
Chapter 1

Web Proxy Caching

1 Introduction

1.1 Motivation

The World Wide Web is a large distributed system based on a client-server architecture.
web clients request information from web servers which provide information through the
network. The web community is growing so quickly that the number of clients accessing
web servers is increasing nearly exponentially. This rapid increase of web clients makes the
web slower. How can we reduce the latency web user’s face when downloading web objects?

Several approaches have been proposed to increase the performance of the web. Trying
to scale server and network bandwidth to keep up with increasing demand is one simple
but expensive solution. Several observations suggest that a cache-based approach can help
improve performance for lower cost. First, a single client often requests the same web object
several times during a small interval of time. Second, web object accesses are non-uniform
over all web servers; a small set of “popular” servers faces a disproportinate share of total
server load. Further, different users often request the same web object from these highly
loaded servers. If we can store commonly requested objects closer to web clients, users
should see lower latency when browsing. web caches are the systems that keep copies of
frequently accessed objects close to clients The development of web caching has spurned
new research in many areas [7, 40].

1.2 Traffic Characteristics

The analysis of web traffic characteristics is important because specific access properties can
be exploited to develop more efficient web caches.

Two of the most important characteristics of web traffic for web cache design are access
frequency of a web object and temporal locality of reference in web request streams. It is
a common belief that the frequency of web object access is not uniform for all web obejcts.
Several early studies [3, 13, 18] have found that the relative frequency with which web pages
are requested follows Zipf’s law[44]. Zipf’s law maintains that the relative probability of a
request for the I’th most popular page is proportional to 1/I. However, recent studies[33, 9]
found that this distribution does not follow Zipf’s law precisely, but instead follow Zipf-like
distribution with a variable exponent.

The tendency that recently accessed objects are more likely to be accessed again in
the near future represents temporal locality. Temporal locality of reference in web request
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streams has been observed in many studies[5, 10, 20].
There is an inherent relationship between the temporal locality and skewed access distri-

bution of web traffic characteristics. That is, the population is one of the major determinants
of the temporal locality. However, there are other contributors to temporal locality, which
is temporal correlation of repeated requests to the same web object[20, 22, 23].

The precise identification and characterization of web traffic properties can help improve
the efficiency of web caches. Usually, workload characterization is done by analyzing traces of
web traffic. Web workloads may be generated or recorded from the perspective of browsers,
proxies, and servers. Workloads from clients can be valuable in evaluating user-level per-
formance metrics and access patterns, but have limited value when looking at system-level
performance metrics or the study of global properties.

Server workloads are often easy to find, as many servers log the requests they service.
But workloads obtained from server logs do not reflect the access patterns of individual
users. Thus, while they are useful when evaluating system-level performance metrics such
as network bandwidth demand and server load, they are less effective when studying user-
level performance metrics such as service time.

A caching proxy often functions as a second (or higher) level cache. That means that
only the misses from web clients are passed to the proxy. Workloads from proxies usually
do not exhibit per-user temporal locality of reference, but do track the traffic generated by
a large number of user simulataneously.

1.3 Types of Web Caching

Information providers publish their information on the World Wide Web in a variety of
formats. Usually information in the web is referred as documents or web pages. In terms of
caching, unist of information in the web are not exactly simple documents or pages. Instead,
a piece of a document or a part of stream information may be a unit of caching. So, we will
use web object as a more generic term to represent a unit of web content.

Web caching is managing copies of web objects closer to clients to enable clients to see
lower latency when accessing to objects. As a client requests a web object, it flows from a
server, through a network, and to the client. Between a client and a server may be one or
more proxy servers. There are three kinds of caches according to where copied objects are
stored and managed.

1.3.1 Browser Cache

This type of cache is built on a web browser. A web browser supporting caching stores
local copies of web objects which have been accessed based on a specific cache management
policy. There are two forms of client caches[1]. A persistent client cache keeps web objects
between invocations of the web browser. 1 A non-persistent client cache 2 removes cached
copies when the user quits the browser.

1.3.2 Proxy Cache

In general, a proxy is a special HTTP server that can run on a firewall machine[32]. Proxying
is a standard method for allowing accesses through a firewall without forcing each client to
include customized support a special firewall environment. The cache is located on a machine
on the path from multiple clients to multiple servers. Usually the same proxy is used by

1Netscape’s Navigator browser uses a persistent cache.
2The NCSA Mosaic browser uses this type of cache.
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all clients within a given subnet. This makes it efficient for a proxy to do caching of web
objects requested by a number of clients. When a single proxy cache communicates solely
with it’s clients and servers, it is called an isolated cache. It is possible to use a set of caching
proxies which cooperate with each other to improve performance. They are called cooperative
caches. The configuration may be hierarchical so that the caches can be identified as first
level caches, second level caches, and so on. It may be also non-hierarchical.

1.3.3 Server Cache

Server caching is another term for placing a cache in front of a web server. This is called
“server” caching because it is implemented by the administrators of the web servers, rather
than by the clients. The goal here is to cache and distribute web objects from the servers
and to offload the processing of client requests.

1.3.4 Caching Hierarchy

Proxy
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request request request

requestrequest request
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Figure 1.1: An example web cache hierarchy.

Hierarchical web proxy cache structures are similar to memory hierarchies[16]. Figure 1.1
shows an example caching hierarchy. At each level, requests are processed with cache misses
propagating a request down the hierarchy one more level.

Web browser caches form a top of the hierarchy. By configuring browsers to direct web
objects requests to a nearby proxy server, the proxy cache provides the second level of
caching. The proxy cache then sees requests for all misses in the brower cache. Some proxy
caches can be organized to act as a third-level caches as well. The lowest-level proxy cache
is typically a cooperative cache that connects lower-level caches to each other so that a miss
in one cache can be satisfied by one of its siblings. At the bottom of the hierarchy are the
reverse caches which are closest to web servers. If requests for web objects are satisfied at
higher levels of the cache hierarchy, then the cost of accesses can be significantly reduced..

1.4 Contrasting Web Cache Styles

A browser cache tries to reduce retrieval latency for a user by keeping their previously
accessed web objects in a client’s memory and disk. A browser supports the necessary func-
tions for cache management including cache size, maximum retention period and mechanism
to main consistency of copies and so on. For the user’s perspective, reducing latency is the
most significant factor over larger network efficiency considerations. These consideratons
might conflict with the goals of an organization or network system. Some browser caching
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provides an aggressive form of preloading of web objects which the user is likely to access.
However, this may cause an unnecessary increase in network traffic.

Proxy caches lie in the middle of network and receive requests from many clients. So
the requests seen by a proxy cache are interleaved across users. When requests are satisfied
from a proxy cache, network traffic will be reduced because those requests need not be sent
to servers. It also reduces client latency and server workload. As the proxy cache manages
web objects requests from multiple clients, it is focused on improving global performance.
Efficient management of cache space is more important in this case than for a browser cache.
There are a number of issues to be considered for proxy caches and they will be discussed
in the following sections.

Server caches are similar to proxy caches. However they accepting only traffic for their
web servers so that they act as a true web server from the client’s perspective. These caches
are not for end users, but deployed and maintained for large web publishers. The focuses of
server caches are primarily the scalability and server workload problems faced by popular
web sites. Decreasing network traffic to web server is also a concern of these caches. It
can also enhance security by forcing clients to communicate through anintermediate layer
instead of directly with the true originating server.

Web caching needs to consider different issues compared to other caching systems in
traditional client-server environments. Usually, traditional caching assumes that the data to
be cached has a fixed size (i.e. pages or blocks). Time to load a page is also assumed to be
fixed (i.e. main memory access time, or some i/o access time). But web objects exhibit large
variations in size from a few hundred bytes to several of megabytes. Additionally, in the web
environment, times needed to load web objects are variable and often difficult to predict.
Further, web caching systems can still be useful with relatively weak consistency models -
unlike a memory hierarchy, where weak consistency is wholly unacceptable. So, approaches
for traditional caching do not fit for the problem of caching in a web environment. These
differences make web caching an interesting and challenging problem.

1.5 Why Focus on Proxy Caches?

Proxy caches have been the subject of significant academic research[32, 18, 6] and also a
significant area of commercial development. While an individual browser cache or server
cache is beneficial to only a specific client or a web server site, a single proxy cache can
benefit multiple clients and multiple servers at the same time.

A proxy cache has several potential advantages [18]. The first is that it can reduce
latency on requests for cached pages because those requests need not be directed to original
servers. As only missed requests from a proxy cache or explicitly requested ones to the server
are sent to servers through the network, proxy caching can reduce both overall network load
and server load. When a remote server is unavailable because of network disconnections
or failures, cached copies are still abailable to users. However, proxy caching has several
potential disadvantages. The basic problem associated with caching is the object returned
to a user may be different from the originating server’s current conent if the objects has
changed at that server since the last cache update. Cache consistency mechanisms need to
be applied to address this problem. When a request for an web object is made, it should be
checked always whether the requested object exists in the cache. Otherwise, the request will
be passed to the original web server. So deploying proxy caching may increase latency on
requests for objects which are not cached. It also incurs a cost in administrative complexity,
disk and memory space, and processing power. As a side effect of caching, objects hit counts
in a server may not reflect users’ real object access tendencies or true object popularity.
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Figure 1.2: Basic flow diagram of a proxy cache.

2 How A Proxy Cache Works

The basic state machine implemented by a web proxy cache is depicted in figure Figure 1.2.
User requests come into the cache as users browse the web; whatever happens within the
cache, the result seen by the user is a returned web page. This user experience is captured in
the top- and bottom-most blocks in the flow diagram: URL requests come into the system,
and the system replies with pages. Performance is measured from the user’s perspective,
although there are a number of different measures proposed in the literature.

