
Chapter 1

Publish-Subscribe

1

2 CHAPTER 1. PUBLISH-SUBSCRIBE

1 Introduction

What is publish/subscribe? We all know that publish/subscribe is a mean
to deliver information from the sources to the users who subscribe to them.
However, in the computer world, the concept of publish/subscribe is more
complicated than that.

To get information from servers who provide data sources, a user basically
goes to the servers to look for them; however, most of the time it is not a
practical way for the user to collect information because it might take a
lot of internet resources such as the bandwidth, and the user’s time. Thus,
publish/subscribe models are devised to help out delivering information to
users. According to publish/subscribe protocols, a user specifies a set of
interests and submits it to the server (which is the fundamental concept
of user profiles), then the server gathers the data which match the user’s
interests and transfer to the client.

new
data

data
source push clients

user
profiles

Figure 1.1: Abstract picture of publish/subscribe

Although the concept of publish/subscribe mentioned above is quite sim-
ple, the problems behind it are not. Nowadays information technologies ad-
vanced rapidly, data can be spread farther away easily; however, if millions
of users want to obtain the same information from the same source at the
same time, the problem of scale surfaces. The information transmit through
the network might be delayed or disrupted due to bandwidth problem, most
of the users might not be able to reach the source at all.

1. INTRODUCTION 3

1.1 The problems

1.1.1 The scalability

Scalability means that the system must be available over a wide-area network
populated by numerous users and many data sources.

1.1.2 The asymmetry

Generally, asymmetry means that the server side and the user side have dif-
ferent property of some specific stuff. There are many kinds of asymmetries.
For example, in many networks, the bandwidth from the server to the user
is much larger than the bandwidth in the opposite direction; a system may
have a few servers and a much bigger number of users. And if only newly
generated data or updates of existing data should be delivered to the users,
it is also a kind of asymmetry.

1.1.3 Why are scalability and asymmetry a cause for publish/subscribe?

Since the extremely popularity of Internet, Intranet, distributing the data
generated in real-time to the users is becoming more and more important.
Such transfer of data involves the timely distribution of data to a large set of
users. And it has some special characteristics: tremendous scale, high degree
overlap in user data needs, and asymmetric data flow from sources to con-
sumers. These characteristics make the traditional client-server data man-
agement methods ineffective. The request/response mode will cause catas-
trophic congestion in the web traffic. This has been demonstrated by frequent
delays and service disruptions when accessing networked data sources.

1.2 publish/subscribe models

Publish-subscribe systems provide a convenient method to interconnect ap-
plications on a distributed network. In the publish- subscribe system, infor-
mation providers publish units of information called events, and information
consumers subscribe to particular categories of events.There are several dif-
ferent kinds of the publish/subscribe interaction model. Each one has its
own advantages but also shortcomings.

4 CHAPTER 1. PUBLISH-SUBSCRIBE

1.2.1 Topic-based publish/subscribe

The classical topic-based or subject-based style gives a static classification of
the message by introducing group-like notions. And it is implemented in most
industrial application softwares. In this kind of publish/subscribe system, it
is easy to get the scalability and good performance by using group-based
multi-cast techniques, more exactly, by assigning each subject to a multi-
cast group.

1.2.2 Content-based publish/subscribe

However, research efforts have been targeted more towards content-based
publish/subscribe systems. This style is more flexible. It supports an event
schema defining the type of information contained in each event. It removes
completely the “arbitrary” division of the messages, and lets the consumers
delineate their individual interests by expressing properties of messages they
wish to receive.

While the topic-based systems only offer a limited selection capacity, typ-
ically based on a predefined set of ”channels” . The content-based systems
can offer a flexible and fine-grained selection mechanism to describe precisely
those events or combinations of events in which they are interested.(i.e. to
get a good filter to screen out those irrelevant information).

1.3 Context

For any data delivery system, it may have different choice among the delivery
options:

1.3.1 Push or Pull

In data dissemination system, “pull-based” means that the server will search
and transfer the related information to the client only after receiving the
request from the client. So the clients have to pro-actively known the data. It
is the client that initials the data delivery. The request-response is pull-based.
While “push-based” means that the server begins the data transmission. It
will send the information to a set of clients without any specific request from
those clients.

1. INTRODUCTION 5

1.3.2 Periodic or aperiodic

Both push and pull can be done in either periodic or aperiodic way. Periodic
delivery is done according to some pro-arranged schedule, which can be fixed
or flexible. In contrast, aperiodic delivery is event-driven. For pull, a data
delivery is triggered by a client request. For push, a data transmission is
executed only when there is data update or new data.

1.3.3 Unicast or 1-to-N

In unicast mechanism, the data items are sent to one client from one server.
While 1-to-N mechanism allows the data items are sent to multiple users.
Publish/Subscribe are typically performed in 1-to-N way. But up to now,
in the internet cases, the most publish/subscribe systems are done by uni-
cast because there is no support for it, we know HTTP is based on re-
quest/response ,a unicast(i.e. point to point) method of data delivery.

