
Chapter 1

Web Proxy Caching

1 Introduction

Computer systems employ a storage hierarchy that is composed of many types of storage
devices with different access costs. Upper level storage devices provide faster data accesses
over lower level storage devices. Caching is a technique to place data on upper level storage
devices to reduce data access latencies. Caching has been extensively applied to diverse
areas in computing systems including hardware architecture[?] and database systems[?], to
name a few. This chapter covers how the idea of caching is applied to the World-Wide-Web
environments.

1.1 Motivation

The World Wide Web is a large distributed system based on a client-server architecture.
web clients request information from web servers which provide information through the
network. The web community is growing so quickly that the number of clients accessing
web servers is increasing nearly tremendously. This rapid increase of web clients geberates
more web traffic and high server loads, which makes the web slower. How can we lessen
web traffic and server loads and reduce the latency web users face when downloading web
objects?

Several approaches have been proposed to increase the performance of the web. Trying
to scale server and network bandwidth to keep up with increasing demand is one simple
but expensive solution. Several observations suggest that a cache-based approach can help
improve performance for lower cost. First, a single client often requests the same web
object several times during a small interval of time by visiting a home page of a certain web
service[?] Second, web object accesses are non-uniform over all web servers; a small set of
“popular” servers faces a disproportinate share of total server load[19, 7]. Further, different
users often request the same web object from these highly loaded servers. If we can store
commonly requested objects on a place that web clients can locate faster, users will see lower
latency when browsing. Web caches are the systems that keep copies of frequently accessed
objects closer to clients in terms of web objects flow. The development of web caching has
spurred new research in many areas [8, 79].

Information providers publish their information on the World Wide Web in a variety of
formats. Usually information in the web is referred as documents or web pages. In terms of
caching, unit of information in the web are not exactly simple documents or pages. Instead,

1

2 CHAPTER 1. WEB PROXY CACHING

a piece of a document or a part of stream information may be a unit of caching. So, we will
use web object as a more generic term to represent a unit of web caching.

Web caching is managing copies of web objects closer to clients to enable clients to see
lower latency when accessing to objects.

1.2 Types of Web Caching

Web caching can be done using varying degrees of cache level; from zero to many levels.
As a client requests a web object, it flows from a server, through a network, and to the
client. Between a client and a server may be one or more proxy servers. Figure 1.1 shows
various forms of connections from a client to servers using intermediate levels of caching.
The simplest form is using no caching at all as in Figure 1.1 A). The most complex form
is using many levels of intermediate caching including a client cache, a set of proxy caches,
and a set of server caches as in Figure 1.1 D). A client may be connected to a server with
diverse types of connection(Figure 1.1 E)).

There are three kinds of caches according to where copied objects are stored and man-
aged.

1.2.1 Browser Cache

A web browser cache stores local copies of web objects which have been accessed recently
based on a specific cache management policy. As it keeps copies for a client only, the
browser cache dose not represent any shared accesses between clients. There are two forms
of client caches[1]. A persistent client cache keeps web objects between invocations of the
web browser. A non-persistent client cache removes cached copies when the user quits the
browser.

1.2.2 Proxy Cache

In general, a proxy is a special HTTP server that can run on a firewall machine[56]. A firewall
is a security system to protect a networked servers from intentional or accidental damage
of unauthorized access, which is implemented by either hardware or software. Proxying is
a standard method for allowing accesses through a firewall without forcing each client to
include customized support a special firewall environment. The proxy cache is located on
a machine on the path from multiple clients to multiple servers. The same proxy can be
used by all clients within a given subnet. This makes it efficient for a proxy to do caching
of web objects requested by a number of clients. When a single proxy cache communicates
solely with it’s clients and servers, it is called an isolated cache. It is possible to use a
set of caching proxies which cooperate with each other to improve performance. They are
called cooperative caches. The configuration may be hierarchical so that the caches can be
identified as first level caches, second level caches, and so on. It may be also non-hierarchical.

1.2.3 Server Cache

Server caching is another term for placing a cache in front of a web server. This is called
“server” caching because it is implemented by the administrators of the web servers, rather
than by the clients. The goal here is to cache and distribute web objects from the servers
and to offload the processing of client requests. The server cache is referred sometimes as
“reverse proxy” cache[68], “HTTP accelerator” [53]or “surrogate origin server[64]1.

1In this chapter, we will use those terms interchangably

1. INTRODUCTION 3

1.2.4 Caching Hierarchy

Hierarchical web proxy cache structures are similar to memory hierarchies[25]. Figure 1.2
shows an example caching hierarchy. At each level, requests are processed with cache misses
propagating a request down the hierarchy one more level.

Web browser caches form a top of the hierarchy. By configuring browsers to direct web
objects requests to a nearby proxy server, the proxy cache provides the second level of
caching. The proxy cache then sees requests for all misses in the brower cache. Some proxy
caches can be organized to act as a third-level caches as well. The lowest-level proxy cache
is typically a cooperative cache that connects lower-level proxy caches to each other so that
a miss in one cache can be satisfied by one of its siblings. At the bottom of the hierarchy are
the server caches which are closest to web servers. If requests for web objects are satisfied
at higher levels of the cache hierarchy, then the cost of accesses can be significantly reduced.

1.3 Contrasting Web Cache Styles

A browser cache tries to reduce retrieval latency for a user by keeping their previously ac-
cessed web objects in a client’s memory and disk. A browser supports the necessary functions
for cache management including determination of cache size, maximum retention period and
mechanism to maintain consistency of copies and so on. For the user’s perspective, reducing
latency is the most significant factor over larger network efficiency considerations. This goal
might conflict with the goals of an organization or network system. In order to reduce la-
tency, some browser caching provides an aggressive form of preloading of web objects which
the user is likely to access. However, this may cause an unnecessary increase in network
traffic.

Proxy caches lie in the middle of network and receive requests from many clients. So
the requests seen by a proxy cache are interleaved across users. When requests are satisfied
from a proxy cache, network traffic will be reduced because those requests need not be
sent to servers. Cache hits also reduce client latency and server workload. As the proxy
cache manages web objects requests from multiple clients, it is focused on improving global
performance. Efficient management of cache space is more important in this case than for
a browser cache. There are a number of issues to be considered for proxy caches and they
will be discussed in the following sections.

Server caches are similar to proxy caches. However they accepts only traffic for their
web servers so that they act as a true web server from the client’s perspective. These caches
are not for end users, but deployed and maintained for large web publishers. The focuses of
server caches are primarily the scalability and server workload problems faced by popular
web sites. Decreasing network traffic to web server is also a concern of these caches. It
can also enhance security by forcing clients to communicate through an intermediate layer
instead of directly with the true originating server.

Web caching needs to consider different issues compared to other caching systems in
traditional client-server environments. Usually, traditional caching assumes that the data
to be cached has a fixed size (i.e. pages or blocks). Time to load a page is also assumed to
be fixed (i.e. main memory access time, or some I/O access time). But web objects exhibit
large variations in size from a few hundred bytes to several megabytes. Additionally, in
the web environment, times needed to load web objects are variable and often difficult to
predict. Further, web caching systems can still be useful with relatively weak consistency
models - unlike a memory hierarchy, where weak consistency is wholly unacceptable. These
differences make approaches for traditional caching do not fit for the problem of caching in
a web environment.

4 CHAPTER 1. WEB PROXY CACHING

1.4 Why Focus on Proxy Caching ?

Proxy caches have been the subject of significant academic research[56, 33, 6] and also a
significant area of commercial development[?]. While an individual browser cache or server
cache is beneficial to only a specific client or a web server site, a single proxy cache can
benefit multiple clients and multiple servers at the same time.

A proxy cache has several potential advantages [33]. It can reduce latency on requests
for cached pages because those requests need not be directed to original servers. As only
missed requests from a proxy cache or explicitly requested ones to the server are sent to
servers through the network, proxy caching can reduce both overall network load and server
load. When a remote server is unavailable because of network disconnections or failures,
cached copies are still abailable to users.

However, proxy caching has several potential disadvantages, too. The basic problem
associated with caching is that the object returned to a user may be different from the
originating server’s current object if the objects has changed at that server since the last
cache update. Cache consistency mechanisms need to be applied to address this problem2.
Deploying proxy caching may also increase latency on requests for objects which are not
cached. For every request on web objects, it should be checked always whether the requested
object exists in the cache in a valid form. When the valid web object is not found in the
cache, the request will be passed to the origin server. It also incurs a cost in administrative
complexity, disk and memory space, and processing power. As a side effect of caching,
objects hit counts in a server may not reflect users’ real object access tendencies or true
object popularity because user requests met from upper levels of caches will not be seen
from the server.

2In Section 5, we will discuss this problem in detail.

1. INTRODUCTION 5

ServerClient

Client
Client
Cache

Client

System

Server

Client
Client
Cache

Client

System

ServerProxy

Client
Client
Cache

Client

System

ProxyProxy

ProxyProxy

Proxy

System

Server
Server
Cache Server

A) simple client-server with no cache

B) client-server with client cache

C) client-proxy- server with no server cache

D) client-proxy-server with a series of caches

E) many forms of client-server caching

Client

Server

Server

Server

System

System

System

System

Figure 1.1: Many forms of client-server connection.

6 CHAPTER 1. WEB PROXY CACHING

Proxy caches
(Cooperative caches)

Browser

Browser Cache

hit

request

reply
Proxy
Server

Proxy Cache

hit

Proxy
Server

Proxy Cache

hit

Proxy
Server

Proxy Cache

hit

lookup lookup

lookup

lookup

Network

reply Web Seerver

request

reply

hit

 Server

Server Cache

hit
lookup lookup

request

NetworkNetwork

request

request

reply

reply

Server cache

Figure 1.2: An example web cache hierarchy.

2. WEB TRAFFIC CHARACTERISTICS 7

2 Web Traffic Characteristics

The analysis of web traffic characteristics is important because specific access properties can
be exploited to develop more efficient web caches.

Two of the most important characteristics of web traffic for web cache design are access
frequency of a web object, and temporal locality of reference in web request streams. It is
a common belief that the frequency of web object access is not uniform for all web obejcts.
Several early studies [3, 19, 33] have found that the relative frequency with which web pages
are requested follows Zipf’s law[88]. Zipf’s law maintains that the relative probability of a
request for the i’th most popular page is proportional to 1/i. However, recent studies[62, 12]
argue that long-term popularity of web request stream does not follow Zipf’s law precisely,
but instead follows Zipf-like distribution with a variable exponent3.

The tendency that recently accessed objects are more likely to be accessed again in the
near future represents temporal locality of reference. Temporal locality of reference in web
request streams has been observed in many studies[5, 13, 39].

There is an inherent relationship between the temporal locality and skewed access distri-
bution of web traffic characteristics. That is, the popularity of frequency of access is one of
the major determinants of the temporal locality. For objects with high popularuity, tempo-
ral locality can be easily found. However, there are other contributors to temporal locality,
which is temporal correlation of repeated requests to the same web object[39, 41, 42]. The
precise identification and characterization of web traffic properties can help improve the
efficiency of web caches.

Usually, workload characterization is done by analyzing traces of Workload means a
sequence of access requests for web objects. web traffic. Web workloads may be generated
or recorded from the perspective of browsers, proxies, and servers. Workloads from clients
can be valuable in evaluating user-level performance metrics and access patterns. As clients
workload is gathered from a single client’s perspective, it has limited value when looking
at system-level performance metrics or the study of global properties. Server workloads are
often easy to find, as many servers log the requests they service. But workloads obtained
from server logs do not reflect the access patterns of individual users. Thus, while they are
useful when evaluating system-level performance metrics such as network bandwidth demand
and server load, they are less effective when studying user-level performance metrics such
as service time. A caching proxy often functions as a second (or higher) level cache. That
means that only the misses from web clients are passed to the proxy. Workloads obtained
from proxies usually do not exhibit per-user temporal locality of reference, but do track the
traffic generated by a large number of users simultaneously.

3It follows 1/iα, where α usually takes on some value less than 1.

8 CHAPTER 1. WEB PROXY CACHING

3 How A Proxy Cache Works

The basic functionality implemented by a web proxy cache is depicted in Figure 1.3. User
requests come into the cache as users browse the web; whatever happens within the cache,
the result seen by the user is a returned web page. This user experience is captured in
the top- and bottom-most blocks in the flow diagram: URL requests come into the system,
and the system replies with pages. Performance is measured from the user’s perspective,
although there are a number of different measures proposed in the literature.

These user requests come into the proxy cache as HTTP commands. The user is presented
with the view of a single proxy cache, but the cache may be internally distributed and
repeated accesses may result in a different server processing the requests. Within the context
of this flow diagram: the inflow of requests may be directed at a large number of “In Cache?”
systems, each operating on a different computer.

When a request is received, the first operation performed determines whether the re-
quested object has already been stored in the cache. This is simply a question of querying
the contents of the cache, and returning a boolean result. Again, the cache may store objects
in a distributed fashion, resulting in a more complex operation to service this query.