These user requests come into the proxy cache as HTTP commands. The user is presented
with the view of a single proxy cache, but the cache may be internally distributed and
repeated accesses may result in a different server processing the requests. Within the context
of this flow diagram: the inflow of requests may be directed at a large number of “In Cache?”
systems, each operating on a different computer.

When a request is received, the first operation performed determines whether the re-
quested object has already been stored in the cache. This is simply a question of querying
the contents of the cache, and returning a boolean result. Again, the cache may store objects
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in a distributed fashion, resulting in a more complex operation to service this query.
If the object was found to be in the cache, the system then checks to see if the cached

copy is “valid.” The definition of valid varies from implementation to implementation; this
is where the proxy cache designer can control the consistency model that is in place and the
scope of objects that are considered cachable.

The weakest consistency model for a proxy cache always returns “Yes” at this point:
all cached objects are considered valid. Similarly, the strongest consistency model always
returns “No” at this point: the object is reloaded for every request. In between these
extremes lie the consistency models of interest, using checks like the age of a cached object,
time-to-live information from the server or dozens of other possible metrics. Valid objects
are returned directly to the user.

The set of objects that are considered cachable is also defined at this stage. A proxy
cache could rule out caching cgi content by always declaring any object with “cgi-bin” in
the name to be invalid. A similar approach could insure that only HTML (and not ASP,
AVI, etc...) content is cached.

If a cached object is invalid or if the object was not found within the cache, the system
retrieves the data from the originating server. After the data has been downloaded, the
system faces the task of caching it. This stage of the process includes the replacement
policy component of web proxy cache design: when the cache does not have the space to
store the downloaded object, it must evict objects from the cache to make room.

The policy used to select which objects are to be removed from the cache is user-specified.
Further, the policy that determines when the cache is full is user-specified: the cache can
impose restrictions on the number of cached objects from a single server or domain, or any
other restrictions on cached objects the designer wants. Available cache space need not be
the only consideration when deciding if replacement is needed, but it surely must be one of
them.

Similarly, the system need not restrict the set of retrieved objects to those requested
by the user - although the cache will need to retrieve the objects needed to satisfy user
requests as they come in. A proxy cache could be built to retrieve (and then pass on to the
“cache object” stage) documents without an explicit user request. This technique is known
as “prefetching”: downloading objects before an explicit request has been made for them.
Whether to implement such a system, and what the list of prefetched objects should be, are
both decisions left up to the proxy cache designer.

Within this overview of web proxy cache functionality, we highlight 6 issues for further
discussion:

• proxy cache performance

• cache consistency model

• replacement policy

• prefetching

• cachability

• architecture

Each of these issues concerns the design of one or more steps of a proxy cache system, and
has been the subject of significant academic and commercial research. Building a web proxy
cache requires deciding how to handle each of these issues; building a proxy cache well-suited
to your goals requires understanding each of them.
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3 Quantifying Performance

3.1 Performance Metrics

Many different performance metrics have been proposed in the literature. We focus on 5
quantities that are widely measured and used by practitioners.

Hit Ratio is the number of requests that hit in the proxy cache as a percentage of total
requests. When the cache size is small and the sizes of documents are similar, it will be a
good measure.

Byte Hit Ratio is the number of bytes that hit in the proxy cache as the percentage of
the total number of bytes requested. When the cache size is big and the sizes of documents
are different, it will be a good measure.

Latency Reduction is the percentage of the sum of downloading latency for the pages
that hit in cache over the sum of all downloading latencies. When hte waiting time has
become the primary concern of Web users, it will be a good measure.

Hop Reduction is the ratio between the total number of the hops of cache hits and the
total number of the hops of all accesses. When the network cost is mainly from the number
of network hops traveled by documents, it will be a good measure.

Weighted-Hop Reduction is the corresponding ratio for the total number of hops
times ”packet savings” on cache hits. A cache hit’s packet saving is 2 + filesize/536, as an
estimate of the actual number of network packets required, if the request is a cache miss (1
packet for the request, 1 packet for the reply, and size=536 for extra data packets, assuming
a 536-byte TCP segment size). When the network cost is proportional to the number of
bytes or packets, it will be a good measure.

3.2 Performance of various replacement policies

3.2.1 Hit Rate and Byte Hit Rate

Maximizing the Hit Rate and Byte Rate is one of the major concerns for proxy caching.
GreedyDual-Size (GD-Size) (1) and GD-Size(packets) are two of replacement algorithms
that can achieve this goal. They are two versions of the GreedyDual-Size algorithm. The
cost for each document is set to be 1 to minimize miss ratio in GDSize(1) and the cost for
each document is set to be 2+size/536 to minimize the network traffic resulting from the
misses in GD-Size(packets).

Simulation tests show that GD-Size(1) can achieve the best hit ratio among Least Re-
cently (LRU), Size, Lowest Relative Value (LRV), GDSize(1) and GD-Size(packets). It
performs particularly well for small caches. Thus it would be a good replacement algorithm
for the main memory caching of web pages.

However, since GD-Size(1) considers the saving for each cache hit as 1, regardless of the
size of document, GD-Size(1) achieves its high hit ratio at the expense of a lower byte hit
ratio GD-Size(packets), on the other hand, achieves the overall highest byte hit ratio and
the second highest hit ratio. GD-Size(packets) tries to minimize overall network traffic.

LRV outperforms GD-Size(packets) in terms of hit ratio and byte hit ratio. Because
many workloads have significant skews in the probability of references to different sized
files, and LRV knows the distribution before-hand and users it to improve performance.
However, for all other traces where the skew is less significant, LRV performs worse than
GD-Size(packets) in terms of both hit ratio and byte hit ratio.

Above all, for proxy designers that think hit ratio is most important, GD-Size(1) is the
appropriate algorithm. On the other hand, GD-Size(packets) is the appropriate algorithm
to achieve both a high hit ratio and a high byte hit ratio.
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3.2.2 Latency Reduction

As the waiting time to retrieve a web object has become the primary concern of web users,
reducing the latency of HTTP requests has become a major concern for proxies. Hybrid is
one replacement cache replacement algorithm which takes into account the different latencies
incurred in loading different web pages, and attempts to minimize the average latency seen
by a system user. This algorithm has a lower average latency than LRU, LFU and SIZE.

The two versions of GreedyDualSize that take latency into account are GD-Size(latency)
and GD-Size(avg latency). The cost of a document is set to be the latency that was required
to download the document in GD-Size(latency). The cost of a document is set to be the
estimated download latency of a document for GD-Size(avg latency).

GD-Size(1) performs the best, yielding the highest latency reduction, among LRU, Hy-
brid, GD-Size(1), GD-Size(latency) and GD-Size(avg latency). GD-Size(latency) and GD-
Size(packets) finish the second. And LRU follows close behind. GD-Size(avg latency) per-
forms badly for small cache sizes, but performs very well for relatively large cache sizes. And
last, due to its low hit ratio, Hybrid performs the worst. Hybrid has a low hit ratio because
it does not consider how recently a document has been accessed when making replacement
decisions.

In summary, GD-Size(1) is the best algorithm to reduce average latency.

3.2.3 hop Reduction and Weighted-hop Reduction

Network cost is another concern for web proxy caches. GD-Size(hops) and GD-Size(weightedhops)
are two replacement policies that incorporate network cost. In GD-Size(hops) the cost of
each document is set to be the hop value associated with the Web server of the document,
and in GD-Size(weightedhops), the cost is set to be hops*(2 + filesize/536).

Simulation shows that algorithms that consider network costs do perform better than
algorithms that ignore them. For hop reduction, GD-Size(hops) performs the best, and
for weighted-hop reduction, GD-Size(weightedhops) performs the best. This shows that
GreedyDual-Size is also very flexible and can accommodate a variety of performance goals.

Thus, GD-Size(hops) is a good choice for the regulatory role of proxy caches. On the other
hand, GD-Size(weightedhops) is the appropriate algorithm if the network cost is proportional
to the number of bytes or packets.

3.2.4 Summary

Based on the above results, GD-Size(1) is the appropriate algorithm to achieve high hit
ratio or low average latency. If a high byte hit ratio is also important in the proxy, GD-
Size(packets) is a good choice. If the documents have associated costs (i.e. network transmit
time) that do not change over time, or change slowly over time, then GD-Size(hops) and
GD-Size(weightedhops) are the appropriate algorithms to consider.
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4 Cache Consistency

4.1 Overview

Though web proxy caching provides several beneficial effects, it introduces a new problem
not present in cacheless web environment. As there can be more than one copy of a given
web object, a user might see an old copy of a requested object when the cache returns
its data but the originating server has changed the object since the cache last copied it.
For web caches to be useful, cached copies should be updated when the original objects
change. When cached copies are not up-to-date, they are considered to be “stale”. Cache
consistency mechanisms insure that cached copies of objects obey certain rules - a cache
consistency policy - with respect to their being out of date[19, 15].

Current consistency models for web cache maintenance can be divided into two categories.
Strong consistency is the model which ensures that a stale copy of data will never be returned
to a user. However, no cache’s implement the strong consistency model because of the
unbounded message delays in the Internet and the limited utility of a strong-consistent
proxy cache. Weak consistency is a broad class of models in which a stale data might be
returned to the user. So, weak consistency may not always be satisfactory. Users should be
aware that the cache might occasionally return a stale data.