Publish/subscribe is push-based, The server initials the data transmis-
sion, and is aperiodic. There is no predefined schedule for delivering data.

messages) subscribes to that information, signaling that it wishes to re-
ceive all pieces of information satisfied the specified characteristics.

In Publish/Subscribe communication, publishers “publish” information
onto a network, labeling the information using a hierarchically structured
name. Subscribers “subscribe” to this information by using the same name.
In most applications, however,each party can be publisher and subscriber,
which allows a very flexible interaction.

1.4 Compare and Contrast traditional query-based sys-

tems with Publish/Subscribe

In the traditional query-based systems, each user should send requests for
data to the server. The large number users for a popular event can generate
huge overhead in the servers, resulting in long delay and server crashes. The
situation is that users must continually poll the server to obtain the most
current data, resulting in multiple requests for the same data items from each
user. If the interests of a large part of the population are known a priori,
most of these requests are unnecessary.

In a publish/subscribe system, the user can submit a profile to the server
once, and then continuously receive data that are (supposedly) relevant to

6 CHAPTER 1. PUBLISH-SUBSCRIBE

him or her without need for submitting the same query over and over again.
Whenever a new item is added to the database, it will be filtered by those
profiles. If it matches a profile, the owner of that profile will receive the new
data.

Additionally, given the fact that user interests are changing over time, the
profiles must be updated accordingly to reflect the users’ information needs.

1.5 History of Publish/subscribe

1.5.1 Information Bus

The information bus is the first idea to perform distributed information in
large scale. It is one kind of publish/subscribe protocol. It gives several
principles for the design of the scalable distributed system.

1.5.2 SIFT

The SIFT system was developed at Stanford University as a method to dis-
tribute data to a client community. SIFT is a push-based system, the docu-
ment source delivers data to the users by matching the data with the profiles
they provided. The SIFT provides a novel technology in indexing the client
profiles.

1.5.3 Pointcast

Pointcast is a popular data dissemination service. It obtains the profiles
from the users that describe their interests, and then use these profiles to
filter those data before they are sent to every client.

1.6 Chapter outline

In the following, we discusse the technologies and architecture involved to
build publish/subscribe systems in details, then give some examples of ap-
plications and products of publish/subscribe systems used nowadays. (still
need to be modified)

2. TECHNOLOGY ISSUES 7

2 Technology Issues

This section discusses the physical and algorithmic issues involved in Publish-
Subscribe systems. As we have seen from the introduction there are many
technologies that go into making a Publish-Subscribe system. These involve
databases, networks and users. Publish-Subscribe systems must efficiently
organize user profiles, query and handle data, move the data to the users,
and make sure that the users are happy.

2.1 Broadcast, Multicast, Unicast

Here we discuss network delivery options available for Publish-Subscribe sys-
tems. As discussed in the Introduction, two types of options exist: unicast
and 1-to-N; and there are three possible technologies that can be used:

• Broadcast Broadcast technology has a long history of use. It is a 1-to-N
delivery mechanism that we have seen used in radio and television for
many years. In most wired Publish-Subscribe envionments the Ether-
net broadcast protocol is used. The advantage of using broadcast is
the ability to deliver the same data to a large number of users without
a performance penalty. A single transmission satisfies all users who are
listening to the broadcast. The disadvantage to using broadcast is that
the set of users who can receive the data is impossible to identify and
unbounded in size. The environment in which broadcast is feasible for
Publish-Subsribe is a local area network (LAN) where the user base of
the Publish-Subscribe system is dense. Since some Publish-Subscribe
systems can publish a generous amount of data, broadcasting to all
machines on a network can generate a log of network traffic. And, if
there are only a few subscribers to the system, broadcast can have an
unnecessary negative impact on network performance.

• Unicast The alternative to broadcast that is available on most net-
works, is unicast communication. A unicast message is one that is sent
from one machine to one other specific machine on a network. As we
will see in the Products section of this chapter unicast delivery is used
in most commercial Publish-Subscribe applications because it is the
only delivery mechanism available of the three: broadcast, multicast,
and unicast. The disadvantage to using unicast is that it has a signif-
icant impact on the performance of a publish-subscribe system in two

8 CHAPTER 1. PUBLISH-SUBSCRIBE

ways. First, the machine that sends the data has to repeatedly send the
same message impacting its CPU. Second, the same message is being
sent over the same path using up bandwidth.

• Multicast An alternative to broadcast that provides many of the same
benefits is multicast [?]. Multicast is a 1-to-N delivery mechanism simi-
lar to broadcast in that a single transmission of data satisfies all users.
The difference from broadcast is that the routers along the path from
the data source to the users maintain lists to determine where to send
multicast packets. The users who receive data can be identified. Also,
multicast can be made reliable [?] so that the delivery of data can be
guaranteed.

As mentioned in the Intoduction, scalability is an important concern for
the designers of any Publish-Subscribe system. However, scalability cannot
come at the cost of overwhelming the network or unwanting users with un-
necessary data transmission. For this reason, multicast is the solution that
most reasonably solves both cost and scalability concerns.