If the object was found to be in the cache, the system then checks to see if the cached
copy is “valid.” The definition of valid varies from implementation to implementation; this
is where the proxy cache designer can control the consistency model that is in place and the
scope of objects that are considered cachable.

The weakest consistency model for a proxy cache always returns “Yes” at this point:
all cached objects are considered valid. Similarly, the strongest consistency model always
returns “No” at this point: the object is reloaded for every request. In between these
extremes lie the consistency models of interest, using checks like the age of a cached object,
time-to-live information from the server or dozens of other possible metrics. Valid objects
are returned directly to the user.

The set of objects that are considered cachable is also defined at this stage. Web objects
might be considered uncachable because they are too large (i.e. long video streams) or
because they are likely to change with each access (i.e. cgi content). A proxy cache could
rule out caching cgi content by always declaring any object with “cgi-bin” in the name to
be invalid. A similar approach could insure that only HTML (and not ASP, AVI, etc...)
content is cached.

If a cached object is invalid or if the object was not found within the cache, the system
retrieves the data from the originating server. After the data has been downloaded, the
system faces the task of caching it. This stage of the process includes the replacement
policy component of web proxy cache design: when the cache does not have the space to
store the downloaded object, it must evict objects from the cache to make room.

The policy used to select which objects are to be removed from the cache is designer-
controlled. Further, the policy that determines when the cache is full is designer-controlled:
the cache can impose restrictions on the number of cached objects from a single server or
domain, or any other restrictions on cached objects the designer wants. Available cache
space need not be the only consideration when deciding if replacement is needed, but it
surely must be one of them.

Similarly, the system need not restrict the set of retrieved objects to those requested
by the user - although the cache will need to retrieve the objects needed to satisfy user
requests as they come in. A proxy cache could be built to retrieve (and then pass on to the
“cache object” stage) documents without an explicit user request. This technique is known
as “prefetching”: downloading objects before an explicit request has been made for them.
Whether to implement such a system, and what the list of prefetched objects should be, are

3. HOW A PROXY CACHE WORKS 9

 URL
Request

In Cache?

Yes

Retrieve
 Object

No

Is Valid?

 Reply
 With
Object

Cache
Object

No

Yes

Figure 1.3: Basic flow diagram of a proxy cache.

both decisions left up to the proxy cache designer.
Within this overview of web proxy cache functionality, we highlight 6 issues for further

discussion:

• Proxy Cache Performance: How can we quantify the performance of a web proxy
cache, and when are the various measures appropriate.

• Cache Consistency Model: What guarantees does a particular web proxy cache
make about the difference between cached objects and the current state of content on
originating serves.

• Replacement Policy: When a proxy cache must evict some “old” cached objects to
make space for new ones, which objects are evicted.

• Prefetching: How can a proxy cache improve performance by retrieving content
ahead of specific user requests.

• Cachability: Which web objects are cachable, and what are the performance impli-
cations of caching each type of object.

• Architecture: How can a proxy cache designer assemble proxy caches to deliver
better overall performance for a large community of users.

Each of these issues concerns the design of one or more steps of a proxy cache system, and
has been the subject of significant academic and commercial research. Building a web proxy
cache requires deciding how to handle each of these issues; building a proxy cache well-suited
to your goals requires understanding the choices available when facing each of them.

10 CHAPTER 1. WEB PROXY CACHING

4 Quantifying Performance

4.1 Performance Metrics

Many different performance metrics have been proposed in the literature. We focus on 5
quantities that are widely measured and used by practitioners.

Hit Ratio is the number of requests that hit in the proxy cache as a percentage of total
requests.

Byte Hit Ratio is the number of bytes that hit in the proxy cache as the percentage
of the total number of bytes requested.

Latency Reduction is the percentage of the sum of downloading latency for the pages
that hit in cache over the sum of all downloading latencies.

Hop Reduction is the ratio between the total number of the hops of cache hits and the
total number of the hops of all accesses.

Weighted-Hop Reduction is the corresponding ratio for the total number of hops
times ”packet savings” on cache hits. A cache hit’s packet saving is 2 + filesize/536, as an
estimate of the actual number of network packets required, if the request is a cache miss (1
packet for the request, 1 packet for the reply, and size=536 for extra data packets, assuming
a 536-byte TCP segment size).

5. CACHE CONSISTENCY 11

5 Cache Consistency

5.1 Overview

Though web proxy caching provides several beneficial effects, it introduces a new problem
not present in cacheless web environment. As there can be more than one copy of a given
web object from caching, a user might see an old copy of a requested object when it has
been changed since the cache last copied it. For web caches to be useful, cached copies need
to be updated when the original objects change. When cached copies are not up-to-date,
they are considered to be “stale”. Cache consistency mechanisms insure that cached copies
of objects obey certain rules - a cache consistency policy - with respect to their being out
of date[35, 22].

Current consistency models for web cache maintenance can be divided into two categories.
Strong consistency is the model which ensures that a stale copy of data will never be returned
to a user. However, no proxy caches implement the strong consistency model because of
the unbounded message delays in the Internet and the limited utility of a strong-consistent
proxy cache. Weak consistency is a broad class of models in which a stale data might be
returned to the user. So, weak consistency may not always be satisfactory. Users should be
aware that the cache might occasionally return a stale data.

In order to maintain strong consistency, a proxy cache must know exactly when the
original objects change in order to reflect those changes in its own copies. However, there
is no way for the cache to know when objects change without either asking the server or
providing a mechanism whereby servers can inform caches about changes. For the weak con-
sistency case, a proxy cache should determine whether a copied object should be considered
as up-to-date or not. A proxy cache can use some information from the server alongside its
own decision algorithms to estimate the validity of the copied data more accurately. Such
estimation might not always be correct, resulting in the cache occasionally returning stale
data.

Cache consistency algorithms have been extensively studied in the context of traditional
distributed file systems and client/server database systems. Most of the traditional algo-
rithms guarantee strong consistency and require servers to maintain state about the data
cached by clients. However, the web is fundamentally different from a distributed file system
and a client/server system in its access patterns[35]. Also, the scale of the web is orders
of magnitude larger than any distributed file system, making these schemes intractable for
web cache consistency. As changes for an object are made from a single web site, caches
should never observe conflicting update instructions, and that may make the consistency
issues simpler. Such different environments may make the techniques used in conventional
systems not be adequate for caching on the Web.

5.2 HTTP mechanisms to support cache consistency

HTTP[10, 22] defines several headers which were specifically designed to support caching.
Though the HTTP specification specifies certain behaviors for web caches, it does not specify
how to keep cached objects up to date.

The HTTP GET message is used to retrieve a web object given its URL. However GET
alone does not guarantee that it will return a fresh object. HTTP headers that may effect
caching can be classified into two categories. The first category includes headers appended
to retrieve a web object for cache control. The second category includes headers appended
when a web object is returned.

12 CHAPTER 1. WEB PROXY CACHING

5.2.1 HTTP Headers Appended to a GET Message

• If-Modified-Since:date : When appended to a GET message, a web object will be
returned only if its last modification date is greater than the date in the If-Modified-
Since header which is the last time a cache obtained a new copy from the originating
server. Otherwise, ”a Not Modified 304 reply” is returned. A GET message with
attached If-Modified-Since header is called a conditional GET.

• Pragma:no-cache : When appended to a GET message, it indicates that a cache may
not return a cached object. Instead, it must return a fresh version of the object
retrieved from the object’s home server. Most browsers offer a ”Reload” button which
retrieves an object using this header.

5.2.2 HTTP Headers Returned in Response to the GET Message

• Expires:date : This header notifies caches of the time until the object should no longer
be considered fresh. After that time, every request for the object should be sent
to the originating server to see if the object has changed. Expires headers will be
specially effective for web objects for which it is relatively easy to estimate expirations.
For example, static images which don’t change much or objects that tend to change
regularly are good candidates for this approach.

• Last-Modified:date : This header returns the time the object was last modified to create
the current version. This header is mandatory. Every object returned from a GET
message will have this header. The last-modified time of an object can be a unique
version identifier for the object. If cached objects have identical Last-Modified:date
headers then the contents of those objects are guaranteed to be identical.

• Date:date : This header provides the last time an object was considered to be fresh.
This is not the same as an object’s Last-Modified date. This may inform users how
stale an object might possibly be. For example, when an object’s Date:date is recent,
then it means the object’s information is quite up-to-date even if the content of the
object was created long before. So, this header reveals very important information for
users.

5.2.3 Headers in HTTP 1.1 for Cache Control

While the ”Expires:date” header can support control of caching to some extent, the HTTP
1.0 protocol does not provide much support for controlling when an object is cacheable or
how a cache can manipulate it. HTTP 1.1 provides a new class of headers that makes it
possible to define how caches should handle different web objects.

Some of the interesting options for Cache-Control: options response headers are as fol-
lows.

• max-age=[seconds] : This header specifies the maximum duration when an object may
be considered to be fresh. This option supersedes the Expires header. Clients may send
this header in order to explicitly and flexibly specify the degree of staleness acceptable
to the user. Note that no-cache Pragma directive could only be used to flush caches
unconditionally.

• s-maxage=[seconds] : This header specifies the max-age only for proxy caches.

5. CACHE CONSISTENCY 13

Strong Consistency Weak Consistency
Never-check

Client-based Check-every-time Expiration-based
Piggyback-based Validation

Invalidation-based
Piggyback-based InvalidationServer-based

Lease-based

Table 1.1: Category of Cache Consistency Maintenance Approaches

• public : This header marks the response as cacheable regardless of whether it should
be cacheable or not. Using this header, even an authenticated web object will be
cacheable.

• no-cache : This header forces caches (both proxy and browser) to submit the request
to the originating server for validation before releasing a cached copy every time.

• must-revalidate : This header asks caches to strictly obey any freshness information
given for an object. HTTP allows caches to determine whether they will use the given
freshness information or not. However, if this header is specified, caches should follow
the freshness information for an object, and without modification.

• proxy-revalidate : This header is similar to ”must-revalidate” but it only applies to
proxy caches.

5.3 Metrics for the Degree of Consistency

When a web object in a server is changed, cached copy of that object becomes stale till the
change is reflected to the cached object. The primary goal of cache consistency mechanism
is to keep cached web object up- to-date. The notion of staleness has been frequently refered
in the context of a single web object, in which a cached web object is stale if it is not up-to-
date. The time elapsed since the original object in the server has changed but the cached
copy is not up-to-date is refered as age. If age of a cached obejct is 0, its staleness should
be 0. Though age might be used as a metric for staleness, it is not same to the staleness 4.

The usual metric for staleness used in the literature is the number of out-of-date objects
forwarded to the users over the total user requests[35, 54]. This is similar to stale cache
hit ratio which means the number of known stale cache hits divided by the number of total
requests (both serviced from the cache and retrieved from the server) [48, 49, 47]

5.4 Approaches for Cache Consistency

In order to keep consistency, several approaches have been proposed in the literature. They
provide a spectrum of consistency levels based on the consistency guarantees provided by
each mechanism. Further, different approaches interact with different parts of the caching
system, which can lead to different consistency guarantees. In a client-based approach, the
requests that maintain consistency are initiated by a client. In order to keep certain degree
of consistency, it is necessary for clients to preform certain actions or to provide certain
information to servers. For a server-based approach, the requests that maintain consistency
are initiated by the server.

4[22] used age as the same concept of staleness. But this is a misleading definition

14 CHAPTER 1. WEB PROXY CACHING

Table 5.4 shows the spectrum of several approaches. We will now describe the basic
mechanisms of the approaches in each category.

5.4.1 Client-Based Strong Consistency Mechanisms

Check-Every-Time

This approach requires that proxy caches ask the server every time to determine if the
data has changed. Thus, clients will never get stale data. Specifically, when a cache receives
a GET or conditional GET message for a cached object, it always sends a conditional GET
message to the next higher cache or server by passing the Last-Modified date of the cached
object as the date in the If-Modified-Since header.

Check-Every-Time is one of the simplest consistency algorithms. The advantage is that
it does not require any state5 to be maintained at the server. Also the server doesn’t need
to block on a write request. Those advantages are from the fact that proxy is responsible
for maintaining cache consistency. However, this approach has a large message overhead
because it has to communicate with the originating server for every object request. It also
increases the response time since the proxy waits untill it gets the result of every check.

Because of its high message overhead, this mechanism is rarely used for a consistency
mechanism in current proxy caching systems. However it can be used as a part of a consis-
tency mechanism for web objects which are uncacheable6.

5.4.2 Client-Based Weak Consistency Mechanisms

Never-Check

This is the simplest consistency mechanism. It will never try to determine the freshness
of a cached object without an explicit request for a validity check. Specifically, a cache will
never send If-Modified-Since messages to check whether cached objects are valid or not. The
responsibility of cache consistency lies solely on a client. In order to access a fresh object,
clients will have to explicitly refresh the object using ”Pragma:no-cache” message.