In order to maintain strong consistency, a proxy cache must know exactly when the
original objects change in order to reflect those changes in its own copies. However, there
is no way for the cache to know when objects change without either asking the server or
providing a mechanism whereby servers can inform caches about changes. For the weak con-
sistency case, a proxy cache should determine whether a copied object should be considered
as up-to-date or not. A proxy cache can use some information from the server alongside its
own decision algorithms to estimate the validity of the copied data more accuractely. Such
estimation might not always be correct, resulting in the cache occasionally returning stale
data.

Cache consistency algorithms have been extensively studied in the context of traditional
distributed file systems and client/server database systems. Most of the traditional algo-
rithms guarantee strong consistency and require servers to maintain state about the data
cached by clients. However, the web is fundamentally different from a distributed file system
and a client/server system in its access patterns[19]. Also, the scale of the web is orders
of magnitude larger than any distributed file system, making these schemes intractable for
web cache consistency. As changes for an object are made from a single web site, caches
should never observe conflicting update instructions, and that may make the consistency
issues simpler. Such different environments may make the techniques used in conventional
systems not be adequate for caching on the Web.

4.2 HTTP mechanisms to support cache consistency

HTTP[8, 15] defines several headers which were specifically designed to support caching.
Though the HTTP specification specifies certain behaviors for web caches, it does not specify
how to keep cached objects up to date.

The HTTP GET message is used to retrieve a web object given its URL. However GET
alone does not guarantee that it will return a fresh object. HTTP headers that may effect
caching can be classified into two categories. The first category includes headers appended
to retrieve a web object for cache control. The second category includes headers appended
when a web object is returned.
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4.2.1 HTTP Headers Appended to a GET Message

• If-Modified-Since:date : When appended to a GET message, a web object will be
returned only if its last modification date is greater than the date in the If-Modified-
Since header which is the last time a cache obtained a new copy from the originating
server. Otherwise, ”a Not Modified 304 reply” is returned. A GET message with
attached If-Modified-Since header is called a conditional GET.

• Pragma:no-cache : When appended to a GET message, it indicates that a cache may
not return a cached object. Instead, it must return a fresh version of the object
retrieved from the object’s home server. Most browsers offer a ”Reload” button which
retrieves an object using this header.

4.2.2 HTTP Headers Returned in Response to the GET Message

• Expires:date : This header notifies caches of the time until the object should no longer
be considered fresh. After that time, every request for the object should be sent
to the originating server to see if the object has changed. Expires headers will be
specially effective for web objects for which it is relatively easy to estimate expirations.
For example, static images which don’t change much or objects that tend to change
regularly are be good candidates for this approach.

• Last-Modified:date : This header returns the time the object was last modified to create
the current version. This header is mandatory. Every object returned from a GET
message will have this header. The last-modified time of an object can be a unique
version identifier for the object. If cached objects have identical Last-Modified:date
headers then the contents of those objects are guaranteed to be identical.

• Date:date : This header provides the last time an object was considered to be fresh.
This is not the same as an object’s Last-Modified date. This may inform users how
stale an object might possibly be. For example, when an object’s Date:date is recent,
then it means the object’s information is quite up-to-date even if the content of the
object was created long before. So, this header reveals very important information for
users.

4.2.3 Headers in HTTP 1.1 for Cache Control

While the ”Expires:date” header can support control of caching to some extent, the HTTP
1.0 protocol does not provide much support for controlling when an object is cacheable or
how a cache can manipulate it. HTTP 1.1 provides a new class of headers that makes it
possible to define how caches should handle different web objects.

Some of the interesting options for Cache-Control: options response headers are as fol-
lows.

• max-age=[seconds] : This header specifies the maximum duration when an object may
be considered to be fresh. This option supersedes the Expires header. Clients may send
this header in order to explicitly and flexibly specify the degree of staleness acceptable
to the user. Note that no-cache Pragma directive could only be used to flush caches
unconditionally.

• s-maxage=[seconds] : This header specifies the max-age only for proxy caches.



4. CACHE CONSISTENCY 11

Strong Consistency Weak Consistency
Never-check

Client-based Check-every-time Expiration-based
Piggyback-based Validation

Invalidation-based
Piggyback-based InvalidationServer-based

Lease-based

Table 1.1: Category of Cache Consistency Maintenance Approaches

• public : This header marks the response as cacheable regardless of whether it should
be cacheable or not. Using this header, even an authenticated web object will be
cacheable.

• no-cache : This header forces caches (both proxy and browser) to submit the request
to the originating server for validation before releasing a cached copy every time.

• must-revalidate : This header asks caches to strictly obey any freshness information
given for an object. HTTP allows caches to determine whether they will use the given
freshness information or not. However, if this header is specified, caches should follow
the freshness information for an object, and without modification.

• proxy-revalidate : This header is similar to ”must-revalidate” but it only applies to
proxy caches.

HTTP 1.1 also introduces a new kind of validator called Etag which is a unique identifier
generated by the server and changed when the object changes. If the ETag matches in the
response to a If-None-Match request, the object’s content is the still the same.

4.3 Metrics for the Degree of Consistency

• degree of freshness/ staleness

• performance metric

4.4 Approaches for Cache Consistency

In order to keep consistency, several approaches have been proposed in the literature. They
provide a spectrum of consistency levels based on the consistency guarantees provided by
each mechanism. Further, different approaches interact with different parts of the caching
system, which can lead to different consistency guarantees. In a client-based approach, the
requests that maintain consistency are initiated by a client. In order to keep certain degree
of consistency, it is necessary for clients to preform certain actions or to provide certain
information to servers. For a server-based approach, the requests that maintain consistency
are initiated by the server.

Table 4.4 shows the spectrum of several approaches. We will now describe the basic
mechanisms of the approaches in each category.

4.4.1 Client-Based Strong Consistency Mechanisms

Check-Every-Time
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This approach requires that proxy caches ask the server every time to determine if the
data has changed. Thus, clients will never get stale data. Specifically, when a cache receives
a GET or conditional GET message for a cached object, it always sends a conditional GET
message to the next higher cache or server by passing the Last-Modified date of the cached
object as the date in the If-Modified-Since header.

Check-Every-Time is one of the simplest consistency algorithms. The advantage is that it
does not require any state to be maintained at the server, nor does the server need to block
on a write request since the responsibility of maintaining cache consistency lies with the
proxy. However, this approach has a large message overhead because it has to communicate
with the originating server for every object request. It also increases the response time since
the proxy waits untill it gets the result of every check.

Because of its high message overhead, this mechanism is rarely used for a consistency
mechanism in current proxy caching systems. However it can be used as a part of a consis-
tency mechanism for web objects which are uncacheable(3.

4.4.2 Client-Based Weak Consistency Mechanisms

Never-Check

This is the simplest consistency mechanism. It will never try to determine the freshness
of a cached object without an explicit request for a validity check. Specifically, a cache will
never send If-Modified-Since messages to check whether cached objects are valid or not. The
responsibility of cache consistency lies solely on a client. In order to access a fresh object,
clients will have to explicitly refresh the object using ”Pragma:no-cache” message.

Expiration-based

This approach assumes that a cached object remains valid for a Time-To-Live(TTL)
period, which is an a priori estimate of how long the object will remain unchanged after
a client validates the object[19]. Current web caches consider a cached copy valid until
it’s TTL expires. Any GET requests made before the TTL of the corresponding object
expires will return the cached objects by assuming those objects are still fresh. For requests
on objects whose TTL are expired, GET or conditional GET(If-Modified-Since message)
requests are sent to the upper level cache or the originating server to check whether those
objects have changed.

With this approach, choosing the appropriate value of the TTL represents a trade off. If
it is long enough, it will reduce validations for the number of object requests. On the other
hand, a long TTL increases the likelihood that a cache will return stale objects.

The adaptive TTL(also called the Alex protocol[11]) handles the problem by adjusting
the TTL duration of an object according to observations of the lifetime of the object. It
takes advantage of the fact that object lifetime distributions tend to be bimodal, which is
based on the assumption that young files are modified more frequently than old files and
that the old files are less likely to be modified. This implies that validity checks for the older
objects can be made less frequently. With adaptive TTL, a cache manager assigns a TTL
value to an object, which is a percentage of the object’s current age(i.e. current time minus
the last modified time of the object).

Expiration-based approaches are now the most widely used But stale objects can still be
returned to users.

3The circumstances when an object is uncacheable will be discussed in the cacheability issues in Section 7
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Piggyback-based Validation

This approach is based on piggybacking cache state information onto HTTP requests to
servers [25, 27]. Whenever a proxy cache communicates with a server, it piggybacks a list of
its cached objects from that server. These cache copies of these objects might be stale, and
the purpose of the exchange is to determine object-by-object which need are actually stale.
The possibly stale objects are either objects with unknown expiration time or with expired
TTLs. Then the server replied to the proxy cache with a list of which cached objects on the
list are stale. The cache can update its data to remove any stale objects. Then a relatively
short expiration duration (i.e. one hour) threshold is set at the proxy cache. If any access
on a cached object is made during this duration, it is considered as fresh. Otherwise, the
object is validated using a IF-Not-Modified request to the originating server.

Piggyback-based validation does not require any new connection between proxies and
servers. However the proxy mnust maintain a list of cached objects for each server, and
a server must process validation requests from caches. The performance of this approach
depends on the number of requests from a proxy to a server and the number of objects cached
at a proxy for a particular server. If there are few requests from a proxy server to a server,
then chances for the cached objects to be validated will decrease greatly. A piggyback-based
validation approach will then devolve into a check-every-time strong consistency mechanism.
When there are many such requests the cache contents are validated at the granularity of
the time duration. In this extreme case, this approach is like an expiration-based weak
consistency approach.