The type of network for the Publish-Subscribe system is designed also
impacts the decision for network data delivery. At the moment, most Wide
Area Networks do not provide support for multicast. A significant cost comes
from the memory needed in the routers to store state, and higher processing
power is required for the processing of control messages. [2] [3]

2.2 Internet vs. Intranets

This section is yet to be written

• Give definition of Internet and Intranets. How is Publish/Subscribe
applied to Internet vs. Intranets?

• Give examples.

• Problems and solutions

2.3 Channelization (matchmaking data with clients)

Channels have been a popular mechanism for delivering information to large
groups of individuals. Examples of technology that use channels include

2. TECHNOLOGY ISSUES 9

satellite broadcast, multicast, and, of course, TV and radio have long sent
information to individuals via channels. Some publish-subscribe systems
depend on broadcast channels to deliver data to users. A problem that is
common to many of them is solving the assignment of users and data items
to these channels so as to make efficient use of the network resources and
minimize delivery of superfluous data to users.

The goal of a publish-subscribe system is to deliver data to large numbers
of users. However, there are two problems: 1) You don’t want to send all
updates to all users; and, 2) You can’t unicast to individual clients. So,
we are left with only one alternative, we have to group users and broadcast
updates to only those groups with interested users. An important restriction
is that each user must receive all updates to items specified in its respective
profile.

The introduction of channels brings about two issues First, clients must
be assigned to broadcast channels from which they will receive data updates.
Second, as data is sent, it must be mapped to the broadcast channels. As
harmless as these two issues sound, they create an enormous search space.
There are nc possible ways to assign c clients to n channels and there are 2np

possible ways to map p pages to n channels.

Data
Source

Mapping data items
to channels

Assigning clients
to channels

.

.

.

.

Clients
.

.

.

.
Channels

}}

Figure 1.2: Channels & Issues

A good solution to the problem attempts to make an effective use of the
limited available bandwidth and also tries to keep the clients happy while
being scalable in the number of users. Since multiple users are assigned
to each channel, users receive not only those updates represented in their

10 CHAPTER 1. PUBLISH-SUBSCRIBE

respective profiles, but also updates intended for other clients assigned to
the same channel. Clients are happiest when they are getting more of what
they want and less of what they don’t want. So, it is important to group
similar clients (based on their profiles) on the same channel.

In [4] a K-Means clustering algorithm is is presented as a method to solve
the channelization problem. An approach is presented that finds a locally
optimal solution to the channelization problem. Each channel is considered
a cluster of client profiles and the k-means method is used to partition the
clusters. It works as follows. For each profile Pn in some cluster Gi, the
algorithm switches Pn to another cluster Gj if it is more ”similar” to the set
of data items belonging to Gj. The algorithm stops when no profile can be
moved from its current cluster to another.

A profile is similar to a cluster if it has a large overlap in the data items.
The distance function described measures similarity as the percentage of data
all clients assigned to the channel desire from the cluster Gk. The distance
between a profile Pn and cluster Gk is the average decrease in this percentage
if Pn is added to Gk. Thus, the smaller the distance, the more similar Pn

is to the other profiles in Gk. Unfortunately, the k-means method has an
unbounded running time.

2.4 Profiles & Continuous Queries

As discussed in the Introduction, in Publish-Subscribe systems users describe
their interest in data in the form of a profile. Users submit profiles to the
system and thereafter continuously receive data that is considered relevant.
Profiles are usually stored at the data source. In this way, profiles are a type
of continually evaluated query [13] [15] [14].

2.4.1 Information filtering

The model for Publish-Subscribe systems is based on continuously collect-
ing new data items from data sources, filtering them against specific user
interests (profiles), and delivering relevant data to users. In the internet en-
vironment where huge volumes of data are are being updated all the time
and large numbers of users are interested in accessing the data, efficiency
and scalability are important concerns. As previously described, Publish-
Subscribe systems are event driven systems where data is sent to interested
users as it is updated. One challenge to sending the data is figuring out

2. TECHNOLOGY ISSUES 11

which updates are interesting to users and to which users individual updates
should sent. The first concept (figuring out which updates are interesting) is
called information filtering.

Most push-based systems use simple keyword matching Information Re-
trieval (IR) techniques to match user profiles with new data items. This
technique limits the user’s ability to express interest and therefore increases
the likelihood that users will receive more irrelevant data and less relevant
data. These IR techniques have focused on the effectiveness of profiles rather
than the efficiency of filtering. In other words, the IR community’s solution
does not scale.

2.4.2 Ways to Express Profiles

More recently, profiles are seen as queries whose form can range from a
simple set of keywords to queries expressed in a high-level query language
like XMLQL[NiagaraCQ]. It is the management of profiles that is interesting
in the context of publish-subscribe. Profile modeling and matching has been
studied in both the the Data Dissemination and Information Retrieval (IR)
communities. (For a survey of Data Dissemination see [6] also see [][][] (Stan’s
papers on Dissemination)) Profiles in the Information Retrieval community
have been used under the context of Information Filtering [16]. Typically
sets of keywords are used to represent profiles and are intended for text-based
systems where the data is unstructured. These models are can be classified
as either Boolean or Similarity-based. In the boolean model an exact match
is required for keywords attached by boolean operators. In the similarity-
based model, matches are given a ”similarity” value - documents are similar
to a profile if the value is greater than a threshold value. Several similarity
based approaches have been presented in the literature [][][][]. SIFT (The
Stanford Information Filtering Tool) is a Publish-Subscribe system which
originally used boolean profiles and was later changed to used a similarity
based approach.

