85] W. Litwin. An Overview of the Multidatabase System MRSDM.
In ACM National Conference, pages 495–504, October 1985.

[LS93] A. Y. Levy and Y. Sagiv. Queries Independent of Updates. In In-
ternational Conference on Very Large Data Bases (VLDB), pages
171–181, Dublin, Ireland, August 1993.

[LSS93] Laks V.S. Lakshmanan, Fereidoon Sandri, and Iyer N. Subrama-
nian. On the Logical Foundations of Schema Integration and Evo-
lution in Heterogeneous Database Systems. DOOD’93, December
1993.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. Wrapper induction for
semistructured web-based information sources. In Conference on
Automatic Learning and Discovery CONALD-98, 1998.



64 BIBLIOGRAPHY

[Mot99] Amihai Motro. Multiplex: A Formal Model for Multidatabases
and Its Implementation. In Next Generation Information Tech-
nologies and Systems, page 138, 1999.

[MRRS00] H. Mistry, P. Roy, K. Ramamritham, and S. Sudarshan. Materi-
alized View Selection and Maintenance using Multi-Query Opti-
mization. Submitted for publication, March 2000.

[MW88] N. E. Malagardis and T. J. Williams, editors. Standards in Infor-
mation Technology and Industrial Control, chapter Multidatabase
Systems in ISO/OSI Environment, pages 83–97. North-Holland,
Netherlands, 1988.

[OMG] www.omg.org.

[PGMA96] Y. Papakonstantinou, H. Garcia-Molina, and S. Abiteboul. Ob-
ject fusion in mediator systems. In International Conference on
Very Large Databases, Bombay, India, September 1996.

[QW97] D. Quass and J. Widom. On-Line Warehouse View Maintenance.
In ACM SIGMOD International Conference on Management of
Data, pages 393–404, Tucson, AZ, June 1997.

[Rea89] M. Rusinkiewicz and et. al. OMNIBASE: Design and Implemen-
tation of a Multidatabase System. In 1st Annual Symposium in
Parallel and Distributed Processing, Dallas, Texas, May 1989.

[RSS96] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized View
Maintenance and Integrity Constraint Checking: Trading Space
for Time. In ACM SIGMOD International Conference on Man-
agement of Data, pages 447–458, Montreal, Canada, June 1996.

[SDN98] A. Shukla, P. M. Deshpande, and J. F. Naughton. Materialized
View Selection for Multidimensional Datasets. In International
Conference on Very Large Data Bases (VLDB), pages 488–499,
New York City, NY, August 1998.

[SG90] T. K. Sellis and S. Ghosh. On the Multiple-Query Optimization
Problem. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), 2(2):262–266, June 1990.

[SL90] Amit P. Sheth and James A. Larson. Federated database sys-
tems for managing distributed, heterogeneous, and autonomous
databases, September 1990. ACM Computing Surveys.

[YKL97] J. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized
View Design in Data Warehousing Environment. In International
Conference on Very Large Data Bases (VLDB), pages 136–145,
Athens, Greece, August 1997.



BIBLIOGRAPHY 65

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View
Maintenance in a Warehousing Environment. In ACM SIGMOD
International Conference on Management of Data, pages 316–327,
San Jose, CA, June 1995.