4.4.3 Server-Based Strong Consistency Mechanisms

Invalidation-Based

Invalidation is based on servers notifiying caches of object changes [30]. In order to do
this, servers keep track of which clients are caching which objects. A server notifies the
clients with copies, and receives acknowledges from the clients before any modifications.

This approach is optimal in the number of control messages exchanged between servers
and the proxies. However it may require a significant amount of state to be maintained.
When there are a large number of clients, this approach suffers from burdening the server
with a large bookkepping load. In addition, a server might send invalidation messages for
clients that are no longer caching corresponding objects. The read cost is low because a
client is guaranteed that a cached object is valid until told otherwise. However, when an
object is modified, the server must invalidate the cached objects - so the write cost is high.
Furthermore, if a client has crashed or if a network partition separates a server from a
client, then a write may be delayed indefinitely. A study[30] shows that overhead for an
invalidation-based approach is be comparable to the weak consistency approaches based on
expiration.

Lease-Based

Invalidation-based approach require a significant amount of state to be maintained while
expiration-based approach impose a large control message overhead. Lease-based approaches
try to support strong consistency while providing a smooth tradeoff between the state space
overhead and the number of control messages exchanged.

In lease-based approaches [42, 17], the server grants a lease to each request from a proxy.
A lease is an associated timeout duration in which a server guarantees to provide invalidation
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for modified objects. To read an object, a client first acquires a lease for it. The client may
then read the cached copy until the lease expires. When an object is modified, the object’s
server invalidates the cached objects of all clients whose leases have not expired. To read
the object after the lease expires, a client first contacts the server to renew the lease. The
duration of the lease determines the server and network overhead. The smaller the lease
duration, the smaller the server state space overhead, but at the cost of a larger number of
control messages exchanged and vice versa. When lease duration is infinite, this approach
reduces to an invalidation-based approach. When lease duration is zero, this approach
reduces to an expiration-based approach.

Strong consistency can be maintained for server failures in the lease-based approach. If a
client or network failure prevents a server from invalidating a client’s cache, the server need
only wait until the lease expires before performing the write. By contrast, invalidation-based
approaches may force the write to wait indefinitely. Leases also improve the scalability of
writes. They enable a server to contact only recently active clients (those holding leases on
the object) rather than contacting all clients that have ever read the object.

4.4.4 Server-Based Weak Consistency Mechanisms

Piggyback-Based Invalidation

This approach is based on piggybacking. The server replies to proxy requests with
the requested object and a list of modified objects from the list of objects that proxy has
previously retrieved.

To improve the efficiency of these algorithms, servers and proxies exchange caching in-
formation at the level of volumes - collections of web objects. Servers partition the set of
objects at a site into volumes, either a single site-wide volume or related subsets of objects.
Each volume has a unique identifier and a current version. When a server receives a request
from a proxy client containing the client’s last known version of the volume, it piggybacks a
list of objects in that volume that have been modified since the client-supplied version. The
proxy client invalidates cached entries on the list and can extend the lifetime of entries not
on the list.

Servers maintain volume, but no proxy-specific information. Whenever an object changes
within a volume, the server updates the volume version and records the object that changed
between the previous and current versions. Each proxy client maintains the current set of
server volume identifiers and versions for the objects in its cache. When a proxy needs to
request an object from a server, it looks up the current volume identifier and version for
the object and piggybacks this information as part of the request. If the volume identifier
is unknown or if the proxy does not have a version for the volume, then it requests such
information to be piggybacked in the reply.

In response, the server piggybacks the volume identifier, the current volume version and
a list of objects from this volume that have changed between the proxy-supplied and current
version. The proxy client updates its volume version, uses the list to invalidate cached
entries from this volume and possibly extends the expiration time for volume resources that
were not invalidated.

When this approach is combined with piggyback cache validation, it is reported to provide
nearly strong cache coherency with a staleness ratio of 0.001 and a 6-9% reduction in overall
costs in comparison to the best TTL-based policy[28]. However, this mechanism requires
changes to existing web servers for implementation.
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5 Replacement Policies

5.1 Why We Research Replacement Policies

A cache server has a fixed amount of storage for storing objects. When this storage space is
full, the cache must remove some objects in order to make room for newly requested objects.
The cache replacement policy determines which objects should be removed from the cache.
The goal of the replacement policy is to make the best use of available resources, such as
disk, memory space and network bandwidth. Since web use is the dominant cause of network
backbone traffic today, the choice of cache replacement policies can have a significant impact
on global network traffic.

5.2 Factors to be Considered

5.2.1 Live Documents

We say a document is live if that document will be requested in future. The cache only
needs to retain live documents to achieve the maximum hit rate. Live documents are a
small fraction of all documents. Thus it is more appropriate to consider documents to be
dea if they have not been requested for more than some reasonably large time.

5.2.2 Interaccess time

Interaccess time is the time between sucessive document requests. Documents having lower
interaccess times are the documents that are more likely to be requested in the future. Due
to always selecting the document with the largest interaccess time to be evicted, the LRU
algorithm is the best replacement algorithm for reducing average cached-object interaccess
time.

5.2.3 Number of Previous Accesses

Using the number of previous accesses made to a document is a good indication. We can
use it to evaluate whether the document will be requested in the future. However, since it
does not include any aging information about the document, this cannot be used alone as
the deciding factor.

5.2.4 Document Size

The document size is another important factor for caching. In proxy caching the cached
documents can be of different sizes. Having more documents in the cache will likely lead
to a higher hit ratio, so one might choose to cache more small documents at the expense of
performance for larger documents.

5.2.5 Type of Document

The type of the document can also be an important factor to consider. Actually, many of
the requested objects are rather small image files, suggesting that a bias for document type
could be beneficial.
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5.2.6 Latency

It is also important to consider the cost inccured in acquiring the document. The more
expensive the document to download, the better it is to retain the document in the cache
because the penalty for a cache miss is greater.

5.3 Existing Replacement Algorithms

Existing replacement algorithms are classified into three categories, according to whether
they exploit access recency and access frequency, and whether they are sensitive to the
variable cost and size of objects.

5.3.1 Recency-Based Policies

The Least Recently Used algorithm (LRU) [14] is the most widely used cache replacement
algorithm, as it captures recency and is superior to other simple policies like FIFO and
Random. Since Web traffic exhibits temporal locality of reference, LRU is widely applied in
Web servers, client applications, and proxy servers. A disadvantage of LRU is that it does
not consider variable-size or variable-cost objects.

The LRU-MIN [1] algorithm is a policy derived from LRU that tries to minimize the
number of documents evicted by applying LRU only to the documents whose size is above
some threshold. The threshold is adaptive: if there is not enough space left, the threshold
will be lowered and the policy reapplied.

The GreedyDual-Size (GDS) algorithm [10] is an algorithm that can achieve the best
overall performance by considering locality, size and latency/cost and combining them effec-
tively. GDS is a variation on a simple algorithm named GreedyDual (GD) [43], which deals
with uniform-size variable-cost objects. It assigns a value H to each cached page p. At first,
when a page is brought into cache, H is set to be the cost of bringing the page into the cache.
When a replacement is needed, the page with the lowest H value, minH , is replaced, and
then all pages reduce their H values by minH . If a page is accessed, its H value is restored
to the cost of bringing it into the cache. Thus, the H values of recently accessed pages retain
a larger portion of the original cost than those of pages that have access. This algorithm
integrates the locality and cost concerns very well.

A common drawback of LRU and GreedyDual-Size is that they do not take into account
the frequency of resource use.

5.3.2 Frequency-Based Policies

The basic frequency-based replacement algorithm is Least Frequency Used (LFU) [14]. It
always removes the object with the lowest reference count. LFU is online-optimal under
a purely independent reference model. However,there are two subtle problems with LFU.
First, there are different versions of LFU algorithm, such as Perfect LFU and In-Cache
LFU, according to whether the reference count is also discarded when an object is evited.
Second, in an LFU replacement algorithm, when two objets have the same reference count,
a tiebreaker is necessary.

Server-weighted LFU (swLFU) [24] is a simple generalization of LFU. It permits servers
to increase the allocation of shared cache space to the URLs they host, thereby reducing
server workloads. Weights in swLFU represent the extent to which servers value cache
hits, and swLFU is sensitive to differences in server valuations. Lots of simulation results
demonstrate that under a particular artificial assignment of valuations to servers in actual
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trace data sets, swLFU delivers higher aggregate value to servers than LRU or LFU, and
furthermore can provide reasonable variable QoS to servers.

Hybrid [41] algorithm is aimed at reducing the total latency. It not only considers the
connection time of a server and the network bandwidth that would be achieved to the server,
but considers document size and number of document access. And it combines them in a
efficient way. A function is computed for each document which is designed to capture the
utility of retaining a given document in the cache. The document with the smallest function
value is then removed. The function for a document located at server depends on the
following parameters: the time to connect with server, the bandwidth to server, the number
of times the document has been requested since it was brought into the cache, and the size
(in bytes) of the document. Performance Experiments show that Hybrid is a robust policy.
When using download rate along with other factors, Hybrid and SIZE are superior for HR,
LFU and LRU.

5.3.3 Recency/Frequency-based Policies

• Fixed Cost/Fixed Size Algorithms

Several studies have considered both recency and frequency information under a fixed
cost/fixed size assumption.

The LRU-K[34] algorithm is to keep track of the times of the last K references to popu-
lar database pages, using this information to statistically estimate the interarrival time
of such references on a page by page basis. Many simulation results prove that the
LRU-K algorithm has significant cost/performance advantages over conventional algo-
rithms like LRU, since LRU-K can discriminate better between frequently referenced
and infrequently referenced pages. Moreover, unlike the approach of manually tuning
the assignment of page pools to multiple buffer pools, this algorithm is self-reliant in
that it does not depend on any external hints.