The SIFT system evolved to use the Vector Space Model. In the Vector
Space Model [??] a document is represented as a vector of terms (a very
common model for text representation). The vector, which may be weighted,
represents the document’s content. Likewise, a user’s profile can be repre-
sented by a vector of keywords [][]. IR techniques try to correlate the vector
that represents the document with the vector that represents the profile, and
provide the user with the best (most relevant) matches. The IR community

12 CHAPTER 1. PUBLISH-SUBSCRIBE

focuses their work on methods for determining the weights to give to terms
in the document or the profile.

2.4.3 Continuous Queries

The database community has studied query-based profile models in the con-
text of Continuous Queries (CQ). These are standing queries that allow users
to get data when an update occurs in a database. Continuous Queries were
studied specifically for relational databases in Terry et al for the Tapestry
system[13]. The recent importance of dissemination technology has brought
about interest in CQ for internet-scale information delivery.

Continuous queries can be categorized based on the the event that triggers
their execution [NiagaraCQ]:

• Change-based continuous queries are triggered as soon as new data be-
comes available. As soon as data is changed the query is executed. An
example of this type of continuous query is one that requests changes
in the value of a stock price. Someone who actively trades stocks is
very interested in changes in the price.

• Timer-based continuous queries are executed based on time intervals
specified by the user or user profile. An example of this type of query
is weather forecast information in Providence. Whereas the weather
is always changing ever so slightly, a normal person does not need to
receive weather updates any more frequently than once an hour.

The type of continuous query that a Publish-Subscribe system can handle
has a significant impact on scalability. Change-based queries provide better
response time and thus less-stale data, however, system resources are wasted
when instantaneous results are not really required. Timer-based continuous
queries can be supported more efficiently. An interesting insight noted in
[NiagaraCQ] is that change-based continuous queries can be grouped more
easily than timer-based queries, since users can specify various overlapping
time intervals.

2.4.4 Case Studies

Two recent systems provide architectures and approaches for continuous
queries in an internet-scale environment:

2. TECHNOLOGY ISSUES 13

• The OpenCQ [15][14] work presents an architecture for an Contin-
ual Query system. The OpenCQ information delivery system has a
three tier architecture consisting of a client, server, and wrapper. The
OpenCQ server has three components: a trigger condition evaluator,
several event detectors, and a CQ manager. The trigger condition eval-
uator and event detectors monitor data updates based on user speci-
fied interest thresholds and time constraints. The CQ manager coor-
dinates tasks and communication between the client/server tiers and
the server/wrapper tier. The client tier provides the user interface to
the clients, management and coordination of requests, and also limited
preprocessing of the query. OpenCQ talks with data sources via CQ
wrappers. A wrapper is required for each data source because different
data sources have different access methods and different data formats
for representing query results. The wrapper is effectively a translator,
converting queries into a format understood by the remote data source,
and converting responses into a format understood by OpenCQ.

• The NiagaraCQ [17] system provides similar functionality to that of
the OpenCQ system. NiagaraCQ was developed to query distributed
XML data sets using a query language like XML-QL [18]. The Nia-
garaCQ system attempts to increase scalability for large numbers of
users to submit continuous queries in a high-level query language. The
assumption of the system is that many of the queries will be similar
and therefore can be grouped together. The expected result of grouping
queries is that computation can be shared, memory can be used more
efficiently (common execution plans can reside in memory), and I/O
costs can be saved (satisfying multiple queries at once). A new group
optimization technique is presented which allows for new queries to be
added to existing queries without regrouping of existing queries while
requiring minimal changes to a general purpose query engine.

The above systems suffer from scalability problems. They are limited
because as data changes, all profiles are matched against the change to the
database, or the full new database, to determine if any new data is of inter-
est to users. For large scale systems (internet-scale) with large numbers of
users, and therefore large numbers of profiles, this approach is very limiting.
NiagaraCQ approaches the problem by trying to eliminate similar queries,
but that does little to impact the more general scalability problem (as the

14 CHAPTER 1. PUBLISH-SUBSCRIBE

number of users increases, and the number and variety of queries that have
to be satisfied increases, the traditional method of running all queries against
the data set does not scale).

The next section addresses this particular scalability issue.

2.4.5 Indexing Profiles (Reversing the Role of Queries and Data)

This section is yet to be written

• Reversing the Role of queries and data (Indexing Profiles)

– SIFT was the first to reverse these roles

– In traditional DB systems the data items are indexed and stored
and queries are applied individually.

– In dissemination systems, large numbers of queries are stored and
indexed and the data is individually applied. The data becomes
the query.