Expiration-based

This approach assumes that a cached object remains valid for a Time-To-Live(TTL)
period, which is an a priori estimate of how long the object will remain unchanged after
a client validates the object[35]. Current web caches consider a cached copy valid until
it’s TTL expires. Any GET requests made before the TTL of the corresponding object
expires will return the cached objects by assuming those objects are still fresh. For requests
on objects whose TTL are expired, GET or conditional GET(If-Modified-Since message)
requests are sent to the upper level cache or the originating server to check whether those
objects have changed.

With this approach, choosing the appropriate value of the TTL represents a trade off. If
it is long enough, it will reduce validations for the number of object requests. On the other
hand, a long TTL increases the likelihood that a cache will return stale objects.

The adaptive TTL(also called the Alex protocol[15]) handles the problem by adjusting
the TTL duration of an object according to observations of the lifetime of the object. It
takes advantage of the fact that object lifetime distributions tend to be bimodal, which is

5For example, states on which clients have copies for which objects will be helpful.
6The circumstances when an object is uncacheable will be discussed in the cacheability issues in Section 8

5. CACHE CONSISTENCY 15

based on the assumption that young files are modified more frequently than old files and
that the old files are less likely to be modified. This implies that validity checks for the older
objects can be made less frequently. With adaptive TTL, a cache manager assigns a TTL
value to an object, which is a percentage of the object’s current age(i.e. current time minus
the last modified time of the object).

Expiration-based approaches are now the most widely used. But stale objects can still
be returned to users.

Piggyback-based Validation

This approach is based on piggybacking cache state information onto HTTP requests to
servers [46, 48]. Whenever a proxy cache communicates with a server, it piggybacks a list
of its cached objects from that server. These cache copies of these objects might be stale,
and the purpose of the exchange is to determine object-by-object which are actually stale.
The possibly stale objects are either objects with unknown expiration time or with expired
TTLs. The server then replies to the proxy cache with a list of cached objects on the list
that are stale. The cache can update its data to remove any stale objects. Then a relatively
short expiration duration (i.e. one hour) threshold is set at the proxy cache. If any access
on a cached object is made during this duration, it is considered as fresh. Otherwise, the
object is validated using a IF-Not-Modified request to the origin server.

Piggyback-based validation does not require any new connection between proxies and
servers. However the proxy must maintain a list of cached objects for each server, and
a server must process validation requests from caches. The performance of this approach
depends on the number of requests from a proxy to a server and the number of objects cached
at a proxy for a particular server. If there are few requests from a proxy server to a server,
then chances for the cached objects to be validated will decrease greatly. A piggyback-based
validation approach will then evolve into a check-every-time strong consistency mechanism.
When there are many requests from a proxy, the proxy cache contents will be validated
as much. In this extreme case, this approach is like an expiration-based weak consistency
approach.

5.4.3 Server-Based Strong Consistency Mechanisms

Invalidation-Based

Invalidation is based on servers notifying caches of object changes [54]. In order to
do this, servers keep track of which clients are caching which objects. A server notifies the
clients with copies, and receives acknowledgements from the clients before any modifications.

This approach is optimal in the number of control messages exchanged between servers
and the proxies. However it may require a significant amount of state to be maintained.
When there are a large number of clients, this approach suffers from burdening the server
with a large bookkeeping load. In addition, a server might send invalidation messages for
clients that are no longer caching corresponding objects. The read cost is low because
a client is guaranteed that a cached object is valid until told otherwise. However, when
an object is modified, the server must invalidate the cached objects - so the write cost
is high. Furthermore, if a client has crashed or if a network partition separates a server
from a client, then a write may be delayed indefinitely. A study[54] shows that overhead
for an invalidation-based approach is comparable to the expiration-based weak consistency
approaches based on expiration.

16 CHAPTER 1. WEB PROXY CACHING

Lease-Based

Invalidation-based approaches require a significant amount of state to be maintained
while expiration-based approaches impose a large control message overhead. Lease-based
approaches try to support strong consistency while providing a smooth tradeoff between the
state space overhead and the number of control messages exchanged.

In lease-based approaches [85, 26], the server grants a lease to each request from a proxy.
A lease is an associated timeout duration in which a server guarantees to provide invalidation
for modified objects. To read an object, a client first acquires a lease for it. The client may
then read the cached copy until the lease expires. When an object is modified, the object’s
server invalidates the cached objects of all clients whose leases have not expired. To read
the object after the lease expires, a client first contacts the server to renew the lease. The
duration of the lease determines the server and network overhead. The smaller the lease
duration, the smaller the server state space overhead, but at the cost of a larger number of
control messages exchanged and vice versa. When lease duration is infinite, this approach
reduces to an invalidation-based approach. When lease duration is zero, this approach
reduces to an expiration-based approach.

Strong consistency can be maintained for server failures in the lease-based approach. If a
client or network failure prevents a server from invalidating a client’s cache, the server need
only wait until the lease expires before performing the write. By contrast, invalidation-based
approaches may force the write to wait indefinitely. Leases also improve the scalability of
writes. They enable a server to contact only recently active clients (those holding leases on
the object) rather than contacting all clients that have ever read the object.

5.4.4 Server-Based Weak Consistency Mechanisms

Piggyback-Based Invalidation

This approach is based on piggybacking. The server replies to proxy requests with
the requested object and a list of modified objects from the list of objects that proxy has
previously retrieved.

To improve the efficiency of these algorithms, servers and proxies exchange caching in-
formation at the level of volumes - collections of web objects. Servers partition the set of
objects at a site into volumes, either a single site-wide volume or related subsets of objects.
Each volume has a unique identifier and a current version. When a server receives a request
from a proxy client containing the client’s last known version of the volume, it piggybacks a
list of objects in that volume that have been modified since the client-supplied version. The
proxy client invalidates cached entries on the list and can extend the lifetime of entries not
on the list.

Servers maintain volume, but no proxy-specific information. Whenever an object changes
within a volume, the server updates the volume version and records the object that changed
between the previous and current versions. Each proxy client maintains the current set of
server volume identifiers and versions for the objects in its cache. When a proxy needs to
request an object from a server, it looks up the current volume identifier and version for
the object and piggybacks this information as part of the request. If the volume identifier
is unknown or if the proxy does not have a version for the volume, then it requests such
information to be piggybacked in the reply.

In response, the server piggybacks the volume identifier, the current volume version and
a list of objects from this volume that have changed between the proxy-supplied and current
version. The proxy client updates its volume version, uses the list to invalidate cached

5. CACHE CONSISTENCY 17

entries from this volume and possibly extends the expiration time for volume resources that
were not invalidated.

When this approach is combined with piggyback cache validation, it is reported to provide
nearly strong cache coherency with a staleness ratio of 0.001 and a 6-9% reduction in overall
costs in comparison to the best TTL-based policy[49]. However, this mechanism requires
changes to existing web servers for implementation.

18 CHAPTER 1. WEB PROXY CACHING

6 Replacement Policies

6.1 Why We Research Replacement Policies

A cache server has a fixed amount of storage for storing objects. When this storage space is
full, the cache must remove some objects in order to make room for newly requested objects.
The cache replacement policy determines which objects should be removed from the cache.
The goal of the replacement policy is to make the best use of available resources, such as
disk, memory space and network bandwidth. Since web use is the dominant cause of network
backbone traffic today, the choice of cache replacement policies can have a significant impact
on global network traffic.

6.2 Factors to be Considered

6.2.1 Live Documents

We say a document is live if that document will be requested in future. The cache only
needs to retain live documents to achieve the maximum hit rate. Live documents are a
small fraction of all documents. Thus it is more appropriate to consider documents to be
dead if they have not been requested for more than some reasonably large time.

6.2.2 Interaccess time

Interaccess time is the time between successive document requests. Documents having lower
interaccess times are the documents that are more likely to be requested in the future. Due
to always selecting the document with the largest interaccess time to be evicted, the LRU
algorithm is the best replacement algorithm for reducing average cached-object interaccess
time.

6.2.3 Number of Previous Accesses

Using the number of previous accesses made to a document is a good indication. We can
use it to evaluate whether the document will be requested in the future. However, since it
does not include any aging information about the document, this cannot be used alone as
the deciding factor.

6.2.4 Document Size

The document size is another important factor for caching. In proxy caching the cached
documents can be of different sizes. Having more documents in the cache will likely lead
to a higher hit ratio, so one might choose to cache more small documents at the expense of
performance for larger documents.

6.2.5 Type of Document

The type of the document can also be an important factor to consider. Actually, many of
the requested objects are rather small image files, suggesting that a bias for document type
could be beneficial.

6. REPLACEMENT POLICIES 19

6.2.6 Latency

It is also important to consider the cost incured in acquiring the document. The more
expensive the document to download, the better it is to retain the document in the cache
because the penalty for a cache miss is greater.

6.3 Existing Replacement Algorithms

Existing replacement algorithms are classified into three categories, according to whether
they exploit access recency and access frequency, and whether they are sensitive to the
variable cost and size of objects.

6.3.1 Recency-Based Policies

The Least Recently Used algorithm (LRU) [21] is the most widely used cache replacement
algorithm, as it captures recency and is superior to other simple policies like FIFO and
Random. Since Web traffic exhibits temporal locality of reference, LRU is widely applied in
Web servers, client applications, and proxy servers. A disadvantage of LRU is that it does
not consider variable-size or variable-cost objects.

The LRU-MIN [1] algorithm is a policy derived from LRU that tries to minimize the
number of documents evicted by applying LRU only to the documents whose size is above
some threshold. The threshold is adaptive: if there is not enough space left, the threshold
will be lowered and the policy reapplied.

The GreedyDual-Size (GDS) algorithm [13] is an algorithm that can achieve the best
overall performance by considering locality, size and latency/cost and combining them effec-
tively. GDS is a variation on a simple algorithm named GreedyDual (GD) [86], which deals
with uniform-size variable-cost objects. It assigns a value H to each cached page p. At first,
when a page is brought into cache, H is set to be the cost of bringing the page into the cache.
When a replacement is needed, the page with the lowest H value, minH , is replaced, and
then all pages reduce their H values by minH . If a page is accessed, its H value is restored
to the cost of bringing it into the cache. Thus, the H values of recently accessed pages retain
a larger portion of the original cost than those of pages that have access. This algorithm
integrates the locality and cost concerns very well.

A common drawback of LRU and GreedyDual-Size is that they do not take into account
the frequency of resource use.

6.3.2 Frequency-Based Policies

The basic frequency-based replacement algorithm is Least Frequency Used (LFU) [21]. It
always removes the object with the lowest reference count. LFU is online-optimal under
a purely independent reference model. However, there are two subtle problems with LFU.
First, there are different versions of LFU algorithm, such as Perfect LFU and In-Cache
LFU, according to whether the reference count is also discarded when an object is evicted.
Second, in an LFU replacement algorithm, when two objets have the same reference count,
a tiebreaker is necessary.

Server-weighted LFU (swLFU) [45] is a simple generalization of LFU. It permits servers
to increase the allocation of shared cache space to the URLs they host, thereby reducing
server workloads. Weights in swLFU represent the extent to which servers value cache
hits, and swLFU is sensitive to differences in server valuations. Lots of simulation results
demonstrate that under a particular artificial assignment of valuations to servers in actual

20 CHAPTER 1. WEB PROXY CACHING

trace data sets, swLFU delivers higher aggregate value to servers than LRU or LFU, and
furthermore can provide reasonable variable QoS to servers.

Hybrid [84] algorithm is aimed at reducing the total latency. It not only considers the
connection time of a server and the network bandwidth that would be achieved to the server,
but considers document size and number of document access. And it combines them in a
efficient way. A function is computed for each document which is designed to capture the
utility of retaining a given document in the cache. The document with the smallest function
value is then removed. The function for a document located at server depends on the
following parameters: the time to connect with server, the bandwidth to server, the number
of times the document has been requested since it was brought into the cache, and the size
(in bytes) of the document. Performance Experiments show that Hybrid is a robust policy.
When using download rate along with other factors, Hybrid and SIZE are superior for HR,
LFU and LRU.

6.3.3 Recency/Frequency-based Policies

• Fixed Cost/Fixed Size Algorithms

Several studies have considered both recency and frequency information under a fixed
cost/fixed size assumption.

The LRU-K[65] algorithm is to keep track of the times of the last K references to popu-
lar database pages, using this information to statistically estimate the interarrival time
of such references on a page by page basis. Many simulation results prove that the
LRU-K algorithm has significant cost/performance advantages over conventional algo-
rithms like LRU, since LRU-K can discriminate better between frequently referenced
and infrequently referenced pages. Moreover, unlike the approach of manually tuning
the assignment of page pools to multiple buffer pools, this algorithm is self-reliant in
that it does not depend on any external hints.

The LFU-DA algorithm [4] is a frequency-based algorithm with dynamic aging. On a
fetch or a hit, the object value is set to the reference count plus the minimum reference
count in the cache. LFU-DA calculates the key value ki for object i using the following
equation: Ki = Ci ∗ Fi + L ,with Ci set to 1. This equation uses only the frequency
count and the inflation factor to determine the key value of an object. Simulations
with large traces indicate LFU-DA obtains the highest byte-hit-ratio. Furthermore,
the LFU-DA policy may be useful in other caching environments where frequency is an
important characteristic but where LFU has not been utilized due to cache pollution
concerns.