The LFU-DA algorithm [4] is a frequency-based algorithm with dynamic aging. On a
fetch or a hit, the object value is set to the reference count plus the minimum reference
count in the cache. LFU-DA calculates the key value ki for object i using the following
equation: Ki = Ci ∗ Fi + L ,with Ci set to 1. This equation uses only the frequency
count and the inflation factor to determine the key value of an object. Simulations
with large traces indicate LFU-DA obtains the highest byte-hit-ratio. Furthermore,
the LFU-DA policy may be useful in other caching environments where frequency is an
important characteristic but where LFU has not been utilized due to cache pollution
concerns.

The Least Recently/Frequestly Used (LRFU) [29] policy is a new block replacement
policy that includes both the LRU and LFU policies, depending on the different weights
given to recency and frequency. Simulation results show that if the cache size is large
enough to hold most of the working set, such as the case where the cache size is
larger than 200 blocks for our workload, the point near the LFU extreme on the
spectrum gives the lowest miss rate. moreover, When the cache size is 350 blocks, the
LRFU policy gives about 30% better miss rate than the LRU policy. This superior
performance of the LRFU policy results from the fact that it considers the frequency
factor as well as the recency factor when it decides the block to be replaced.

• Variable Cost/Size Algorithms

To deal with variable cost/size, generalizations of the above techniques have also been
proposed.
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In [39], the Least Normalized Cost Replacement algorithm for proxy caching on the
Web (LNC-W3) is proposed as a generalization of LRU-K to deal with variable-cost
and variable-size Web objects. It is a delay-conscious cache replacement algorithm
which explicitly consider the Web’s scale by preferentially caching documents. It
computes the average reference rate and uses that to estimate the profit of caching
an object. Simulation indicated that LNC-W3 obtains higher delay saving ratios than
those achived through LRU and LRU-K.

In another direction, since GD-size policies do not take into account how many times
the object was accessed in the past, several studies proposed generalizations of the
GreedyDual-Size algorithm to incorporate frequency. These algorithms include GreedyDual-
Size-Popularity (GDSP) [21] policy, GreedyDual-Size with Frequency policy (GDSF)
[4] and greedyDual-Least Frequestly Used (GD-LFU) [26] algorithm.

GDSP is a generalization of GDS that enables it to leverage the knowledge of the
skewed poplarity profile of Web objects. It incorporates access frequency into the
GDS algorithm. A popularity profile of Web objects requested through the proxy is
maintained efficiently, which makes it possible to accurately estimate the long-term
access frequency of individual objects. This algorithm can exploit temporal locality
exhibited in the Web traffic as well as avoid cache pollution by previously popular
objects. Trace simulations indicate that when HR is the main objective, GDSP is
the best choice. It outperforms GDS without significantly compromising BHR. As
to latencysaving ratio for NLANR traces under LRU, LFU, GDS and GDSP, the
results show that latency reduction is minimal for LRU and LFU. But GDSP clearly
outperforms GDS.

Lowest Relative Value algorithm (LRV) [31] includes the cost and size of a document
in the calculation of a value that estimates the utility of keeping a document in the
cache. The algorithm evicts the document with the lowest value. The calculation of
the value is based on extensive empirical analysis of trace data.

Among all documents, LRV evicts the one with the lowest value. Thus, LRV takes
into account locality, cost and size of a document. The performance simulation of
LRV, compared to other algorithms,such as LRU, LFU, size and FIFO shows that
LRV features a consistently higher BHR than other policies in all conditions. The
same happens for the HR, except in the case of the SIZE policy with large caches. But
reducing the cache size causes the SIZE policy to worsen because of the pollution of
the cache with small documents, which are never replaced. LRV is perticularly useful
in the presence of small caches.
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6 Prefetching

Prefetching is a technique that use the prediction of the user’s future access to retrieve data
and thus help to reduce the user’s perceived latency. By studying some web proxy trace,
Kroeger et. al. [Kroeger97] found that local proxy caching with unlimited cache size could
reduce latency by at best 26by at the best 57could provide at the best a 60boundary was
only derived from limited traces, it showed the potential of using prefetching to improve the
performance of caching. However, the benefit user perceived latency saving by prefetching
comes with the cost of increasing network traffic and server workload, thus studying the
tradeoff between performance and bandwidth saving is important in prefetching. For proxy
cache, the space balance between caching and prefetching need also to be studied carefully
when employ prefetching.

6.1 Prefetching technique classification

6.1.1 By Location

Prefetching can happen between web servers and proxy caches or between proxy caches and
browser caches. In the first case, proxy cache act as client, prefetching web documents in
local cache. In the second case, proxy cache act server, providing web objects for client
prefetching.

6.1.2 By Information Resource

The information used for prediction algorithm can either come form the statistics of access
history or from the accessed objects themselves.

Prefetching using the statistics from the history information can can be further classified
into server based prefetching, local based prefetching, and hybrid prefetching.

• Server based In server based prefetching, the information for prediction is gathered
by the server. The server use access history from a lot of clients to make the prediction.
The server can either push the web objects need to be prefetched to the client, or give
the client the prefetching information and let the client to decide what to prefetch.
Proxy caches can either act as a server or act as a client here depending where the
prefetching happens.

• Local based In the local based prefetching, the client use it own access history to
make predictions and send request to the server. The client here can be a bower cache
using one user’s history or a proxy cache using a lot of user’s access history.

• Hybrid In this approach, the predictions from the server and from the client are
combined for prefetching.

The accessed web objects can also be the information resource for making prediction.
For example, the hyperlinks in HTML pages can be the candidates for prefetching.

6.1.3 By Content

• Object prefetching The web object itself is prefetching based upon prediction.

• Connection prefetching While prefetching objects might increase the network traf-
fic and server load dramatically, an alternative of prefetching connections is brought



20 CHAPTER 1. WEB PROXY CACHING

up as an compromise. Cohen et. al. [Cohen99] proposed host-names pre-resolving
(pre-performing DNS lookup), pre-connection ( prefetching TCP connections) and
pre-warming (sending ”dummy” HTTP HEAD request) techniques to reduce user
perceived latency. Their trace-based simulations show that connection prefetching has
better performance improvement per bandwidth than object prefetching.

6.1.4 By Execution Time

• Immediate prefetching Prediction and prefetching is conducted immediately after
each access.

• Delayed prefetching The bandwidth usage due to HTTP traffic often varies con-
siderably over the course of a day, requiring high network performance during peak
periods while leaving network resources unused during off-peak periods. Maltzahn
et. al. [Maltzahn99] proposed ”bandwidth smoothing” technique to use the these
extra network resources to prefetch web content during off-peak periods. Their result
showed that this technique can significantly reduce peak bandwidth usage without
compromising cache consistency.

6.2 Prediction Algorithms

6.2.1 Prediction by Partial Matching(PPM)

PPM algorithm and it’s variations are used by a lot of researchers as the prediction algorithm
for prefetching[cao98, Papadumata96, Palpanas98 Foygel99]. This algorithm keeps track of
the sequence of l accessed objects following a sequence of m objects. The data structure
is typically a collection of trees. For prediction, the past up to m references are matched
against the collection of trees to produce sets of objects as the prediction of the next l
steps. Only candidates whose probability of access are higher than a certain threshold are
considered for prefetching.

6.2.2 Top-10

Top-10 approach proposed in [Markato96] combines the servers’ active knowledge of their
most popular documents (there Top-10) with client access profiles. Based on these profiles,
clients request and servers forward to them, regularly, their most popular documents.

6.2.3 Date Mining

This algorithm is used in [Aumann98]. The access workload is divided into a set of sequence.
The support of s′ in a sequence S is defined as the number of times S′ appears in S as a
subsequence. The support of S′ in the whole training set X is the sum of it’s support in
sequences in X . Then all the frequent subsequence with support higher than a threshold
can be computed from the training data. For prediction, given a sequence S = (e1, ..., em),
consider all possible extensions of sequence S′ = (e1, ...em, e) for all values of e. For all
suffixes of each extension, the extensions with greater support and longer matches are given
a higher weight. The prediction is the extension with the highest weight.

6.2.4 Interactive Prefetching

For each user accessed HTML page, prefetch all its referenced pages.
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6.3 Conclusion

Prefetching can be viewed as a technique to improve the efficiency of caching by a studying
the access history. The precision and efficiency of the prediction algorithm are both very
important in the performance of prefetching. If the prediction of the algorithm is imprecise,
it will lead to too much network traffic. If the algorithm require too much computation in
each prediction step, it might be unpractical to be used in reality. The integration of caching
and prefetching is also an important problem need to be studied in prefetching.



22 CHAPTER 1. WEB PROXY CACHING

7 Cacheability

The complexity of web objects makes cacheabilty unique problems in web caching. Recent
study shows that a fair amount of web objects in the web accessing workloads are unrealistic
to be cached in proxy cache[...]. The existence and the amount of uncacheable web objects
make them the biggest reason of the degrading of the performance of web caching. Some
research has been deployed to cache certain kind of web objects that are usually considered
uncacheable otherwise. However, the intricacy and diversity of the web objects makes a
universal solution to the cacheablity problem impossible. The lack of coordination between
web server and proxy caches also makes this problem very complicated. Most of current
work only stays at the research level.

7.1 What Kind of Objects are Usually Considered Uncacheable

Web objects can be considered uncacheable by the proxy cache for different reasons. Here
is some major consideration.