– Indexing Profiles

∗ Sift

∗ XFilter

2.5 Mobile Computing

The proliferation of mobile computing is a result of the availability of low-
cost powerful portable devices and the development of high-speed wireless
networking. The mobile environment brings about many interesting issues
for network data management (footnote: for an excellent discussion of mo-
bile computing and databases see [19]). The specific issues that impact all
network data management systems that utilize mobile computing, including
Publish Subscribe systems, are:

• Network asymmetry Most wireless networks provide much greater down-
stream bandwidth (from server to client) than upstream bandwidth.

• Battery life/savings Mobile devices like PDAs, cell phones, tablet com-
puters, and laptop computers have batteries with very limited life. To
give users the perception that the battery lasts longer, these devices
usually go into a power-save mode, where they effectively shutdown.

2. TECHNOLOGY ISSUES 15

When such a device is in this mode, it becomes disconnected from
wireless networks and therefore cannot receive data being sent from a
Publish-Subscribe system.

• Network unreliabilty (connection and bandwidth) Wireless networks are
very unreliable. The amount of bandwidth between the device and a
wireless access point at any given time can vary wildly due to any num-
ber of factors including interference by building structures and other
devices, the number of other users currently connected to the same
wireless network, and roaming transfers to network cells (a cell could
be a cell in a cellular communication network or a wireless local area
network access point).

• Device memory limitations Most mobile devices have serious memory
limitations. In a publish-subscribe environment, where data is contin-
uously being sent to interested clients, devices must be concerned with
what data is most important to the user.

• Screen size Some mobile devices, such as PDAs and cell phones, have
very small screens.

Each of these issues has an impact on the way data must be managed in
a mobile environment. The network asymmetry, network unreliability, and
power management issues make broadcast an attractive delivery mechanism
but also creates a complication for the implementation of data management.
This environment exacerbates the general concerns of Publish-Subscribe sys-
tems. Prioritizing data becomes very important: given that some clients
might have limited memory and also might not always be connected to the
network, the system should ensure that clients get important data with a
higher probability.

Sending data periodically or aperiodically is another concern for publish-
subscribe systems in a mobile environment. Periodically broadcasting data
to clients allows for clients to be disconnected from the network for periods
of time and to connect when data is scheduled to be transmitted. Aperiodic
push makes more efficient use of bandwidth but at the cost of clients not
receiving data.

The Broadcast Disks project proposed an architecture for periodic push in
a mobile environment. The architecture attempts to exploit communication

16 CHAPTER 1. PUBLISH-SUBSCRIBE

asymmetry by repeatedly and cyclicly broadcasting a stream of data as a
storage device. There are two novel aspects to the broadcast disks work:

• Multiple broadcast streams (”disks”) with different latencies are super-
imposed on a single broadcast channel. The goal of this is to improve
performance of non-uniform data access patterns and increase the avail-
ability of more important data by allocating more bandwidth to it.

• Mechanisms are presented for managing client storage resources to tai-
lor caching and prefetching to perform efficiently with multiple disk
broadcasts.

More Broadcast Disk discussion here (1 more paragraph)

3 TMP-Products

4. SOFTWARE & SYSTEM ARCHITECTURE FOR PUBLISH/SUBSCRIBE 17

4 Software & System Architecture for Pub-

lish/Subscribe

The architecture of the event service describes the software components that
realize the event service together with their connections. The description
should emphasize the physical locations of components, the topology of their
connections, and how those connections are controlled. Following we will
mainly talk about the server topology.

4.1 Centralized server topology

A centralized topology means there is only a single event server in the system,
And every client should register in this server. Clearly, it is the bottleneck
of the scalability. When designing an architecture with multiple servers, we
must also specify:

1. the connections among some servers, i.e. which pairs of servers can
communicate directly, and

2. the protocol used in the communications between those servers.

These two elements decide a topology of the servers.
We also should note that the connections among servers are not neces-

sarily the physical channels, but rather logical connections. In general, this
is also the case with clients. When we say that a server X is connected to
another server Y , we mean that X has Y’s address and can send messages
directly to Y. In the “physical” implementation, there may no a materialized
connection(channel) between them.

4.2 hierarchical topology

The second way of connecting event servers is to use hierarchical topology.
It is an extension of centralized architecture.

As shown in Figure 1.3 , each server has a number of clients that can
be either publishers or subscribers, or other event servers. Besides these
connections, every server(except the root) also has a special connection to
its parent server. And for every server, the connection to the parent server
is the only outgoing arrow.

18 CHAPTER 1. PUBLISH-SUBSCRIBE

servers
clients

client−server
protocol

H

H H

HH

Figure 1.3: Hierarchical server topology

In this topology, the server-server and client-server communications share
the same protocol. Thus, a server does not distinguish other servers from the
publishers or subscribers among its clients. In the application, this means
that a parent server will be able to receive notifications(published informa-
tion) and subscriptions from all its clients, but it will send only notifications
back to them.

The hierarchical topology is the natural extension of the centralized topol-
ogy. It only requires an extension to the algorithm of the servers that can
push information through the parent server. As for the configuration of
servers, this topology allows entire subnets to join a community of servers by
simply connecting their root servers to any server in the community. This
topology is currently used in the USENET News network, in JEDI, in Keryx,
and in TIB/Rendezvous.