The Least Recently/Frequently Used (LRFU) [51] policy is a new block replacement
policy that includes both the LRU and LFU policies, depending on the different weights
given to recency and frequency. Simulation results show that if the cache size is large
enough to hold most of the working set, such as the case where the cache size is
larger than 200 blocks for our workload, the point near the LFU extreme on the
spectrum gives the lowest miss rate. moreover, When the cache size is 350 blocks, the
LRFU policy gives about 30% better miss rate than the LRU policy. This superior
performance of the LRFU policy results from the fact that it considers the frequency
factor as well as the recency factor when it decides the block to be replaced.

• Variable Cost/Size Algorithms

To deal with variable cost/size, generalizations of the above techniques have also been
proposed.

6. REPLACEMENT POLICIES 21

In [75], the Least Normalized Cost Replacement algorithm for proxy caching on the
Web (LNC-W3) is proposed as a generalization of LRU-K to deal with variable-cost
and variable-size Web objects. It is a delay-conscious cache replacement algorithm
which explicitly consider the Web’s scale by preferentially caching documents. It
computes the average reference rate and uses that to estimate the profit of caching
an object. Simulation indicated that LNC-W3 obtains higher delay saving ratios than
those acheived through LRU and LRU-K.

In another direction, since GD-size policies do not take into account how many times
the object was accessed in the past, several studies proposed generalizations of the
GreedyDual-Size algorithm to incorporate frequency. These algorithms include GreedyDual-
Size-Popularity (GDSP) [40] policy, GreedyDual-Size with Frequency policy (GDSF)
[4] and greedyDual-Least Frequestly Used (GD-LFU) [47] algorithm.

GDSP is a generalization of GDS that enables it to leverage the knowledge of the
skewed poplarity profile of Web objects. It incorporates access frequency into the
GDS algorithm. A popularity profile of Web objects requested through the proxy is
maintained efficiently, which makes it possible to accurately estimate the long-term
access frequency of individual objects. This algorithm can exploit temporal locality
exhibited in the Web traffic as well as avoid cache pollution by previously popular
objects. Trace simulations indicate that when HR is the main objective, GDSP is
the best choice. It outperforms GDS without significantly compromising BHR. As
to latencysaving ratio for NLANR traces under LRU, LFU, GDS and GDSP, the
results show that latency reduction is minimal for LRU and LFU. But GDSP clearly
outperforms GDS.

Lowest Relative Value algorithm (LRV) [55] includes the cost and size of a document
in the calculation of a value that estimates the utility of keeping a document in the
cache. The algorithm evicts the document with the lowest value. The calculation of
the value is based on extensive empirical analysis of trace data.

Among all documents, LRV evicts the one with the lowest value. Thus, LRV takes
into account locality, cost and size of a document. The performance simulation of
LRV, compared to other algorithms, such as LRU, LFU, size and FIFO shows that
LRV features a consistently higher BHR than other policies in all conditions. The
same happens for the HR, except in the case of the SIZE policy with large caches. But
reducing the cache size causes the SIZE policy to worsen because of the pollution of
the cache with small documents, which are never replaced. LRV is particularly useful
in the presence of small caches.

22 CHAPTER 1. WEB PROXY CACHING

7 Prefetching

Prefetching is a technique that use the prediction of the user’s future access to retrieve data
and thus help to reduce the user’s perceived latency. By studying some web proxy trace,
Kroeger et. al. [Kroeger97] found that local proxy caching with unlimited cache size could
reduce latency by at best 26by at the best 57could provide at the best a 60boundary was
only derived from limited traces, it showed the potential of using prefetching to improve the
performance of caching. However, the benefit user perceived latency saving by prefetching
comes with the cost of increasing network traffic and server workload, thus studying the
tradeoff between performance and bandwidth saving is important in prefetching. For proxy
cache, the space balance between caching and prefetching need also to be studied carefully
when employ prefetching.

7.1 Prefetching technique classification

7.1.1 By Location

Prefetching can happen between web servers and proxy caches or between proxy caches and
browser caches. In the first case, proxy cache act as client, prefetching web documents in
local cache. In the second case, proxy cache act server, providing web objects for client
prefetching.

7.1.2 By Information Resource

The information used for prediction algorithm can either come form the statistics of access
history or from the accessed objects themselves.

Prefetching using the statistics from the history information can can be further classified
into server based prefetching, local based prefetching, and hybrid prefetching.

• Server based In server based prefetching, the information for prediction is gathered
by the server. The server use access history from a lot of clients to make the prediction.
The server can either push the web objects need to be prefetched to the client, or give
the client the prefetching information and let the client to decide what to prefetch.
Proxy caches can either act as a server or act as a client here depending where the
prefetching happens.

• Local based In the local based prefetching, the client use it own access history to
make predictions and send request to the server. The client here can be a bower cache
using one user’s history or a proxy cache using a lot of user’s access history.

• Hybrid In this approach, the predictions from the server and from the client are
combined for prefetching.

The accessed web objects can also be the information resource for making prediction.
For example, the hyperlinks in HTML pages can be the candidates for prefetching.

7.1.3 By Content

• Object prefetching The web object itself is prefetching based upon prediction.

• Connection prefetching While prefetching objects might increase the network traf-
fic and server load dramatically, an alternative of prefetching connections is brought

7. PREFETCHING 23

up as an compromise. Cohen et. al. [Cohen99] proposed host-names pre-resolving
(pre-performing DNS lookup), pre-connection (prefetching TCP connections) and
pre-warming (sending ”dummy” HTTP HEAD request) techniques to reduce user
perceived latency. Their trace-based simulations show that connection prefetching has
better performance improvement per bandwidth than object prefetching.

7.1.4 By Execution Time

• Immediate prefetching Prediction and prefetching is conducted immediately after
each access.

• Delayed prefetching The bandwidth usage due to HTTP traffic often varies con-
siderably over the course of a day, requiring high network performance during peak
periods while leaving network resources unused during off-peak periods. Maltzahn
et. al. [Maltzahn99] proposed ”bandwidth smoothing” technique to use the these
extra network resources to prefetch web content during off-peak periods. Their result
showed that this technique can significantly reduce peak bandwidth usage without
compromising cache consistency.

7.2 Prediction Algorithms

7.2.1 Prediction by Partial Matching(PPM)

PPM algorithm and it’s variations are used by a lot of researchers as the prediction algorithm
for prefetching[cao98, Papadumata96, Palpanas98 Foygel99]. This algorithm keeps track of
the sequence of l accessed objects following a sequence of m objects. The data structure
is typically a collection of trees. For prediction, the past up to m references are matched
against the collection of trees to produce sets of objects as the prediction of the next l
steps. Only candidates whose probability of access are higher than a certain threshold are
considered for prefetching.

7.2.2 Top-10

Top-10 approach proposed in [Markato96] combines the servers’ active knowledge of their
most popular documents (there Top-10) with client access profiles. Based on these profiles,
clients request and servers forward to them, regularly, their most popular documents.

7.2.3 Date Mining

This algorithm is used in [Aumann98]. The access workload is divided into a set of sequence.
The support of s′ in a sequence S is defined as the number of times S′ appears in S as a
subsequence. The support of S′ in the whole training set X is the sum of it’s support in
sequences in X . Then all the frequent subsequence with support higher than a threshold
can be computed from the training data. For prediction, given a sequence S = (e1, ..., em),
consider all possible extensions of sequence S′ = (e1, ...em, e) for all values of e. For all
suffixes of each extension, the extensions with greater support and longer matches are given
a higher weight. The prediction is the extension with the highest weight.

7.2.4 Interactive Prefetching

For each user accessed HTML page, prefetch all its referenced pages.

24 CHAPTER 1. WEB PROXY CACHING

7.3 Conclusion

Prefetching can be viewed as a technique to improve the efficiency of caching by a studying
the access history. The precision and efficiency of the prediction algorithm are both very
important in the performance of prefetching. If the prediction of the algorithm is imprecise,
it will lead to too much network traffic. If the algorithm require too much computation in
each prediction step, it might be unpractical to be used in reality. The integration of caching
and prefetching is also an important problem need to be studied in prefetching.

8. CACHEABILITY 25

8 Cacheability

The complexity of web objects makes cacheabilty unique problems in web caching. Recent
study shows that a fair amount of web objects in the web accessing workloads are unrealistic
to be cached in proxy cache. The existence and the amount of uncacheable web objects
make them the biggest reason of the degrading of the performance of web caching. Some
research has been deployed to cache certain kind of web objects that are usually considered
uncacheable otherwise. However, the intricacy and diversity of the web objects makes a
universal solution to the cacheablity problem impossible. The lack of coordination between
web server and proxy caches also makes this problem very complicated. Most of current
work only stays at the research level.

8.1 What Kind of Objects are Usually Considered Uncacheable

Web objects can be considered uncacheable by the proxy cache for different reasons. Here
is some major consideration.

First, some web objects are uncacheable by nature. For example, web objects that
requires authentication upon retrieval shouldn’t be cached. Some web objects are user
specific, or context specific, which means that the result of the request depend on who is
requiring it or the context of the requirement when it is made. This kind of web object
should not be cached also since proxy cache usually don’t make decisions (return cached
copy or not) according to individual user and context. This kind of web objects are usually
web objects including cookies.

Second, there are some web objects that can be cached in the proxy cache, however, no
or little benefit can be got by caching those web objects. Thus, these kind of objects are also
considered uncacheable by the proxy cache. They include the objects that are changing too
fast and the objects that are too large. If an object is too dynamic, then the cached copy
will be stale very soon, and need to be fetched from the server again upon the next request.
Thus it is no good for the proxy cache to maintain them in the cache at all. A lot of dynamic
generated web objects tend to change very fast. It’s also hard to estimate the expiration
time for a dynamic generated object in the adaptive TTL consistency policy. Thus dynamic
generated web objects are usually considered uncacheable by the proxy caches. If an object
is too large, then caching it will cause the eviction of then the reloading of a lot of small
objects, which degrade the performance of the cache over all. Thus, a lot of proxy caches
put a threshold on the size of cacheable web objects.

Finally, there are some web objects set to be uncacheable by the servers due to some
reasons although they are cacheable to the proxy caches. For example, some web servers
want to get the real access statistics for advertisement, so they don’t want their web pages
to be cached by the proxy caches.

8.2 How to Decide Which Web Objects are Uncacheable

It is the proxy who decide whether a web object is cacheable to it or not. However, the
information they used to make the decision is very get from the web servers. Here is the
source of the information that the proxy caches usually used to decide the cacheability web
objects. Detailed description can be found in [87].

URL Dynamic generated objects can usually be identified from the URLs of the requests.
Their URL always include ”?”, ”=”, ”/cgi-bin/”, ”.cgi”, ”.pl” or ”.asp”.

26 CHAPTER 1. WEB PROXY CACHING

HTTP header The HTTP response header contains the following information always im-
ply that the object is uncacheable.

• pragma: no-cache

• Authorization

• Cache-Control: no-cache / private / no-store

• Set-Cookie

• No Last Modified Date or the Last modified Date is the request time.

• size: above threshold

HTTP status codes A lot of HTTP status codes imply that the response is uncacheable.
For example, a response with code ”302 Moved Temporarily” with no expire date is
uncacheable.

8.3 Uncacheable Objects in Proxy Cache Workloads

A lot of researchers study the cacheability on the proxy cache workloads. The result depend
on the workloads they studied and the different consideration of what kind web object is
uncacheable. A brief summarization of these researches from 1997 to 1999 can be found in
[82, 83]. Although the total percentage of uncacheable objects under different consideration
in different workloads may vary form 15% to 50%, they all imply that cacheabililty has a
big influence on the effectiveness of caching.

8.4 Improving Cacheability

Since the web objects are uncacheable due to different reasons, making some uncacheable
objects cacheable need also to be done according the specific reasons. There are some
research work proposed to cache dynamic generated objects in the proxy caches. Streaming
caching is a technique to cache large multimedia files in proxy caches. These works are still
staying at the research level.

8.4.1 Caching Dynamic Henerated Content

Douglis et. al. [23] extended HTML to allow the explicit separation of static and dynamic
portions of a resource. The static portions can then be cached, with dynamic portions
obtained on each access.

Cao et. al. [14] propose the Active Cache scheme to support caching of dynamic con-
tents at Web proxies. The scheme allows servers to supply cache applets to be attached
with documents, and requires proxies to invoke cache applets upon cache hits to finish the
necessary processing without contacting the server. The user’s access latency is saved at the
expense of the proxy caches CPU costs.