First, some web objects are uncacheable by nature. For example, web objects that
requires authentication upon retrieval shouldn’t be cached. Some web objects are user
specific, or context specific, which means that the result of the request depend on who is
requiring it or the context of the requirement when it is made. This kind of web object
should not be cached also since proxy cache usually don’t make decisions (return cached
copy or not) according to individual user and context. This kind of web objects are usually
web objects including cookies.

Second, there are some web objects that can be cached in the proxy cache, however, no
or little benefit can be got by caching those web objects. Thus, these kind of objects are also
considered uncacheable by the proxy cache. They include the objects that are changing too
fast and the objects that are too large. If an object is too dynamic, then the cached copy
will be stale very soon, and need to be fetched from the server again upon the next request.
Thus it is no good for the proxy cache to maintain them in the cache at all. A lot of dynamic
generated web objects tend to change very fast. It’s also hard to estimate the expiration
time for a dynamic generated object in the adaptive TTL consistency policy. Thus dynamic
generated web objects are usually considered uncacheable by the proxy caches. If an object
is too large, then caching it will cause the eviction of then the reloading of a lot of small
objects, which degrade the performance of the cache over all. Thus, a lot of proxy caches
put a threshold on the size of cacheable web objects.

Finally, there are some web objects set to be uncacheable by the servers due to some
reasons although they are cacheable to the proxy caches. For example, some web servers
want to get the real access statistics for advertisement, so they don’t want their web pages
to be cached by the proxy caches.

7.2 How to Decide Which Web Objects are Uncacheable

It is the proxy who decide whether a web object is cacheable to it or not. However, the
information they used to make the decision is very get from the web servers. Here is the
source of the information that the proxy caches usually used to decide the cacheability web
objects. Detailed description can be found in [zhang].

URL Dynamic generated objects can usually be identified from the URLs of the requests.
Their URL always include ”?”, ”=”, ”/cgi-bin/”, ”.cgi”, ”.pl” or ”.asp”.
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HTTP header The HTTP response header contains the following information always im-
ply that the object is uncacheable.

• pragma: no-cache

• Authorization

• Cache-Control: no-cache / private / no-store

• Set-Cookie

• No Last Modified Date or the Last modified Date is the request time.

• size: above threshold

HTTP status codes A lot of HTTP status codes imply that the response is uncacheable.
For example, a response with code ”302 Moved Temporarily” with no expire date is
uncacheable.

7.3 Uncacheable Objects in Proxy Cache Workloads

A lot of researchers study the cacheability on the proxy cache workloads. The result depend
on the workloads they studied and the different consideration of what kind web object is
uncacheable. A brief summarization of these researches from 1997 to 1999 can be found in
[Wolman99]. Although the total percentage of uncacheable objects under different consid-
eration in different workloads may vary form 15they all imply that cacheabililty has a big
influence on the effectiveness of caching.

7.4 Improving Cacheability

Since the web objects are uncacheable due to different reasons, making some uncacheable
objects cacheable need also to be done according the specific reasons. There are some
research work proposed to cache dynamic generated objects in the proxy caches. Streaming
caching is a technique to cache large multimedia files in proxy caches. These works are still
staying at the research level.

7.4.1 Caching Dynamic Henerated Content

Douglis et. al. [Douglis97] extended HTML to allow the explicit separation of static and
dynamic portions of a resource. The static portions can then be cached, with dynamic
portions obtained on each access.

Cao et. al. [Cao98] propose the Active Cache scheme to support caching of dynamic
contents at Web proxies. The scheme allows servers to supply cache applets to be attached
with documents, and requires proxies to invoke cache applets upon cache hits to finish the
necessary processing without contacting the server. The user’s access latency is saved at the
expense of the proxy caches CPU costs.

Smith et. al. [Smith99] propose Dynamic Content Caching Protocol, to allow individual
content generating applications to exploit query semantics and specify how their results
should be cached and/or delivered. They classify locality in dynamic web content into three
kinds: identical requests, equivalent requests, and partially equivalent requests. Identical
requests have identical URLs, which result in the generation of the same content. The URLs
of equivalent requests are syntactically different but the result generated by these requests
are identical. Partially equivalent requests are syntactically different. Results generated for
partially equivalent requests are not identical but can be used as temporary place holders for
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each other while the real document is being generated. Dynamic Content Caching Protocol
allow individual content generating applications to specify equivalence between different
GET-based requests they serve. This information can be used by web caches to exploit
these additional forms of locality. Identical requests and equivalent requests can directly
fulfilled using previously cached results. For partially equivalent requests, previously cached
content can be immediately delivered as an approximate solution to the client while actual
content is generated and delivered. This allows clients to browse partial or related or similar
results promptly while waiting for more accurate information.

7.4.2 S

tream Caching Realtime streams such as video are several orders of magnitude larger than
normal web objects. This limits their cacheability in the ordinary proxy caches. However,
the increasing demand of video and audio streams makes stream caching of particular interest
in proxy caching.

Sen et. al. [sen99] propose prefix caching, that, instead of caching entire audio or video
streams (which may be quite large), the proxy should store a prefix consisting of the initial
frames of each clip. Upon receiving a request for the stream, the proxy immediately initiates
transmission to the client, while simultaneously requesting the remaining frames from the
server. In addition to hiding the latency between the server and the proxy, storing the prefix
of the stream aids the proxy in performing workahead smoothing into the client playback
buffer. By transmitting large frames in advance of each burst, workahead smoothing sub-
stantially reduces the peak and variability of the network resource requirements along the
path from the proxy to the client. They construct a smooth transmission schedule, based on
the size of the prefix, smoothing, and playback buffers, without increasing client playback
delay. It’s showed that a few megabytes of buffer space at the proxy can offer substantial
reductions in the bandwidth requirements of variable-bit-rate video.

Rejaie et. al. [Rejaie99] present a fine-grain replacement algorithm for layered-encoded
multimedia streams at Internet proxy servers, and describe a pre-fetching scheme to smooth
out the variations in quality of a cached stream during subsequent playbacks. This enables
the proxy to perform quality adaptation more effectively and maximizes the delivered quality.
They also extend the semantics of popularity and introduce the idea of weighted hit to
capture both the level of interest and the usefulness of a layer for a cached stream. It is
showed that interaction between the replacement algorithm and pre-fetching results in the
state of the cache converging to the optimal state such that the quality of a cached stream is
proportional to its popularity, and the variations in quality of a cached stream are inversely
proportional to its popularity. This implies that after serving several requests for a stream,
the proxy can effectively hide low bandwidth paths to the original server from interested
clients.
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8 Web Proxy Cache Architecture

8.1 Disk vs. Memory Based Caching

The first issue to consider when designing a web proxy caching architecture is how to store
the cached data. Caches can be implemented with disk, solid state memory, or any other
data storage technique; most web proxy caching systems are implemented using a mixture
of disk and fast memory.

Why is the storage question important for web proxy caches when we do not consider
it at all for memory hierarchies? The basic answer is that web caches store a lot more
information than memory hierarchy caches. While there are many implemented multi-
gigabyte web proxy caches, caches within a memory hierarchy rarely make it above the 1-8
megabyte range. Building multi-gigabyte caches using only fast memory is sigificantly more
expensive than using disk and can limit total capacity. Using disk, the amount of caching
space is virtually unlimited. Using memory, we face the normal restrictions regarding very
large memory systems [...].

Most users are familiar with the hybrid memory-disk approach taken by browser caches.
These systems tend to work well and help reduce WWW latency. On the other size, server-
side caches are normally implemented using only memory since the pages themselves are
available on disk for the server. Proxy caches lie between these two tools on the network,
and the storage requirements represent a combination of the two as well.

Disk has the clear advantage of nearly unlimited cache size. But in exchange for this
scalability we loose latency with respect to memory-based systems. Disk bandwidth can
also be orders of magnitude lower than memory bandwidth. On the other hand, memory is
very quick both in terms of access time (latency) and bandwidth.

There are clear tradeoffs here. Having a larger cache should increase the hit rate, thereby
increasing performance. But having a cache that itself introduces less latency should also
increase performance. It is not clear which of these effects will results in better performance;
most likely this result will vary from situation to situation.

8.2 Distributed Cache Systems

The basic web proxy cache is implemented on a single computer, located somewhere on the
WWW. For many large-scale web proxy cache systems this model is inadequate. For a variety
of reasons, these systems often employ a collection of computers in a distributed fashion.
There are three main motivating factors here: increased cache size, increased compute power
to process requests and the ability to be “closer” to more clients by spreading the cache out
within a larger network.

Distribtued caches can dramatically increase the available cache size. Whatever restric-
tions may exist on attaching cache storage space to an individual computer, distributed
cache systems can get around them. Ignoring data replication issues for now, cache space
should increase linearly with the number of computers in the cache. As is discussed in
other parts of the chapter, this should logarithmically increase cache hit rate. Even without
particularly intelligent distributed cache algorithms, we can realize a substantial gain.

Alongside increased storage space, a distributed cache throws more compute power at
responding to user’s page requests. This allows a proxy cache system to handle more users
at one time, and allows the increased storage space to be shared among more users. So we
get more than just more processing power and cache space; many users can share a common
cache space when large distributed caches are employed, potentially increasing performance
as each cache’s overhead is amortized across more users.
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Lastly, we have the issue of spreading the cache’s entry points around over the WWW.
The main goal here is latency reduction, so the latency incurred between the client and proxy
cache should be less than that between the client and server. It it therefore advantageous
for a proxy cache to have access points that are distributed around the WWW.