However, the hierarchical topology has some main problems such as : the
overloading of higher-level servers, and that every server is critical to the
normal working of the whole system. In fact, a failure in one server will
disconnect all the subnets reachable from its parent server and all its clients
subnets from each other.

4.3 Acyclic peer-to-peer topology

In the acyclic peer-to-peer topology, all servers are the same. They commu-
nicate with each other as peers, thus using a communication protocol that
allows a bi-directional flow of subscriptions and notifications. By “commu-

4. SOFTWARE & SYSTEM ARCHITECTURE FOR PUBLISH/SUBSCRIBE 19

server−server
 protocol

client−server
protocol

A

A

A

A

A

Figure 1.4: Acyclic peer-to-peer topology

nication protocol”, we means the type and amount of the information that
event servers exchange. This protocol is obviously implemented on the top of
other communication mechanism such as, shared memory, SMTP or HTTP
protocols. Above Figure 1.4 is an example of an acyclic peer-to-peer topology
of servers. The different line styles between clients and servers and among
servers means that the different kinds of communication being used.

Considering server-to-server links as non-directed edge, the tree of this
topology has no cycle in it. It is very important to use a procedure to make
sure this property is maintained when adding new ones to this topology since
specific algorithms might rely on it. And that the incremental procedure
suggested for the hierarchical topology can be used in this case as well. For
example,we initialize every server X with at most one peer server to which
X connects and add Y to X’s direct peers. At the same time, send a request
from X to Y. On receiving the request, add X to Y’s list of peers. Every
server will send the request once and be initialized once. And when it is
initialized, make sure no redundant path is produced(no cycle is produced).

In a network-wide service, if each server is administered locally, this pro-
cedure might be not good. Other control protocols must be used to validate
the configuration of servers. Also,just like the hierarchical topology, this
topology suffers from the lack of redundancy in the connection graph. Be-
cause the connection graph is a tree, a failure in one server X isolates all the
groups of subtrees which are directly linked to X.

4.4 Generic peer-to-peer topology

Without the constraint : no cycle is allowed from the acyclic peer-to-peer
topology, we get the generic peer-to-peer topology. Similar as the acyclic
peer-to-peer, this topology allows bi-directional communications between two
servers. But for generic peer-to-peer topology, the network of connections

20 CHAPTER 1. PUBLISH-SUBSCRIBE

server−server
 protocol

client−server
protocol

G G

G

G

G

Figure 1.5: Generic peer-to-peer topology

among servers is a generic graph. There may be multiple paths between
servers, See Figure 1.5 for an example.

The goodness of this topology is that it requires less coordination and have
more flexibility in the configuration of connections among servers. Moreover,
the redundancy in the connection between different servers in the network,
makes it more robust with respect to the single server failures. The short-
coming is that some special algorithms should be used to select the best
paths without cycles.

4.5 Hybrid topologies

A network-wide service may have different requirements at different levels
of network,such as the local-area network and the wide-area network. The
hybrid topologies can satisfy their specific requirements. A hybrid network
can has different topologies at different levels.

clusters

G

G

G

G

H

H H H

HH

HH

H

H H

H H
H

Figure 1.6: Hybrid topology: hierarchical/generic

For example, in a big company, system administrators may be able to

4. SOFTWARE & SYSTEM ARCHITECTURE FOR PUBLISH/SUBSCRIBE 21

manage the whole network of servers which includes their subnets, because
they require a high degree of control and coordination in the administration
of a set of subnets. So it will be better to use a hierarchical topology inside
the cluster although the global network is generic topology. See Figure 1.6
for an example.

G G G G

G

G

G G

G

G

G
G

G/AG/A G/AG/A

G/AG/A
G/AG/A

acyclic peer−peer
 protocol

Figure 1.7: Hybrid topology: acyclic/generic

In other cases, Figure 1.7, the situation might be very different. We may
need to design the whole system the opposite way. For example, assume
that some clusters of subnets have a very intense traffic of local events, and
we only want a small part of the events to be reachable from outside of the
cluster for some special reason (e.g. the security). Then we can use a generic
topology inside the cluster while design the high-level topology as acyclic
graph.

For every cluster, there will be a “gateway” server which can filter the
messages used for the protocol inside the cluster or change them to the pro-
tocol used among clusters.

Obviously, the architecture has a significant impact on functionality and
scalability of a system. A centralized event service is relatively easy to im-
plement complex filtering of notifications, but it is difficult to be scaled to
a wide-area networks. The system with hierarchical structure is simple and
effective in many cases. But it still has some fundamental shortcomings when
implemented in the wide-area networks. It introduces unnecessary message
traffic in its higher nodes in the hierarchy, and it has a single point failure
in every node. On the other hand, a distributed topology seems to have
more scalability, but at the same time, it is much harder to do the complex
filtering. So we should choose the suitable topology according to the specific
requirement of the networks.