Smith et. al. [77] propose Dynamic Content Caching Protocol, to allow individual
content generating applications to exploit query semantics and specify how their results
should be cached and/or delivered. They classify locality in dynamic web content into three
kinds: identical requests, equivalent requests, and partially equivalent requests. Identical
requests have identical URLs, which result in the generation of the same content. The URLs
of equivalent requests are syntactically different but the result generated by these requests
are identical. Partially equivalent requests are syntactically different. Results generated for
partially equivalent requests are not identical but can be used as temporary place holders for

8. CACHEABILITY 27

each other while the real document is being generated. Dynamic Content Caching Protocol
allow individual content generating applications to specify equivalence between different
GET-based requests they serve. This information can be used by web caches to exploit
these additional forms of locality. Identical requests and equivalent requests can directly
fulfilled using previously cached results. For partially equivalent requests, previously cached
content can be immediately delivered as an approximate solution to the client while actual
content is generated and delivered. This allows clients to browse partial or related or similar
results promptly while waiting for more accurate information.

8.4.2 Stream Caching

Realtime streams such as video are several orders of magnitude larger than normal web
objects. This limits their cacheability in the ordinary proxy caches. However, the increasing
demand of video and audio streams makes stream caching of particular interest in proxy
caching.

Sen et. al. [76] propose prefix caching, that, instead of caching entire audio or video
streams (which may be quite large), the proxy should store a prefix consisting of the initial
frames of each clip. Upon receiving a request for the stream, the proxy immediately initiates
transmission to the client, while simultaneously requesting the remaining frames from the
server. In addition to hiding the latency between the server and the proxy, storing the prefix
of the stream aids the proxy in performing workahead smoothing into the client playback
buffer. By transmitting large frames in advance of each burst, workahead smoothing sub-
stantially reduces the peak and variability of the network resource requirements along the
path from the proxy to the client. They construct a smooth transmission schedule, based on
the size of the prefix, smoothing, and playback buffers, without increasing client playback
delay. It’s showed that a few megabytes of buffer space at the proxy can offer substantial
reductions in the bandwidth requirements of variable-bit-rate video.

Rejaie et. al. [69] present a fine-grain replacement algorithm for layered-encoded multi-
media streams at Internet proxy servers, and describe a pre-fetching scheme to smooth out
the variations in quality of a cached stream during subsequent playbacks. This enables the
proxy to perform quality adaptation more effectively and maximizes the delivered quality.
They also extend the semantics of popularity and introduce the idea of weighted hit to
capture both the level of interest and the usefulness of a layer for a cached stream. It is
showed that interaction between the replacement algorithm and pre-fetching results in the
state of the cache converging to the optimal state such that the quality of a cached stream is
proportional to its popularity, and the variations in quality of a cached stream are inversely
proportional to its popularity. This implies that after serving several requests for a stream,
the proxy can effectively hide low bandwidth paths to the original server from interested
clients.

28 CHAPTER 1. WEB PROXY CACHING

9 Web Proxy Cache Architecture

Here we discuss the higher-level architectural issues involved in web proxy cache design.
Back in section 2 of this chapter we presented a high level picture of how a web proxy cache
functions. The first web proxies implemented this flow diagram with a single computer and
still faced a wide variety of issues in the quest for better performance. As web use has
increased so has the load on web proxy caches [16]. This led to the development of more
complex proxy cache systems, designed to handle large user bases and workloads[52, 80].
When traditional single-system proxy caches could not provide adequate performance, proxy
cache designers began to consider more complex web proxy cache architectures[11, 44].

Across the spectrum of architectures, there are systems that can more efficiently manage
cached objects, provide more cache storage space and provide increased processing power
to service more user requests. These caches employ a variety of techniques ranging from
more efficiently accessing local disks to employing a large number of systems in a distributed
fashion to achieve these goals. With this potential for increased performance come new cache
design issues:

• efficiently accessing a collection of distributed cached objects

• insuring coherence within a distributed multi-system cache,

• communicating among cache processors to maximize request processing efficiency

• load balancing across cache processors.

Further, as proxy caches become more popular, user’s may see their requests routed through
several autonomous and unrelated proxy caching systems on the trip between client and
server.

Two new issues arise from the multiple-levels-of-proxy-cache phenomenon. First, a new
meta-level proxy cache architecture has appeared where individual proxy cache systems act
as nodes within a web-wide distributed web proxy cache. And second, we see proxy caches
appearing on both the supply – content provider – and demand – user – sides of the web.

The discussion below will address these points within the context of web proxy cache
architecture. Specifically, we consider the issue of how to structure a web proxy cache to
achieve good performance when facing a large workload involving a large number of web
objects. First we will cover the issue of what medium should be used to store cache objects.
Then we will discuss different design alternatives for distributed cache systems. With an
understanding of the different distributed cache architectures that have been designed and
tested, we next discuss the relationship between supply- and demand-side proxy caches. We
conclude with a discussion of the interactions among proxy cache systems and meta-level
proxy cache architecture that these interactions present.

9.1 Disk vs. Memory Based Caching

The first issue to consider when architecting a web proxy cache is the storage medium for
cached objects. Caches have been implemented using disk, memory and a combination of
those two for the storage of cached data. While other techniques have surely been tried, we
will confine our discussion to just the disk and memory alternatives.

The performance characteristics of memory and disk are well studied, and are docu-
mented in their own literature [66]. Three characteristics are important for the discussion
here: performance, cost and size. Memory performance, measured both in terms of latency
and bandwidth, is better than disk. In exchange for this advantage it is significantly more

9. WEB PROXY CACHE ARCHITECTURE 29

expensive. Lastly, memory systems tend to have lower size limits than disk systems for a
variety of reasons 7.

Many web proxy caching systems in use today rely on disk storage because of the size
and cost constraints [16, 57, 67]. Consequently, there has been significant research into the
performance effects of using disk in a web proxy cache. In [70], Rousskov and Soloviev
found that roughly 30% of total cache hit response time in their experiments was taken up
with disk access within the proxy cache. Mogul reports that disk costs exceed the latency
reductions from caching for a proxy installed at his company[60]. Later work by Maltzhan et
al. in [57] reports that in fairly common situations web proxies introduce more latency than
they alleviate because of disk access costs. Their essential result is that disk-only caching
can be worse than no caching at all when disk use is not carefully optimized.

Two routes of attack have been proposed in the literature: using memory as a cache
within a web proxy cache, and optimizing a proxies use of disk storage. Significant progress
has been reported along both routes. The cache-within-a-cache approach is simply the
recursive application of caching to an existing proxy cache. For the internal cache, disk holds
a complete collection of the cached objects while some subset of objects are duplicated in
memory to accelerate access time.

Three approaches to implementing such a system are are compared in [58]. Those au-
thors found that this type of memory cache could significantly improve performance. In
experiments, a 512 KB memory cache achieved an internal hit rate of over 50%, and an 8
MB memory cache achieved a 90% internal hit rate.

These results make a compelling case for taking a combined memory and disk approach
when building a web proxy cache. Implementing a memory cache within a web proxy cache
reduces the disk access problem because no disk access is required for internal cache hits.
But this approach does not address the performance problems associated with internal cache
misses, which will still incur the disk access cost we have already stated is great enough to
overwhelm the gains of caching.

This issue is specifically addressed by Markatos et al. in [59], which proposes several
optimizations aimed at disk use within web proxy caches. First, those authors find that the
storage of each cached web object in its own file incurs a large performance penalty due to
filesystem overhead (creating files, opening files, etc...). Simply storing several web objects
per file increases system performance by an order of magnitude in their tests.

Further, they find that inefficiently managing disk writes incurs a cost of a factor of 2
in overall performance. Lastly, they find that while web clients do exhibit temporal locality
of reference individually, proxy servers handle requests from a large number of clients in an
interleaved fashion thereby eliminating the ability to access disk in a similarly local fashion.
Addressing this issue is more difficult than addressing the previous two observations, but
they still report a doubling of performance in experiments with a first attempt at resolving
this last issue.

9.2 Distributed Cache Systems

Improving the performance of cached object storage addresses performance at the stage of
replying to requests that hit in the cache. Even before a proxy cache returns a requested web
object to a user, significant processing is done: the object may be retrieved from a remote
server, some objects may be evicted from the cache, and the system may update internal

7While a full discussion of this issue is beyond the scope of this chapter, it suffices here to state that
many computer systems cannot handle more than 2 GB of memory for address space reasons. Even other
systems which do not face this limitation still have memory size limits imposed by the hardware (i.e. how
many memory chips can i plug in).

30 CHAPTER 1. WEB PROXY CACHING

state to handle future requests. Increasing the user base associated with a web proxy cache
increases this load linearly with the number of user requests. If the number of requests is
too high the cache can become swamped even if every request is a cache hit.

The web proxy cache model we have considered so far imagines a single system serving a
community of users. For many large-scale web proxy cache systems this model is inadequate
[16, 30, 44, 57, 61]. Large proxy caching systems often employ a collection of computers in
a distributed fashion in an attempt to increase overall performance. Following Karger et al
[44], large proxy caches are built to solve two main problems:

• preventing servers from being swamped with requests

• minimizing cache storage requirements

The issue of decreasing the latency web user’s experience during times of high load is sec-
ondary for these systems. If a server has sufficient processing power to reply to a new user
request (i.e. that server is not swamped), then the latency issues devolve into cache hit rate,
miss penalty and so on. These issues are discussed elsewhere in the chapter. Here we focus
solely on building web proxy caching systems that can handle large workloads and can cache
large numbers of web objects.

A classification of different distributed cache architectures into three classes is provided
in [29]. We follow their naming system here. The simplest class of distributed proxy cache
is an “Isolated Proxy Cache”: a set of proxy caches that do not intercommunicate. These
caches do, however, have with some mechanism to assign each incoming user request to a
constituent cache. One step up in complexity are the “Partitioned Caches.” Each cache in
a distributed cache implementing the distributed architecture is responsible for caching sa
subset of the web, and only handles user requests for URLs that fall into it’s subset. The web
is partitioned into subsets, subsets are assigned to constituent caches, and the constituents
then operate independently.

The most complex distributed proxy caches are the “Collective Caches Supporting Re-
mote Queries” – referred to as just Collective Caches here. An individual cache within a
collective cache executes an additional step after making the determination that an object
is not in the local cache - it requests the object from the other members of the collective.
Only if this request does not produce a copy of the object (i.e. no member of the collective
has already cached the object) does the proxy contact the originating server.

Our discussion proceeds by addressing the two problem distributed proxy caches are
built to solve. We will refer to this classification of caches to illustrate which aspects of the
proxy caching problem each distributed cache architecture addresses.

9.2.1 Avoiding Server Swamping

Avoiding server swamping is a variant of the load balancing problem [32, 57, 78]. We do not
aim to insure that load is equal across all web servers, just to decrease the probability that
a user’s request take a “long time” to process because the queried server faces more load
than it can efficiently handle. A distributed cache with N constituent caches has in total N
times the processing power of each constituent cache. Say each constituent cache can handle
load L before being swamped. The goal here is to design a distributed cache system that
can handle load as near to NL as possible without any part of the system being swamped.

The isolated cache architecture does make progress towards this goal. The effectiveness
of a distributed cache implementing the “Isolated Proxy Caches” architecture towards re-
solving the swamping problem is determined by the mechanism that assigns user requests

9. WEB PROXY CACHE ARCHITECTURE 31

to constituent caches. A simple mechanism like round-robin DNS [27] is adequate to per-
form this purpose. Other mechanisms have been proposed, and some web browsers can
be configured to include this functionality [20]. But the performance of these systems has
been measured at far below the levels achievable with more tightly-integrated architectures
[29, 30].

Partitioned Caches suffer from a different set of performance problems. Any given request
is assigned to one cache within a partitioned cache, independent of which client initiated
the request. This mapping is implemented with the proxy auto-configuration [17] feature
of a browser. There are two problems here. First, the mapping is static at any given
time. And second, there is no automated mechanism for updating the mapping if the set
of available caches changes. That the mapping is static means that network performance
characteristics do not figure into the pairing of request and cache. This has been shown to
decrease performance [32, 44, 61].

The inability of the client to maintain an accurate picture of the set of available caches
is both a correctness and a performance problem. If a distributed proxy cache using the
partitioned architecture does not allow communication among constituent caches, a page
request to the “wrong” cache will result in a miss every time. This “wrong” cache will never
cache the object because it does not belong to the subset of web objects it manages. If this
cache does communicate with the other constituent caches, the request will be redirected
to the “correct” proxy. In this case the second problem - that of never caching the object
- disappears, but in its place we have a new performance issue: web object requests will
face the added latency of being routed through the partitioned cache network because the
user has an incorrect mapping from objects to caches. This has been addressed as both a
theoretical problem [44] and as a performance problem observed in experiments [29].

A collective cache capable of routing requests internally has a much freer hand in dealing
with the server swamping problem. These systems do not have the static assignments
that proved troublesome for isolated and partitioned caches. This is no guarantee that
these systems will handle the swamping problem well. Several researchers have found that
some collective caches do not avoid swamping any better partitioned and isolated caches.
Specifically, experiments have found that early collective caches like Squid and Harvest have
scalability problems dealing with swamping [28, 29, 78] Specifically, in [28] it is reported
that many Internet Cache Protocol [81] based caches [9, 24, 34] face a cache-maintenance
workload that is quadratic in cache size.