The issue of how to insure that clients use the closest access point it addressed later,
but there is a simple corollary for single-system caches. The standard web proxy cache
architecture - one machine that serves as a caching bridge between a private network and
the WWW - is designed to take advantage of proximity. For this case there is a single entry
point, so no effort to pair clients with the closest server is needed, but it highlights the
importance of proximity in proxy cache design.

8.2.1 Handling Requests

Distribtuted web proxy caches introduce additional complexity over single-system caches
because good load balancing within the cache is now essential for getting good performance.
There are two basic classes of approach here: virtualizing access to the cache and routing
requests internally.

Virtualizing cache access is the simpler technique to implement. The basic idea here it
to provide more than one entry point to the cache, provide the appearence of a single access
point, and then send each incoming request through to a real access point. Requests are
received directly by each of the different access points and then processed.

This can be implemented using the same hostname mapping tricks that are frequently
used to build large web servers. Providing a dynamic mapping between “www.myproxycache.com”
and a set of caches “www[0...100].myproxycache.com” builds a very simply distributed cache.
This system would even work if each cache operated independently of all the others. But
using such a naive approach would decrease the potential performance of the system.

More performance can be achieved by being more careful about the load balance among
the constituent systems. Load for a web proxy cache consists of three things: storage
space for cached objects, downloading new web objects to cache, and replying to client
requests. Ideally the load among these three tasks could be simultaneously balanced across
all consitituent systems; this is probably too much to ask.

The simple dynamic hostname mapping system tried to balance the third factor, client
requests. Balancing the other two tasks requires more communication within the cache.

8.3 System Architectures

After considering the load balance issues in a distributed cache design, the next step is to
architect the structure of the cache. There are three basic communication structures for
distributed caches:

• replicated

• peer-to-peer

• hierarchical

8.3.1 Replicated

The replicated cache is the simplest, and is exemplified by the dynamic mapping exam-
ple above. In this case each system involved in the cache acts independently, with some
mechanism for sending client requests to different cache systems. There are no internal
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communication issues - becuase there is no internal communication. This architecture only
addresses the client request load issue, but it can do an excellent job there.

8.3.2 Peer-To-Peer

One step beyond the replicted architecture is the peer-to-peer web proxy cache architecture.
In these cases all of the constituent systems inter-communicate as equals in an attempt
to share load equally. There are many different implementations of this type with a wide
variety of goals.

8.3.3 Hierarchical

Even more abiitious and capable than the peer-to-peer systems discussed above are the
hierarchical web proxy caches. In these systems the constituent caches communicate in an
attempt to improve performance, but they are not all treated as equals. Generally there
is a control ordering among caches, which some caches handling the processing of requests
while other systems communicate with clients and servers.

Within this class of architectures, a common technique to improve performance is “URL
Routing.” These systems separate receiving requests from the processing of requests. Fur-
ther, they partition the set of URL’s that are handled by each request processor. When a
URL enters the system it is passed to the constituent cache that it responsible for making
caching decisions for it, and the response to the request originates there.

This techique is useful when a cache sees a lot of requests for a few domains and would like
to be able to provide better caching performance for those requests based on the observation.
For example, the users at one company may all frequently check CNN’s web pages for news
updates, ESPN’s web pages for sports information, and then a large variety of other web
pages on an individual basis. It makes sense of segregate proxy cache space and processing
power for handling ESPN and CNN because we know that those pages will be accessed
frequently. A proxy cache could use an internal URL routing system to insure that one
part of the distributed cache was reserved for CNN, another for ESPN, and then continue
building the rest of the cache as needed. This would insure that requests for CNN are
treated on their own system and are not bogged down by a users request for a page that is
not currently in cache.

8.4 Synchronization Issues

When building a distributed cache we face the same synchronization and data consistency
issues within that cache that web proxy caches face within the larger context of the WWW.
If a distributed cache stores the same web object in more than one place, which version does
the user get? The more recent copy? The one that is faster to return? A random choice?
There is no right answer here, but there are significant design and performance implications
to choose when deciding on the answer to use for a particular implemention.

Ideally we would always return the most recent version of the object - or an older copy
that is identical. Using the language of the Cache Consistency section of this chapter, this
requires implementing a strong consistency model within the distributed cache. And as was
remarked before, this can significantly decrease performance.

We would also like to minimize the time taken to respond to the request, which makes
the “fastest copy to retrieve” answer attractive. Of course it takes some time to compute
which copy can be returned fastest, which might leave us with a variant of the random copy
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solution. This is certainly the easiest to implement, and nicely parallels the weak consistency
model discussed for web proxy caches in general.

And as there are a variety of ways to improve on true weak consistency for overall cache
coherence, there are ways to build slightly “more consistent” internal consistency models.
Much as a proxy cache can check every response against the originating server to guarantee
the cached data is not stale, a distributed cache system could check responses against either
the originating server or the full set of constituent caches.

8.5 Data Flow Models

After considering the consistency issues within our distributed cache, we must consider how
the cache will interact with clients vis a vis retrieving new content. There are two basic
approaches to this problem:

• request-cache-response caching

• “reverse” caching

Each has different performance characteristics, and much like all of the other major archi-
tectural issues, should be considered when designing a proxy cache.

8.5.1 Request-Cache-Response

This is the simplest proxy cache design based on the traditional request-response nature
of many client-server systems. We use the three-part name “request-cache-response” to
indicate the exact nature of this design when used in a proxy cache. The client sees a
request-response system, but embedded within the processing to generate the response the
proxy may generate another request-response data transfer. This recursive request-response
should be differentiated from normal request-response because the server being accessed is
itself a client for the same sort of protocol.

8.5.2 Reverse Caching

Many commercial web proxy cache companies implement a kind of caching in which data
flow is inverted relative to the traditional proxy cache design. In these cases the proxy cache
holds cached objects for originating servers according to an external relationship between
content provider and proxy cache company. Instead of caching pages on demand as they are
requested by users, these caches contain whatever pages the content provider dictates are
to be cached (i.e. whatever pages they pay for). This turns proxy caching on its head, but
still performs a similar function. Such caches preform the same latency reduction functions
as other web proxy caching systems, but only for the targeted set of pages.

8.6 Meta-Architecture

Most existing web proxy caches are a mixture of these ideas. Further, the caching architec-
ture most users find when accessing the WWW involves several autonomous caches: browser,
maybe several proxies and some server-side caching. For the most part, these caches are
fully autonomous - and for exactly the same reasons we used before to defend decisions to
relax consistency requirements within distributed caches. Keeping such a large number of
caches consistent would be extremely difficult and would likely kill most of the benefit from
caching in the first place.
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So what sequence of caches do we find when accessing information on the WWW? For
low traffic sites, the answer is generally that only the browser cache comes into play. If the
user accessing the information is configured to use a local proxy cache, then a second level
of caching comes in. When the web object being requested comes from a high traffic site,
it is likely a more complex transaction. The user’s request is first checked against the local
browser cache. If that misses the local proxy cache is checked.

So far the path is identical for all pages. If the proxy cache misses, it then needs to load
the page from the originating server. This is where high-traffic sites behave differently. The
server is likely using a server-side cache, a reverse caching service, or both. The proxy’s
attempt to load the page will then propagate through the server’s cache, and finally retrieve
the content from the reverse web caching service. One experiment revealed the following
chain of events to access a page on the CNN web site:

• check against browser cache, miss

• check against local proxy cache, miss

• download page from CNN, mainly pointers to Akamai

• download content from Akamai

This listing ignores the cache-update process that takes place as the content travels up each
level of the caching hierarchy.

The potential for hybrid cache architectures is great. Even the simplest web proxy cache
often plays the role of a single caching entity within a large, weakly consistent, distributed
caching system. It might be the case that the only communication within this system takes
place as HTTP requests driven by user page-loads. But the entire collection of systems
involved in delievering content to the user can be thought of as the constitents of a large
caching system. And all of the caching taking place between the browser cache and the
server’s internal caching are part of the large, distributed proxy cache seen by the user.
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/

9 Performance Measurement

9.1 Introduction

As the World Wide Web growing, caching proxies become a critical component to reduce
both network traffic and client latency. However, there has been little understanding the
performance between different proxy servers, and their behavior under different workloads.
So it is critical to design and implement a proxy benchmark to test and understand the
performance characteristics of a proxy server. Using a benchmark, customers can not only
test the performance of a proxy running on different software and hardware platforms,
but also compare different proxy implementations and choose one that best matches the
customer’s requirements.

In this section, we mainly describe two well-known cache benchmarks: the Wisconsin
Proxy Benchmark and Poly-graph.

9.2 The Wisconsin Proxy Benchmark

9.2.1 Introduction

The Wisconsin Proxy Benchmark (WPB) [2] was one of the first publicly available cache
benchmarking tools. The main feature of WPB is that it tries to replicate the workload
characteristics found in real-life Web proxy traces. WPB consists of Web client and Web
server processes. First, it generate server responses whose sizes follow the heavy tailed
Pareto distribution described in [12]. Since heavy-tail distribution of file sizes impact proxy
behavior, it is important to include very large files with a non-negligible probability. As it
must handle files with a wide range of sizes. Second, the benchmark generates a request
stream that has the same temporal locality as those found in real proxy traces. Third, Since
the benchmark is often run in a local area network and there is no nature way to incur long
latencies when fetching documents from the servers, the benchmark let the server process
delay sending back responses to the proxy to emulate Web server latency. However, Web
server latencies affect the resource requirements at the proxy system. Thus, the benchmark
supports configurable server latencies in testing proxy systems.

The main performance data collected by the benchmark are latency, proxy hit ratio,
byte hit ratio, and number of client errors. There is no single performance number since
different environments weight the four performance metrics differently. Proxy throughput
is estimated to be the request rate dividing by the request latency.