22 CHAPTER 1. PUBLISH-SUBSCRIBE

5 Applications

People have been applying the technologies and architecture developed to
publish/subscribe topics; the followings are some applications of the efforts:

5.1 Newsgroups/Mailing Lists

Newsgroup/mailing list is a simple kind of information dissemination service.
At the newsgroup severs, there are many news that is constantly updated
and divided into different groups, and the clients whoever wish to read the
news submit profiles to the servers of their email addresses and lists of the
newsgroups they wish to subscribe to. The users could also post messages
to the newsgroup to inform other users of news. The severs keep the profiles
as mailing lists, and according to the matched profiles the servers deliver
the news either periodically or aperiodically to the clients through internet.
Some severs might apply different technologies such as push to deliver the
news automatically or let the clients pull the news to them. The system is a
continuous operation, working 24 hours a day and 7 days a week (“24 by 7”)
as the news are constantly updated and delivered to clients. This way the
news was published to the clients who subscribe to the newsgroup they are in-
terested. There are some examples of the application such as USENET News
(www.usenet.com), USATODAY E-mail Newsletters (www.usatoday.com),
and the Brown university news (news.brown.edu). A problem with news-
group/mailing lists application is that it does not provide detailed enough
interest matching. A user whose information that does not exactly match
certain lists will either receive too many irrelevant or too few relevant mes-
sages.

5.2 Stock and News

Stock and news application is similar to newsgroup/mailing lists application
except that it has to remain real-time operation; thus, it requires the servers
to build dynamic information update system within. Here the clients submit
their profiles again to the servers, and the servers deliver the information
clients required through internet, intranets, 1-to-N (broadcast, mulitcast) or
channels, either by push or pull technology. The operational has to remain
“24 by 7” also [ref]. Examples of the application are election results, Point-
cast, TIBCO, etc.

5. APPLICATIONS 23

5.3 Traffic Information Systems

Same as the stock and news application, the information has to be real-time
most of the time. The information are distributed through 1-to-N (broadcast,
multicast), internet, or channels, either by push or pull technology. The
information is also distributed through mobile computing. (have yet to find
examples)

5.4 Software Distribution

Many systems require to have their software updated frequently. For exam-
ple, the software system at an investment bank functions for the security
trading needs to be updated frequently and extensively, since securities trad-
ing is a hightly competitive business, and a one-minute delay could mean
millions of dollars in lost profits; thus, it is advantageous to use the latest
software. The servers could distribute the newest software updates to their
clients through internet, intranets, multicast or channels, either by push or
pull technologies. However, since some software contains the important issuse
of security, some clients might need to submit their password before they are
allowed to download the software. Also, the software distribution has to be
continuous operation since many system need to remain operational “24 by
7” in order to accommodate the real world operation. Examples are Vitria,
TIBCO, etc. [ref]

5.5 Battlefield Data Dissemination

In the battlefield, it is vital that the fighters are to receive the most updated
and correct information from their superior. The information is distributed
either through multicast or unicast, and the operation has to remain “24 by
7”. [ref]

24 CHAPTER 1. PUBLISH-SUBSCRIBE

6 Products

Up to date, there are several systems based on publish/subscribe paradigm
developed to disseminate information and data, they are all in one way or
another similar to each other, and each system thrives to do better than the
others. The following are some examples:

6.1 Pointcast

Just like the applications mentioned in the previous section (such as stock
and news), there are many news and information the users desire to know at
the Pointcast server. The clients first send their profiles to the server then
gather the information they are interested.

Figure 1.8: Pointcast 1.0

The above figure [ref] shows mechanisms of how the data was delivered
to the users in Pointcast 1.0. In order to deliver the data to users, the Point-
cast system first obtains profiles from clients which contain the subscribers’
interests. Then the clients ask for the news that match their profiles and
pull/download the customized infomation to their local computer system.
The arrived data then is pushed to their computer screen [ref].

The Pointcast system was thought as one of the first push-based systems;
however, as we can see from the above, the machanism that delivers data is
actaully pull-based. This system is quite different from SIFT, as we shall see
in the following that SIFT is push-based.

6. PRODUCTS 25

6.2 SIFT (Stanford Information Filtering Tool)

The SIFT system combines data management ideas from information re-
trieval with a publish/subscribe model to disseminate data. Here all kinds
of data from a document source through a one-to-many broadcast medium
was pushed to the system server, then with indexed client profiles, the server
matches users’ profiles with the arrived document, and push/distributes the
information to users. Also, with the technology of indexing client profiles,
which will match clients’ profiles against newly arriving data, the clients
get exactly what they are interested[ref]. The following figure [ref] shows a
high-level SIFT architecture, which is cited from “A Framework for Scalable
Dissemination-Based Systems” [ref]:

Figure 1.9: Shift Architecture

6.3 TIBCO (http://www.tibco.com)

TIBCO provides real-time e-business infrastructure software, which enable
businesses to integrate enterprise applications, and efficinetly deliver person-
alized information through enterprise portals. The software is based on an
architecture -The Information Bus- developed by Teknek Software Systems,
Inc., the technology employs the mulit-cast protocal, with each broadcast
message would contain a “Subject” identifier. This subject could indicate
the nature of the message as well as the originator. At the client side, func-
tionally would filter out messages based on the subject. For corporate sites
messages could be filtered out before the firewall, at the client desktop and
in between. This presumably offers advantages over plain multicast because
it can be made reliable, thus guaranteeing delivery to users.