Karger et al. take a more rigorous approach to this problem in [44]. We note here
that this paper describes the academic precursor to the Akamai system, which was designed
by some of the same authors, and provides a good technical source of information on how
Akamai presumably works. They begin by defining a random mapping among constituent
caches, clients, objects and requests. Clients do not see the full set of constituent caches.
Instead each client is presented with a “view” of the set of caches. This view may be
significantly smaller than the true set of constituent caches, and may vary from client to
client. Whatever the view, they consider random mappings with several properties:

• adding or removing caches from a view does not cause a “large” change in how client
requests are assigned to constituent caches

• across all client’s views the number of constituent caches handling any individual object
is small

• similarly, the number of objects handled by any individual constituent cache is as small
as possible

32 CHAPTER 1. WEB PROXY CACHING

If clients choose which entry point to the collective cache with such a mapping, they are
able to prove probabilistic bounds on the load of any constituent cache. The result are
statements of the form: with 95% confidence, no constituent cache will receive more than
75% of the load that it can handle. The reader is directed to the paper for a more technical
treatment. The essential point here is that, under certain conditions, one can construct a
collective cache that probabilistically solves the server swamping problem.

9.2.2 Minimizing Cache Storage Use

Distributed caches provide more total cached object storage space, but different proxy cache
classes take advantage of the space in different ways. The isolated cache model, with N
constituent caches, assumes N independent storage spaces for cache objects. The same
object may be cached up to N times in the whole system. This is clearly not the most
efficient possible use of space - but it is the best an isolated cache can do, since there is
no communication among constituent caches. These caches make no attempt to minimize
storage use; in exchange they do not pay any performance cost for maintaining a more
efficient use of space.

At the other extreme are the partitioned caches. These caches are very efficient space
users, since there is at most one copy of any cache object in the entire system at any one
time [29]. This says nothing of the storage load balance across systems. If all requests are
for the objects cached by a single constituent cache, that cache will likely fill up while all
other constituent caches remain empty.

The more interesting cases are the collective caches. These systems have the internal
communication facilities to be as space efficient as partitioned caches (and perhaps more so),
but also can control the balance between space efficiency and performance. The performance
gains possible from sharing the available space efficiently among constituent caches has
been demonstrated in several studies [57, 78], where 50%-100% improvements in hit rate
were observed when cached object replication was reduced to make space for the caching of
more distinct web objects. Even systems where overall space efficiency was not a concern -
and consequently did nothing to reduce cached object replication - demonstrated that the
collective cache concept can increase performance [50].

There are proxy cache that dynamically control the balance between performance and
space efficiency. The CRISP system [32] maintains a global list of all objects cached in all
constituent caches with a “central mapping service”. This allows the cache to insure that
no object is cached twice while still insuring that all requests for a cached object will result
in a cache hit, regardless of which constituent cache receives the request. The cost of this
service is added latency in servicing requests. The designers of CRISP provide two reasons
they believe this is not a significant performance problem. In brief, they are:

• the mapping server can be made fast enough to add no user-perceived delay in object
retrieval

• if the mapping server becomes a bottleneck, one can partition the mapping of URLs
across a collection of mapping servers, similar to the partition proxy cache design

They concede that these conditions can only hold in a proxy cache environment where the
constituent caches face low latency for communication with the mapping server. CRISP is
only worth considering if your situation meets these criteria.

For a truly large-scale widely distributed web proxy cache a CRISP-like central-directory
approach is not appropriate because such a situation does not meet any of the criteria
listed above. We would much prefer to have provable bounds on per-constituent storage

9. WEB PROXY CACHE ARCHITECTURE 33

requirements for a given number of web objects. Karger et. al. provide such a bound within
their web proxy cache model [44]. In their case, again presumably the Akamai case, they
prove that per-constituent cache storage grows with the log of total cached-content size with
high confidence. The aforementioned random-assignment scheme is used to assign object to
constituent caches. We are not guaranteed that each object is assigned to exactly one cache
as we are with the partitioned case, but the mapping is restricted as above, and this allows
one to prove this bound with high confidence.

Consequently, while this architecture may cache the same object twice - an inefficiency
not permitted by some of the simpler distributed cache architectures discussed above -
it does provide probabilistic guarantees that the cache is space-efficient overall while still
addressing the server swamping problem. We also see this pair of properties in CRISP. Each
of these architectures relies on a different mechanism to achieve these goals. The former
relies on constructing a random mapping among objects, requests, clients and constituent
caches; the later employs a central map, recording all cached objects on all constituent
caches. Experiments have confirmed that the random mapping approach achieves better
performance [43]. But the only implementations of this system that the authors are aware
of are Akamai and the research prototypes used for experiments. CRISP and its derivative
systems are freely available and widely used [67]. These systems also serve as the constituent
caches of the NLANR global cache hierarchy[63]. Anyone is free to join this hierarchy, and
thereby gain access to a large distributed cache system.

9.3 Supply and Demand Proxy Caches

Web proxy caches were originally conceived as systems to improve web access latency on the
client side - to reduce the latency users experience when retrieving content [56, 80]. Recently
proxy caches have appeared that aim to improve the performance of content distribution
in addition to retrieval. We refer to this systems as demand-side (content retrieval) and
supply-side (content distribution) similarly to [31].

There are many available demand-side caching packages which are installed at many
sites around the world [67]. Facilities, like NLANR’s Global Caching Hierarchy [63], exist
that allow different sites to share caching resources. These systems are designed to increase
performance by locating copies of requested objects within their cache structure more quickly
than a user could retrieve them from the originating server. Sites that would like to use web
caching to reduce web access latency and network traffic should look to demand-side web
caching tools for assistance.

There is another type of proxy cache out there that aims to improve performance by
reducing the load faced by web servers directly, by transferring the task of serving popu-
lar objects to other systems. These systems are known as Content Distribution Networks
(CDNs). There are many examples available, including [36, 37, 38]. Unlike demand-side
systems which cache objects as they are requested by users, CDN web proxy caching sys-
tems only cache objects for companies that pay for the space. Web sites that are cached by
CDNs are modified so that web object links point to the proxy cache servers (i.e. so-called
“internal” links on the CNN website point to servers in the akamai.com domain).

Content providers looking to improve performance or simply to outsource the job of
content delivery, should look to these CDNs. While it impossible to know exactly how
each of these commercial systems works, at least in the case of Akamai, we have access to
the precursor academic literature that led to the development of the system. We discuss
this work above, and again refer interested readers to [43] and [44] for a highly technical
treatment. [Sandpiper and Mirror Image appear to have exploded, so no information is
available. It doesn’t seem like a good idea to leave only one example of a CDN.]

34 CHAPTER 1. WEB PROXY CACHING

As a result of the formation of supply- and demand-side web caching systems, research
has begun on the development of proxy caches designed to work between these two ends.
Gadde et. al. introduce the interior cache concept in [31]. The most important conclusion of
that paper is that CDNs do little to improve average web access latency when only a small
fraction of web objects are served with supply-side caching. These results were obtained
from measurements made with the NLANR Global Caching Hierarchy [63]. While this is
not a true interior caching system, it is a very large demand-side cache, which the others of
the paper assume extends into the interior portion of the web. Their work is of a modeling
nature, and the authors are not aware of any specially designed interior caching systems at
this time.

9.4 Meta-Architecture

When as user accesses the web, their object requests potentially pass through many levels
of web caching including: browser caches, demand-side proxy caches, interior proxy caches,
supply-side proxy caches and caching mechanisms within web servers. These caches are
autonomous systems, and make caching decisions at their level without consulting the other
web caches that may be involved in one particular object request. The reason for this
freedom is simple: keeping such a large number of caches consistent would be extremely
difficult and would likely kill most of the benefit from caching in the first place.

So what sequence of caches do we find when accessing information on the web? For low
traffic sites, the answer is generally that only the browser cache comes into play. If the user
accessing the information is configured to use a local proxy cache (this is a demand-side
proxy cache), then a second level of caching comes in. When the web object being requested
comes from a high traffic site, it is likely a more complex transaction. The user’s request is
first checked against the local browser cache. If that misses the local proxy cache is checked.

So far the path is identical for all web objects. If the proxy cache misses, it then needs
to load the page from the originating server. This is where high-traffic sites can behave
differently from low-traffic ones. If a site is using a supply-side caching service, there request
must travel through more levels of caching before reaching the content. The proxy’s attempt
to load the page will then propagate through the supply-side cache until the content is found.
This many involve communication within this proxy cache, as discussed above, including
possibly retrieving a fresh copy of the object from the originating server. An experiment
conducted by one of the authors revealed the following chain of events to access a page on
the CNN web site:

• check against browser cache, miss

• check against local proxy cache, miss

• retrieve object from CNN (unknown caching within their web server) which is mainly
pointers to Akamai

• send requests to Akamai to retrieve the “real” content, which are handled using Aka-
mai’s internal supply-side proxy caching algorithms

This listing ignores the cache-update process that takes place as the content travels up each
level of the caching hierarchy (i.e. the browser cache probably caches a copy of the page
once it has been retrieved, likewise for the local proxy cache, and so on down the list).

The potential for hybrid cache architectures is great. Even the simplest web proxy cache
often plays the role of a single caching entity within a large, weakly consistent, distributed
caching system. It might be the case that the only communication within this system takes

9. WEB PROXY CACHE ARCHITECTURE 35

place as HTTP requests driven by user page-loads. But the entire collection of systems
involved in delivering content to the user can be thought of as the constituents of a large
caching system. And all of the caching taking place between the browser cache and the
server’s internal caching are part of the large, distributed proxy cache seen by the user.

Research into handling these large across-the-web systems is just beginning, but earlier
work has demonstrated that both demand- and supply-side web proxy caches can increase
overall system performance.

36 CHAPTER 1. WEB PROXY CACHING

10 Performance Measurement

10.1 Introduction

As the World Wide Web growing, caching proxies become a critical component to reduce
both network traffic and client latency. However, there has been little understanding the
performance between different proxy servers, and their behavior under different workloads.
So it is critical to design and implement a proxy benchmark to test and understand the
performance characteristics of a proxy server. Using a benchmark, customers can not only
test the performance of a proxy running on different software and hardware platforms,
but also compare different proxy implementations and choose one that best matches the
customer’s requirements.

In this section, we mainly describe two well-known cache benchmarks: the Wisconsin
Proxy Benchmark and Poly-graph.

10.2 The Wisconsin Proxy Benchmark

10.2.1 Introduction

The Wisconsin Proxy Benchmark (WPB) [2] was one of the first publicly available cache
benchmarking tools. The main feature of WPB is that it tries to replicate the workload
characteristics found in real-life Web proxy traces. WPB consists of Web client and Web
server processes. First, it generate server responses whose sizes follow the heavy tailed
Pareto distribution described in [18]. Since heavy-tail distribution of file sizes impact proxy
behavior, it is important to include very large files with a non-negligible probability. As it
must handle files with a wide range of sizes. Second, the benchmark generates a request
stream that has the same temporal locality as those found in real proxy traces. Third, Since
the benchmark is often run in a local area network and there is no nature way to incur long
latencies when fetching documents from the servers, the benchmark let the server process
delay sending back responses to the proxy to emulate Web server latency. However, Web
server latencies affect the resource requirements at the proxy system. Thus, the benchmark
supports configurable server latencies in testing proxy systems.

The main performance data collected by the benchmark are latency, proxy hit ratio,
byte hit ratio, and number of client errors. There is no single performance number since
different environments weight the four performance metrics differently. Proxy throughput
is estimated to be the request rate dividing by the request latency.

10.2.2 Distinguishing Features of WPB

The distinguishing features of WPB include:

• Support for studying the effect of adding disk arms.

• The effect of handling lowbandwidth (modem-based) clients.

10.2.3 General setup of the benchmark

The General setup of the benchmark is that a collection of Web client machines are
connected to the proxy system under testing, which is in turn connected to a collection
of Web server machines. There can be more than one client or server processes running

10. PERFORMANCE MEASUREMENT 37

on a client or s server machine. The client and server processes run the client and server
codes in the benchmark, instead of running a browser or a Web server. There is also
a master process to coordinate the actions of client processes and generate an overall
performance report. Some of the setup parameters are defined in a configuration file.

10.2.4 Effect of Adding Disk Arms

Using WPB, the impact of spreading the cached files over multiple disks on proxy perfor-
mance has been analysed. The simulation results indicate that disk is the main bottleneck
during the operation of busy proxies. Adding an extra disk reduces the bottleneck in the
disk. However, for Squid, this reduction did not reflect in an improvement in the overall
performance of the proxy. For proxy N, an improvement of 10% was achieved.

10.2.5 Effect of Low Bandwidth Client Connections

The impact of low bandwidth connections on proxy performance has been analysed. A
modem emulator which introduces delays to each IP packet transmitted in order to achieve a
certain effective bandwidth that is smaller than the one provided by the network connection.
Simulation results show that: When a proxy must handle requests sent through very low
bandwidth connections, the time spent in the network dominates. Both disk and CPU
remains idle for more than 70% of time. As a consequence, proxy throughput decreases and
client latency increases by more than a factor of two.