9.2.2 Distinguishing Features of WPB

The distinguishing features of WPB include:

• Support for studying the effect of adding disk arms.

• The effect of handling lowbandwidth (modem-based) clients.
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9.2.3 General setup of the benchmark

The General setup of the benchmark is that a colection of Web client machines are
connected to the proxy system under testing, which is in turn connected to a collection
of Web server machines. There can be more than one client or server processes running
on a client or s server machine. The client and server processes run the client and server
codes in the benchmark, instead of running a browser or a Web server. There is also
a master process to coordinate the actions of client processes and generate an overall
performance report. Some of the setup parameters are defined in a configuration file.

9.2.4 Performance of Example Systems

WPB is used to measure the performance of four proxy systems: Apache version 1.3b2,
Cern version 3.0A, A Cern-derived comercial proxy and Squid version 1.1.14. A set of
experiments using WPB have been run to analyse how the above systems perform under
different loads. The number of client processes and collected statistics for caching and no
caching configurations was different. The simulation results are shown as following:

• Although there are their vast differences in implementations, the performances of Cern
and Squid are comparable. Squid mainly suffers from not being able to use the extra
processor in the multi-processor system. Cern, on the other hand, uses a process-based
structure and utilize two processors. In addition, CERN takes advantage of the file
buffer cache, which seems to perform resonably well.

• In terms of latency, due to the two-phase store, that introduces extra overhead, Apache
has the worst performance. Proxy N has a slightly better performance overall. How-
ever, this may be a consequence of the great number of errors. Since a smaller number
of requests are effectively handled, that can reduce the delays for contention.

• In terms of hit ratios, Squid and Apache maintains roughly constant hit ratios across
the load. For both Cern and proxy N, hit ratio decreases significantly as the number
of client increases.

9.2.5 Effect of Adding Disk Arms

Using WPB, the impact of spreading the cached files over multiple disks on proxy perfor-
mance has been analysed. The simulation results indicate that disk is the main bottleneck
during the operation of busy proxies. Adding an extra disk reduces the bottleneck in the
disk. However, for Squid, this reduction did not reflect in an improvement in the overall
performance of the proxy. For proxy N, an improvement of 10% was achieved.

9.2.6 Effect of Low Bandwidth Client Connections

The impact of low bandwidth connections on proxy performance has been analysed. A
modem emulator which introduces delays to each IP packet transmitted in order to achieve a
certain effective bandwidth that is smaller than the one provided by the network connection.
Simulation results show that: When a proxy must handle requests sent throught very low
bandwidth connections, the time spent in the network dominates. Both disk and CPU
remains idle for more than 70% of time. As a consequence, proxy throughtput decreases
and client latency increases by more than a factor of two.
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9.2.7 Conclusion

Some interesting findings through use of WPB are the following:

• By increasing the number of disks, queueing overheads are reduced, the time spent
servicing each disk request are also shortened. To some proxy caching systems, this
also reflects on the overall performance of the proxy.

• Latency advantages due to caching are essentially erased when considering the overall
profit to modem-based clients.

While WPB addresses a number of important benchmarking requirements, such as initial
support for temporal processes, it has some limitations. These include lack of support
for modeling spatial locality, persistent HTTP 1.1 connections, DNS lookups, and realistic
URLs.

9.3 Polygraph

9.3.1 Introduction

Polygraph [35, 7] is a recently developed, publicly available cache benchmarking tool deeloped
by NLANR. It can simulate web clients and servers as well as generate workloads that try
to mimic typical Web access. Polygraph can be configured to send HTTP requests through
a proxy. High-performance simulation allows to stress test various proxy compoents. The
benchmarking results can be used for tuning proxy performance, evaluation of caching so-
lutions, and for many other interesting activities.

Polygraph has a client and a server component, each of which uses multiple threads to
generate or process requests. This allows Polygraph to simulate concurrent requests from
multiple clients to multiple servers. Polygraph can generate different types of workload to
simulate various types of content popularity. For example, requests can be generated which
obey a Zipf-like distribution, which is largely believed to be a good estimate of real web
usage patterns[9].

Polygraph includes two programs: polyclt and polysrv. Poly-client(-server) emits a
stream of HTTP requests with given properties. The requested resources are called objects.
URLs generated by Poly-client are built around object identifiers or oids. In short, oids
determine many properties of the corresponding responese, including response content length
and cachability. These properties are usually perserved for a given object. For example, the
response for an object with a given oid will have the same content length and cachablility
status regardless of the number of earlier requests for that object.

As it runs, Polygraph collects and stores many statistics, including: response rate, re-
sponse time and size histograms, achieved hit ratio, and number of transaction errors. Some
measurements are aggregated at five second intervals, while others are aggregated over the
duration of the whole phase.

9.3.2 Distinguishing Features of Polygraph

The distinguishing features of Polygraph include:

• It is capable of generating a whole spectrum of Web proxy workloads that either
approximate real-world traffic patterns, or are designed to stress a particular proxy
component.

• Polygraph is able to generate complex, high request rate workloads with negligible
overhead.
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9.3.3 Conclusion

Polygraph is a high performance cache benchmarking tool. It can evaluate the performance
of various caching systems, using cache-specific performance metrics, such as amount of
bandwidth saved, response time, hit rate, and various scalability metrics.

More recently, Polygraph has been playing an increasing role in holding open benchmark
Web Caching Bake-off’s as a way of inspiring the development community and encouraging
competition towards good caching solutions. A summary of their study comparing a number
of commercial and academic systems can be found at [37].

9.4 IRCache Web Cache performance bake-offs

9.4.1 Introduction

Bake-off [37, 38, 36] implies testing several independent implementations of similar products,
taking place within a short period of time and usually at the same location. Every product
is tested under the same conditions. Bake-off results are used to evaluate the performance
of Web caching proxies.

9.4.2 Why Bake-offs

• Fair Competition

Test labs, audited on-site tests, and even SPEC-like reports are considered to be “fair”.
That is, they give equal opportunities to participants to win. So what makes Caching
bake-offs special?

The primary reason is highly competitive and unstable environment. New product
releases and even companies appear virtually every month. Benchmarking workload
improvements are also quite common. In such atmosphere, two test results obtained
a few month apart are by default unfair to compare. A vendor who gets the last test
“slot”, essentially has a big advantage over the vendor who opened the test sequence.
Thus, we have to test a lot of products in a short time interval.

• Test auditing

Web proxy benchmarkign often requires complex test setup that involves many sophis-
ticated componets like client-server simulators, L4 switches, and clusters of caches. Our
experience shows that expertise and a lot of extra effort is required to guarantee the
correctness of the setup. The auditing requires physical presence of the auditor during
all stages of the tests.

To summarize, fair competition objective implies semi-concurrent execution of tests while
test auditing requires human monitoring of test execution. It is currently infeasible to
provide high quality auditing for dozens of isolated companies within a short period of time.
Thus, only bake-off format produces fair and high quality results.

9.4.3 Web Polygraph

Polygraph is a high-performance proxy benchmark. It can generate about 1000 requests per
second between a client-server pair on a 100baseT network. Furthmore, Polygraph allows
you to specify a number of important workload parameters such as hit ratio, cachability,
response sizes, and server-side delays.
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• The cache-off Workload: PolyMix-3

The PolyMix environment has been modeling the Web traffic characteristics since
PolyMix-2. PolyMix-3 combines the fill and measurement phases into a single work-
load. The benefit to this approach is that the device under test is more likely to have
steady state conditions during the measurement phases. Also, a larger URL work-
ing set can now be formed without increasing the duration of a test. And PolyMix-3
servers use a Zipf(16) distribution to close active connections. The servers also timeout
idle persistent connection after 15 sec of inactivity, just like many real servers would
do.

For detailed treatment of many PolyMix-3 features, please check the Polygraph Web
site: http//polygraph.ircache.net/.

9.4.4 Benchmarking Environment

• Polygraph Machines

250 PC’s were used as Polygraph clients and servers. And FreeBSD-3.4 were used as
the base operating system for the Polygraph clients and servers.

• Time Synchronization

The xntpd time server was run on all Polygraph machines and the monitoring PCs.
The monitoring PCs are synchronized periodically with a designated reference clock.

• Network Configurations

Each test bench consists of Polygraph machines, the monitoring PC, the participants
proxy cache, and a network to tie them together. The routed network configuration
uses two subnets. The clients, proxies, and monitoring PC use one subnet, while
servers use the other. Bidirectional netperf tests were run between each client-server
pair to measure the raw TCP throughput.

• Test Sequence

This section describes the official testing sequence. The complete sequence was exe-
cuted at least once against all cache-off entries. It inlcudes PolyMix-3, Downtime Test
and MSL Test.

9.4.5 Comparison of Results

Please check the web site for detail information:http//polygraph.ircache.net/.

9.4.6 Conclusion

Using a single tool to benchmark multiple products does not necessarily allow for legitimate
comparison of results. As we all know, when comparing results, it is very important to min-
imize differences in the testing environment. A seemingly minor difference in configuration
may cause a very significant change in performance.

In order to compare the performance of different caching products under identical con-
ditions, we proposed to hold a “bake-off”. The basic idea is that everyone comes together
for a few days in one location and puts their products through a series of tests. Because all
tests occur at the same time and place, under identical conditions, comparisons ca be made
between the participant’s results.
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In the chapter above, the IRCache Web Cache Bake-off was introduced. Simulation
results show that the Bake-off is a high quality, independent verification of product perfor-
mance in the Web caching community.
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