(figure)

26 CHAPTER 1. PUBLISH-SUBSCRIBE

6.4 Vitria (http://www.vitria.com)

Vitria is a commercial system that provides enterpise-capable publish/subscribe
middleware products, which automate cross-enterprise business process and
enable companies to conduct business electronically across corporate net-
works and over the internet. It provides the following benefits: the clients
can increase the efficiency of their operations and lower operating costs by
automating and analyzing their business processes in real-time, and quickly
model and automate the business processes they need to bring new products
and services to market.

6.5 Channels

Channels contains frequently updated information, users subscribe to chan-
nels by submitting their profiles. The information is automatically delivered
through internet, intranets or multicast. Some of the examples are Marimba’s
Castanet, Netscape’s netcaster, Microsoft’s CDF.

6.5.1 Marimba’s Castanet

Marimba’s Castanet sends “Channels” from sever to clients, clients subscribe
to the channels then periodic downloads the updates.

6.5.2 Netscape’s netcaster

Netscape’s netcaster integrate push technology, web channels, and castanet
channels mechanisms to deliver information.

6.5.3 Microsoft’s CDF (Channel Definition Format)

Microsoft’s CDF allows publishers frequently update information to chan-
nels, CDF files on server specify clients request, then clients retrieve files
periodically.

7. RELATED WORK 27

7 Related Work

This section is yet to be written

• Triggers & Active Databases

– more general mechanism which can involve predicates over many
data items and can initiate updates to other data items.

– not optimized for fast matching of individual items to a large
number of simple queries

– see recent work: ”Scalable Trigger Processing”

• RETE networks

28 CHAPTER 1. PUBLISH-SUBSCRIBE

Bibliography

[1] M. Franklin, and S. Zdonik, A Framework for Scalable Dissemination-
Based Systems OOPSLA 1997: 94-105

[2] T. Ballardie, P. Francis, and J. Crowcroft, Core Based Trees (CBT):
An Architecture for Scalable Inter-Domain Multicast Routing, in Pro-
ceedings of SIGCOMM ’93 (San Francisco, CA, Sept. 1993), ACM, pp.
85-95.

[3] S. Deering, D. Estrin, D. Farinacci, and V. Jacabson, An Architecture for
Wide-Area Multicast Routing, in Proceedings of SIGCOMM ’94 (Uni-
versity College London, London, U.K.,Sept. 1994), ACM.

[4] T. Wong, R. Katz, and S. McCanne, An Evaluation of Preference Clus-
tering in Large-scale Multicast Applications, in Proceedings of IEEE
INFOCOM 2000, Tel-Aviv, Israel. March 2000.

[5] M. Franklin, S. Zdonik, “Data in Your Face”: Push Technology in Per-
spective (Invited Paper) ACM SIGMOD Intl. Conference on Manage-
ment of Data, Seattle, WA, June, 1998.

[6] M. Franklin, Special Issue on Data Dissmenation, IEEE Technical Com-
mittee on Data Engineering, Sept. 1996.

[7] A. Crespo, O. Buyukkokten, and H. Garcia-Molina, Efficient Query Sub-
scription Processing in a Multicast Environment Stanford Department
of Computer Science, Technical Report, 1998.

[8] T. Yan, H. Garcia-Molina, SIFT - a Tool for Wide-Area Information
Dissemination. Proc. 1995 USENIX Technical Conference, 1995

29

30 BIBLIOGRAPHY

[9] B. Oki, M. Pfluegl, A. Siegel, D. Skeen, The Information Bus - An Archi-
tecture for Extensible Distributed Systems, Proc. 14th SOSP, Ashville,
NC, December 1993

[10] J. Wong, Broadcast Delivery, Proceedings of the IEEE, 76(12), Decem-
ber, 1988.

[11] H.D. Schewtman, CSIM: A C-based Process Oriented Simulation Lan-
guage, Proc. of the Winter Simulation Conf., 1986.

[12] A. Chan, Transactional publish/subscribe: the proactive multicast of
database changes Proceedings of ACM SIGMOD international confer-
ence on Management of data, 1998

[13] D. Terry, D. Goldberg, D. Nichols, and B. Oki Continuous Queries over
Append-Only Databases SIGMOD 1992; 321-330.

[14] L. Liu, C. Pu, R. Barga, T. Zhou. Differential Evaluation of Contiunual
Queries, ICDCS 1996: 458-465.

[15] L. Liu, C. Pu, W. Tang. Continual Queries for Internet Scale Event-
Driven Information Delivery, TKDE 11(4): 610-628 (1999).

[16] P.W. Foltz, S.T. Dumais, Personalized information delivery: an analysis
of information filtering methods, CACM,35(12):51-60,December 1992.

[17] J. Chen, D. DeWitt, F. Tian, Y. Wang, NiagaraCQ: A Scalable Contin-
uous Query System for Internet Databases, Proc. ACM SIGMOD Conf.,
Dallas, TX, May, 2000.

[18] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. XML-QL: A
Query Language for XML. http://www.w3.org/TR/NOTE-xml-ql.

[19] D. Barbara textslMobile Computing and Databases - A Survey, IEEE
Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999