10.2.6 Conclusion

Some interesting findings through use of WPB are the following:

• By increasing the number of disks, queueing overheads are reduced, the time spent
servicing each disk request are also shortened. To some proxy caching systems, this
also reflects on the overall performance of the proxy.

• Latency advantages due to caching are essentially erased when considering the overall
profit to modem-based clients.

While WPB addresses a number of important benchmarking requirements, such as initial
support for temporal processes, it has some limitations. These include lack of support
for modeling spatial locality, persistent HTTP 1.1 connections, DNS lookups, and realistic
URLs.

10.3 Polygraph

10.3.1 Introduction

Polygraph [71, 8] is a recently developed, publicly available cache benchmarking tool de-
veloped by NLANR. It can simulate web clients and servers as well as generate workloads
that try to mimic typical Web access. Polygraph can be configured to send HTTP requests
through a proxy. High-performance simulation allows to stress test various proxy compo-
nents. The benchmarking results can be used for tuning proxy performance, evaluation of
caching solutions, and for many other interesting activities.

Polygraph has a client and a server component, each of which uses multiple threads to
generate or process requests. This allows Polygraph to simulate concurrent requests from
multiple clients to multiple servers. Polygraph can generate different types of workload to

38 CHAPTER 1. WEB PROXY CACHING

simulate various types of content popularity. For example, requests can be generated which
obey a Zipf-like distribution, which is largely believed to be a good estimate of real web
usage patterns[12].

Polygraph includes two programs: polyclt and polysrv. Poly-client(-server) emits a
stream of HTTP requests with given properties. The requested resources are called objects.
URLs generated by Poly-client are built around object identifiers or oids. In short, oids
determine many properties of the corresponding response, including response content length
and cachability. These properties are usually preserved for a given object. For example, the
response for an object with a given oid will have the same content length and cachability
status regardless of the number of earlier requests for that object.

As it runs, Polygraph collects and stores many statistics, including: response rate, re-
sponse time and size histograms, achieved hit ratio, and number of transaction errors. Some
measurements are aggregated at five second intervals, while others are aggregated over the
duration of the whole phase.

10.3.2 Distinguishing Features of Polygraph

The distinguishing features of Polygraph include:

• It is capable of generating a whole spectrum of Web proxy workloads that either
approximate real-world traffic patterns, or are designed to stress a particular proxy
component.

• Polygraph is able to generate complex, high request rate workloads with negligible
overhead.

10.3.3 Conclusion

Polygraph is a high performance cache benchmarking tool. It can evaluate the performance
of various caching systems, using cache-specific performance metrics, such as amount of
bandwidth saved, response time, hit rate, and various scalability metrics.

More recently, Polygraph has been playing an increasing role in holding open benchmark
Web Caching Bake-off’s as a way of inspiring the development community and encouraging
competition towards good caching solutions. A summary of their study comparing a number
of commercial and academic systems can be found at [73].

10.4 IRCache Web Cache performance bake-offs

10.4.1 Introduction

Bake-off [73, 74, 72] implies testing several independent implementations of similar products,
taking place within a short period of time and usually at the same location. Every product
is tested under the same conditions. Bake-off results are used to evaluate the performance
of Web caching proxies.

10.4.2 Why Bake-offs

• Fair Competition

Test labs, audited on-site tests, and even SPEC-like reports are considered to be “fair”.
That is, they give equal opportunities to participants to win. So what makes Caching
bake-offs special?

10. PERFORMANCE MEASUREMENT 39

The primary reason is highly competitive and unstable environment. New product
releases and even companies appear virtually every month. Benchmarking workload
improvements are also quite common. In such atmosphere, two test results obtained
a few month apart are by default unfair to compare. A vendor who gets the last test
“slot”, essentially has a big advantage over the vendor who opened the test sequence.
Thus, we have to test a lot of products in a short time interval.

• Test auditing

Web proxy benchmarking often requires complex test setup that involves many sophis-
ticated components like client-server simulators, L4 switches, and clusters of caches.
Our experience shows that expertise and a lot of extra effort is required to guarantee
the correctness of the setup. The auditing requires physical presence of the auditor
during all stages of the tests.

To summarize, fair competition objective implies semi-concurrent execution of tests while
test auditing requires human monitoring of test execution. It is currently infeasible to
provide high quality auditing for dozens of isolated companies within a short period of time.
Thus, only bake-off format produces fair and high quality results.

10.4.3 Web Polygraph

Polygraph is a high-performance proxy benchmark. It can generate about 1000 requests per
second between a client-server pair on a 100baseT network. Furthermore, Polygraph allows
you to specify a number of important workload parameters such as hit ratio, cachability,
response sizes, and server-side delays.

• The cache-off Workload: PolyMix-3

The PolyMix environment has been modeling the Web traffic characteristics since
PolyMix-2. PolyMix-3 combines the fill and measurement phases into a single work-
load. The benefit to this approach is that the device under test is more likely to have
steady state conditions during the measurement phases. Also, a larger URL work-
ing set can now be formed without increasing the duration of a test. And PolyMix-3
servers use a Zipf(16) distribution to close active connections. The servers also timeout
idle persistent connection after 15 sec of inactivity, just like many real servers would
do.

For detailed treatment of many PolyMix-3 features, please check the Polygraph Web
site: http//polygraph.ircache.net/.

10.4.4 Benchmarking Environment

• Polygraph Machines

250 PC’s were used as Polygraph clients and servers. And FreeBSD-3.4 were used as
the base operating system for the Polygraph clients and servers.

• Time Synchronization

The xntpd time server was run on all Polygraph machines and the monitoring PCs.
The monitoring PCs are synchronized periodically with a designated reference clock.

• Network Configurations

40 CHAPTER 1. WEB PROXY CACHING

Each test bench consists of Polygraph machines, the monitoring PC, the participants
proxy cache, and a network to tie them together. The routed network configuration
uses two subnets. The clients, proxies, and monitoring PC use one subnet, while
servers use the other. Bidirectional netperf tests were run between each client-server
pair to measure the raw TCP throughput.

• Test Sequence

This section describes the official testing sequence. The complete sequence was exe-
cuted at least once against all cache-off entries. It includes PolyMix-3, Downtime Test
and MSL Test.

10.4.5 Comparison of Results

Please check the web site for detail information:http//polygraph.ircache.net/.

10.4.6 Conclusion

Using a single tool to benchmark multiple products does not necessarily allow for legitimate
comparison of results. As we all know, when comparing results, it is very important to min-
imize differences in the testing environment. A seemingly minor difference in configuration
may cause a very significant change in performance.

In order to compare the performance of different caching products under identical con-
ditions, we proposed to hold a “bake-off”. The basic idea is that everyone comes together
for a few days in one location and puts their products through a series of tests. Because all
tests occur at the same time and place, under identical conditions, comparisons ca be made
between the participant’s results.

In the chapter above, the IRCache Web Cache Bake-off was introduced. Simulation
results show that the Bake-off is a high quality, independent verification of product perfor-
mance in the Web caching community.

11. CONCLUSION 41

11 Conclusion

As an approach to improve the web service performance, the technique of proxy ca ching
effectively reduces the network traffic, improves server availability and minimi ze the user
access latency. In this chapter, we introduce the functionality of proxy ca ches, highlight the
important issues to in studying proxy caching. Among these topics, performance, consis-
tency policy, replacement policy and cacheability are the most basic issues that need to be
considered in building any proxy cache. Prefetching, dynamic content caching and stream
caching are techniques studied by a lot of researchers to improve the performance of proxy
caching. When a set of proxy caches are configured to work together, the architecture and
coordination of caches add to another important issue in proxy cache design. All the above
issue s have been and still remain to be the active subjects of significant academic res earch
and commercial development.

In the long run, as the latency of network transfer continues to drop, someone m ight
doubt the usefulness of web caching. However, since the interest of web users will remain
skewed, and the demands for bandwidth is still increasing fast, web caching can still alleviate
the server bottleneck, and improve the resource availability. Even maybe low, bandwidth
will always remain some cost, and communication is always likely to be more expensive than
computation, thus caching will continue to be helpful as network get faster.

42 CHAPTER 1. WEB PROXY CACHING

Bibliography

[1] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and Ed-
ward A. Fox, Caching proxies: limitations and potentials, Proceedings of the 4th Inter-
national WWW Conference (Boston, MA), December 1995, http://www.w3.org/pub/
Conferences/WWW4/Papers/155/.

[2] Jussara Almeida and Pei Cao, Measuring proxy performance with the Wisconsin proxy
benchmark, Computer Networks And ISDN Systems 30 (1998), no. 22-23, 2179–2192,
http://www.elsevier.nl/cas/tree/store/comnet/sub/1998/30/22-23/2053.pdf.

[3] Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira, Character-
izing reference locality in the WWW, Proceedings of the IEEE Conference on Paral-
lel and Distributed Information Systems (PDIS) (Miami Beach, FL), December 1996,
http://cs-www.bu.edu/faculty/best/res/papers/pdis96.ps.

[4] Martin Arlitt, Ludmilla Cherkasova, John Dilley, Rich Friedrich, and Tai Jin, Evaluating
content management techniques for Web proxy caches, Proceedings of the Workshop on
Internet Server Performance (WISP99), may 1999, http://www.cc.gatech.edu/fac/
Ellen.Zegura/wisp99/papers/arlitt.ps.

[5] Martin F. Arlitt and Carey L. Williamson, Web server workload characteristics: The
search for invariants, Proceedings of ACM SIGMETRICS, May 1996.

[6] Michael Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, World-Wide Web
caching – the application level view of the Internet, IEEE Communications Magazine
35 (1997), no. 6.

[7] Paul Barford, Azer Bestavros, Adam Bradley, and Mark E. Crovella, Changes in
Web client access patterns: Characteristics and caching implications, World Wide
Web (special issue on Characterization and Performance Evaluation) (1999), http:
//cs-www.bu.edu/faculty/crovella/paper-archive/traces98.ps.

[8] G. Barish and K. Obraczka, World wide web caching: Trends and techniques, 2000.

[9] K. Beck, Tennessee cache box project, In the Proceedins of the 2nd Web Caching Work-
shop (1997).

[10] Tim Berners-Lee, Hypertext transfer protocol – HTTP/1.0, HTTP Working Group In-
ternet Draft, October 1995.

[11] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz, The Harvest information discovery and access system, Computer Networks
and ISDN Systems 28 (1995), no. 1–2, 119–125 (or 119–126??).

43

44 BIBLIOGRAPHY

[12] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker, Web caching and
Zipf-like distributions: Evidence and implications, Proceedings of the INFOCOM ’99
conference, March 1999, http://www.cs.wisc.edu/~cao/papers/zipf-like.ps.gz.

[13] Pei Cao and Sandy Irani, Cost-aware WWW proxy caching algorithms, Proceedings of
the 1997 Usenix Symposium on Internet Technologies and Systems (USITS-97) (Mon-
terey, CA), December 1997, http://www.cs.wisc.edu/~cao/papers/gd-size.ps.Z.

[14] Pei Cao, Jin Zhang, and Kevin Beach, Active cache: Caching dynamic contents on the
Web, Proceedings of the 1998 Middleware conference, September 1998, http://www.
cs.wisc.edu/~cao/papers/active-cache.html.

[15] Vincent Cate, Alex – a global file system, Proceedings of the USENIX File System
Workshop (Ann Arbor, Michigan), May 1992, http://ankara.bcc.bilkent.edu.tr/
prv/ftp/INFO/Internet/Alex/usenix.wofs92.ps, pp. 1–11.

[16] Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Michael F. Schwartz, and
Kurt J. Worrell, A hierarchical Internet object cache, Proceedings of the 1996 Usenix
Technical Conference (San Diego, CA), January 1996.

[17] Netscape Communications Corporation, Netscape navigator 3.0 - automatic proxy con-
figurations, 1997.

[18] Mark Crovella and Azer Bestavros, Self-similarity in World-Wide Web traffic evidence
and possible causes, Proceedings of the SIGMETRICS ’96 conference, May 1996, http:
//cs-www.bu.edu/faculty/best/res/papers/sigmetrics96.ps.

[19] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella, Characteristics of WWW
client-based traces, Tech. Report BU-CS-95-010, Computer Science Department, Boston
University, 111 Cummington St, Boston, MA 02215, July 1995, http://www.cs.bu.
edu/techreports/95-010-www-client-traces.ps.Z.

[20] Peter Danzig, NetCache architecture and deployment, Computer Networks and ISDN
Systems 30 (1998), no. 22–23, 2081–2091.

[21] John Dilley and Martin Arlitt, Improving proxy cache performance-analyzing three cache
replacement policies, Tech. Report HPL-1999-142, Internet Systems and Applications
Laboratory, HP Laboratories Palo Alto, October 1999.

[22] Adam Dingle and Thomas Partl, Web cache coherence, Proceedings of the 5th Inter-
national WWW Conference (Paris, France), May 1996, http://www5conf.inria.fr/
fich_html/papers/P2/Overview.html.

[23] Fred Douglis, Antonio Haro, and Michael Rabinovich, HPP: HTML macro-
preprocessing to support dynamic document caching, Proceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems (USITS-97), December 1997, http:
//www.research.att.com/~douglis/papers/hpp.ps.

[24] Bradley M. Duska, David Marwood, and Michael J. Feeley, The measured access charac-
teristics of world-wide-web client proxy caches, USENIX Symposium on Internet Tech-
nologies and Systems, 1997.

BIBLIOGRAPHY 45

[25] Bradley M. Duska, David Marwood, and Michael J. Freeley, The measured access char-
acteristics of World-Wide-Web client proxy caches, Proceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems (USITS-97) (Monterey, CA), De-
cember 1997, http://www.cs.ubc.ca/spider/marwood/Projects/SPA/wwwap.ps.gz.

[26] Venkata Duvvuri, Prashant Shenoy, and Renu Tewari, Adaptive leases: A strong con-
sistency mechanism for the World Wide Web, Proceedings of IEEE INFOCOM’2000,
March 2000.

[27] C. Everhart, L. Mamakos, R. Ullmann, and P. Mockapetris, New dns rr definitions,
IETF RFC 1183, 1990.

[28] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder, Summary cache: a scalable
wide-area web cache sharing protocol, IEEE/ACM Transactions on Networking 8 (2000),
no. 3, 281–293.

[29] Syam Gadde, Jeff Chase, and Michael Rabinovich, Directory structures for scalable
Internet caches, Tech. Report CS-1997-18, Duke university, November 1997.

[30] , A taste of crispy Squid, Proceedings of the Workshop on Internet Server Per-
formance (WISP’98), June 1998.

[31] Syam Gadde, Jeff Chase, and Misha Rabinovich, Web caching and content distribution:
A view from the interior, Proceedings of the 5th International Web Caching and Content
Delivery Workshop (Lisbon, Portugal), May 2000.

[32] Syam Gadde, Michael Rabinovich, and Jeff Chase, Reduce, reuse, recycle: An approach
to building large Internet caches, Proceedings of the HotOS ’97 Workshop, May 1997.

[33] Steven Glassman, A caching relay for the World-Wide Web, Proceedings of the 1st In-
ternational WWW Conference (Geneva, Switzerland), May 1994, http://www1.cern.
ch/PapersWWW94/steveg.ps.

[34] C. Grimm, The DFN cache service in B-WiN, In the Proceedings of the 2nd Web
Caching Workshop, 1997.

[35] James Gwertzman and Margo Seltzer, World-Wide Web cache consistency, Proceedings
of the 1996 Usenix Technical Conference (San Diego, CA), January 1996.

[36] Akamai Technologies Inc., http://www.akamai.com/.

[37] Mirror Image Internet Inc., http://www.mirrorimage.com/.

[38] Sandpiper Networks / Digital Island Inc., http://www.digisle.net/.

[39] Shudong Jin and Azer Bestavros, GreedyDual* Web caching algorithms: Exploiting
the two sources of temporal locality in Web request streams, Proceedings of the 5th
International Web Caching and Content Delivery Workshop, May 2000, http://www.
terena.nl/conf/wcw/Proceedings/S2/S2-2.pdf.

[40] , Popularity-aware greedydual-size algorithms for Web access, Proceedings of the
20th International Conference on Distributed Computing Systems (ICDCS), apr 2000,
http://cs-people.bu.edu/jins/Research/popularity-aware.html.

46 BIBLIOGRAPHY

[41] , Sources and characteristics of web temporal locality, Proceedings of the 8th
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2000.

[42] , Temporal locality in web request streams : sources, characteristics, and caching
implications, Proceedings of the international conference on Measurements and model-
ing of computer systems, June 2000.

[43] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina, Ken
Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi, Web caching with consistent
hashing, Proceedings of the 8th International WWW Conference (Toronto, Canada),
May 1999.

[44] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy, Matthew S.
Levine, and Daniel Lewin, Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web, ACM Symposium on Theory of
Computing, 1997, pp. 654–663.

[45] Terence P. Kelly, Yee Man Chan, Sugih Jamin, and Jeffrey K. MacKie-Mason, Biased
replacement policies for Web caches: Differential quality-of-service and aggregate user
value, Proceedings of the 4th International Web Caching Workshop, April 1999, http:
//www.ircache.net/Cache/Workshop99/Papers/kelly-final.ps.gz.

[46] Balachander Krishnamurthy and Craig E. Willis, Piggyback cache validation for proxy
caches in the World-Wide Web, Proceedings of the 1997 NLANR Web Cache Workshop,
June 1997, http://ircache.nlanr.net/Cache/Workshop97/Papers/Wills/wills.
html.

[47] Balachander Krishnamurthy and Craig Wills, Proxy cache coherency and replacement
– towards a more complete picture, Proceedings of the ICDCS conference, June 1999,
http://www.research.att.com/~bala/papers/ccrcp.ps.gz.

[48] Balachander Krishnamurthy and Craig E. Wills, Study of piggyback cache validation
for proxy caches in the World Wide Web, Proceedings of the 1997 Usenix Symposium
on Internet Technologies and Systems (USITS-97), December 1997, http://www.cs.
wpi.edu/~cew/papers/usits97.ps.gz.

[49] , Piggyback server invalidation for proxy cache coherency, Proceedings of the
7th International WWW Conference (Brisbane, Australia), April 1998.

[50] P. Krishnan and Binay Sugla, Utility of co-operating Web proxy caches, Proceedings of
the 7th International WWW Conference (Brisbane, Australia), April 1998.

[51] Donghee Lee, Jongmoo Choi, Sam H. Noh, Sang Lyul Min, Yoohun Cho, and
Chong Sang Kim, On the existence of a spectrum of policies that subsumes the lru
and lfu policies, Proceeding of the 1999 ACM SIGMETRICS Conference, May 1999.

[52] R. Lee and G. Tomlinson, Workload requirements for a very high-capacity proxy cache
design, Work-In-Progress of the 4 th International Web Caching Workshop, 1999.

[53] Eric Levy-Abegnoli, Arun Iyengar, Junehwa Song, and Daniel Dias, Design and perfor-
mance of a Web server accelerator, Proceedings of IEEE INFOCOM’99, March 1999,
http://www.research.ibm.com/people/i/iyengar/infocom1.ps.

BIBLIOGRAPHY 47

[54] Chengjie Liu and Pei Cao, Strong cache consistency for the World-Wide Web, Pro-
ceedings of the Works In Progress session of the OSDI ’96 conference, October 1996,
http://www-sor.inria.fr/mirrors/osdi96/wipabstracts/liu.ps.

[55] P. Lorenzetti, L. Rizzo, and L. Vicisano, Replacement policies for a proxy cache, Tech.
Report LR-960731, Univ. di Pisa.

[56] Ari Luotonen and Kevin Altis, World-Wide Web proxies, Proceedings of the 1st Inter-
national WWW Conference (Geneva, Switzerland), May 1994.

[57] Carlos Maltzahn, Kathy Richardson, and Dirk Grunwald, Performance issues of enter-
prise level Web proxies, ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, June 1997.

[58] Evangelos P. Markatos, Main memory caching of Web documents, Proceedings of the
5th International WWW Conference (Paris, France), May 1996.

[59] Evangelos P. Markatos, Manolis G.H. Katevenis, Dionisis Pnevmatikatos, and Michail
Flouris, Secondary storage management for Web proxies, Proceedings of the 1999 Usenix
Symposium on Internet Technologies and Systems (USITS’99), October 1999.

[60] J. Mogul, Speedier squid: A case study of an internet server performance problem,
;login: 24 (1999), no. 1, 50–58.

[61] Donald Neal, The Harvest object cache in New Zealand, Proceedings of the 5th Inter-
national WWW Conference (Paris, France), May 1996.

[62] Norifumi Nishikawa, Takafumi Hosokawa, Yasuhide Mori, Kenichi Yoshida, and Hiroshi
Tsuji, Memory-based architecture for distributed WWW caching proxy, Proceedings of
the 7th International WWW Conference (Brisbane, Australia), April 1998, http://
www7.conf.au/programme/fullpapers/1928/com1928.htm.

[63] NLANR, Nlans global caching hierarchy, Available at http://ircache.nlanr.net/.

[64] Mark Nottingham, On defining a role for demand-driven surrogate origin servers, Pro-
ceedings of the 5th International Web Caching and Content Delivery Workshop (Lisbon,
Portugal), May 2000.

[65] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum, The lru-k page replace-
ment algorithm for database disk buffering, Proceedings of ACM SIGMOD, 1993.

[66] D. A. Patterson and J. L. Hennessy, Computer architecture: A quantitative approach,
Morgan Kaufmann, San Mateo, CA, 1990.

[67] Squid Project, Squid web proxy cache, Available at http://www.squid-cache.org/.

[68] Misha Rabinovich, Forwarding requests among reverse proxies, Proceedings of the 5th
International Web Caching and Content Delivery Workshop (Lisbon, Portugal), May
2000.

[69] Reza Rejaie, Mark Handley, Haobo Yu, and Deborah Estrin, Proxy caching mechanism
for multimedia playback streams in the internet, Proceedings of the 4th International
Web Caching Workshop, April 1999.

[70] A. Rousskov, On performance of caching proxies, Available at
http://www.cs.ndsu.nodak.edu/rousskov/research/cache/squid/profiling/papers/.

48 BIBLIOGRAPHY

[71] , Web polygraph – a high-performance proxy benchmark,
http://polygraph.ircache.net/, 1998.

[72] Alex Rousskov and Duane Wessels, The third IRCache Web cache bake-off – the official
report., October 2000, http://bakeoff.ircache.net/bakeoff-01/.

[73] Alex Rousskov, Duane Wessels, and Glenn Chisholm, The first IRCache Web cache
bake-off – the official report., April 1999, http://bakeoff.ircache.net/bakeoff-01/.

[74] , The second IRCache Web cache bake-off – the official report., January 2000,
http://bakeoff.ircache.net/bakeoff-01/.

[75] Peter Scheuermann, Junho Shim, and Radek Vingralek, A case for delay-conscious
caching of Web documents, Proceedings of the 6th International WWW Confer-
ence (Santa Clara), April 1997, http://www.scope.gmd.de/info/www6/technical/
paper020/paper20.html.

[76] S. Sen, J. Rexford, and D. Towsley, Proxy prefix caching for multimedia streams, In
Proceedins of IEEE INFOCOM 1999 (1999).

[77] Ben Smith, Anurag Acharya, Tao Yang, and Huican Zhu, Exploiting result equivalence
in caching dynamic Web content, Proceedings of the 1999 Usenix Symposium on Inter-
net Technologies and Systems (USITS’99), October 1999, http://www.cs.ucsb.edu/
research/swala/usits99/paper.ps.

[78] Renu Tewari, Michael Dahlin, Harrick Vin, and John Kay, Beyond hierarchies: De-
sign considerations for distributed caching on the Internet, Technical Report TR98-0,
University of Texas, February 1998.

[79] Jia Wang, A survey of Web caching schemes for the Internet, ACM Computer Commu-
nication Review 25 (1999), no. 9, 36–46, http://www.cs.cornell.edu/Info/People/
jiawang/web-survey.ps.

[80] D. Wessels, Intelligent caching for world-wide web objects, Master’s thesis, University
of Colorado, 1995.

[81] Duane Wessels and Kim Claffy, Internet cache protocol (icp), version 2, IETF RFC
2186, 1998.

[82] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell, Molly Brown, Tashana
Landray, Denise Pinnel, Anna Karlin, and Henry Levy, Organization-based analysis
of Web-object sharing and caching, Proceedings of the 1999 Usenix Symposium on
Internet Technologies and Systems (USITS’99), October 1999, http://bauhaus.cs.
washington.edu/homes/wolman/papers/usits99.pdf.

[83] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin, and Henry
Levy, On the scale and performance of cooperative Web proxy caching, Proceed-
ings of the 17th ACM Symposium on Operating Systems Principles (SOSP’99),
December 1999, http://www.cs.washington.edu/research/networking/websys/
pubs/sosp99/sosp99.ps.gz, pp. 16–31.

[84] Roland P. Wooster and Marc Abrams, Proxy caching that estimate page load de-
lays, Proceedings of the 6rd International WWW Conference, April 1997, http:
//www.scope.gmd.de/info/www6/technical/paper250/paper250.html.

BIBLIOGRAPHY 49

[85] J. Yin, L. Alvisi, M. Dahlin, and C. Lin, Using leases to support server-driven con-
sistency in large-scale systems, Proceedings of the 18th International Conference on
Distributed Computing System (ICDCS ’98), May 1998, http://www.cs.utexas.EDU/
users/dahlin/papers/icdcs98.ps.

[86] Neal Yong, On-line caching as cache size varies, Tech. report, Computer Science De-
partment, Princeton University.

[87] Lixia Zhang, Sally Floyd, and Van Jacobson, Adaptive Web caching, Proceedings of the
1997 NLANR Web Cache Workshop, June 1997, http://ircache.nlanr.net/Cache/
Workshop97/Papers/Floyd/floyd.ps.

[88] George Kingsley Zipf, Human behavior and the principles of least-effort, Addison-
Wesley Press, 1949.

