
Basho Riak

A Dynamo-inspired key/value store
with a distributed database network

platform.

1

History

• Developed by Basho

• Sales Force Automation business

• Riak more relevant.

• Build a business around riak.

2

The Team

• Erlang REST framework Webmachine.

• Akamai

• Eric Brewer (CAP theorem)

3

What is riak?

• A document-oriented database

• A decentralized datastore

• A fault-tolerant storage solution

• nosql, http, scalable, distributed, reliable

4

What is riak?

• CAP Theorem

• Dynamo

• The web

• Easy ops experience

5

N Value

6

$ curl -v -X PUT -H "Content-Type: application/json"

-d '{"props":{"n_val":2}}' \

http://127.0.0.1:8091/riak/REM

R Value

7

http://127.0.0.1:8091/riak/REM/artist?r=2

W Value

8

$ curl -v -X PUT http://127.0.0.1:8091/riak/docs/story.txt?w=2 \

-H "Content-type: text/plain" --data-binary @story.txt

Partition Tolerance

9

All replicas of the object have the
same Vector clock, and therefore
the same copy.

Riak Handling Inconsistency

10

• There is a network partition.

• The left partition is updated.

• Partition is removed, Riak will
the causally older object.

Handling Inconsistency

11

• Both partitions modified the
object.

• Neither document is more
recent.

• From riak’s point of view, the
wall clock time is uninteresting.

• Can not disambiguate between
versions. Defer to application.

Officially Supported Languages

• Erlang

• JavaScript

• Java

• PHP

• Python

• Ruby

• Community contributed projects for .NET,
JavaScript, Python (and Twisted), Griffon, Perl,
and Scala.

12

REST API

• Allows users to manipulate data using
standard HTTP methods.

– GET

– PUT (POST)

– DELETE

13

Bucket Operations
• List buckets

– GET /riak?buckets=true

• Read bucket properties and keys
– GET /riak/bucket

• Set bucket properties like “n_val” or “allow_mult”
– PUT /riak/bucket

$ curl -v http://127.0.0.1:8098/riak/test

* About to connect() to 127.0.0.1 port 8098 (#0)
* Trying 127.0.0.1... Connected

* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)

> GET /riak/test HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l zlib/1.2.3 > Host:

127.0.0.1:809

> Accept: */*

>

< HTTP/1.1 200 OK

< Vary: Accept-Encoding < Server: MochiWeb/1.1 WebMachine/1.7.1 (participate in the frantic)
< Date: Wed, 14 Jul 2010 18:23:14 GMT

< Content-Type: application/json

< Content-Length: 368

< * Connection #0 to host 127.0.0.1 left intact * Closing connection #0

{"props":{"name":"test","n_val":3,"allow_mult":false,"last_write_wins":false,"precommit":[],"postcommit":[],"

chash_keyfun":{"mod":"riak_core_util","fun":"chash_std_keyfun"},"linkfun":{"mod":"riak_kv_wm_link_walker","

fun":"mapreduce_linkfun"},"old_vclock":86400,"young_vclock":20,"big_vclock":50,"small_vclock":10,"r":"quor
um","w":"quorum","dw":"quorum","rw":"quorum"

14

Key Operations
• Read an object from a bucket

– GET /riak/bucket/key

• Store new object in bucket

– POST /riak/bucket/ (riak-assigned key)

– POST /riak/bucket/key (user-defined key)

• Delete an object from a bucket

– DELETE /riak/bucket/key

15

POST Example
$ curl -v -X PUT -d '{"bar":"baz"}' -H "Content-Type: application/json" -H

"X-Riak-Vclock: a85hYGBgzGDKBVIszMk55zKYEhnzWBlKIniO8mUBAA=="

http://127.0.0.1:8098/riak/test/doc?returnbody=true

* About to connect() to 127.0.0.1 port 8098 (#0)
* Trying 127.0.0.1... connected

* Connected to 127.0.0.1 (127.0.0.1) port 8098 (#0)

> PUT /riak/test/doc?returnbody=true HTTP/1.1

> User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4

OpenSSL/0.9.8l zlib/1.2.3

> Host: 127.0.0.1:8098

> Accept: */*

> Content-Type: application/json

> X-Riak-Vclock: a85hYGBgzGDKBVIszMk55zKYEhnzWBlKIniO8mUBAA==
> Content-Length: 13

>

< HTTP/1.1 200 OK

< X-Riak-Vclock: a85hYGBgymDKBVIszMk55zKYEhnzWBlKIniO8kGF2TyvHYIKfwcJZwEA

< Vary: Accept-Encoding

< Server: MochiWeb/1.1 WebMachine/1.6 (eat around the stinger)

< Link: </riak/test>; rel="up“
< Date: Wed, 10 Mar 2010 17:55:03 GMT

< Content-Type: application/json

< Content-Length: 13

< * Connection #0 to host 127.0.0.1 left intact * Closing connection #0

{"bar":"baz"}
16

Map Reduce

• Increased Data Locality

• Take the computation to the data

• Map-step
– Run map-step functions on the node holding the

data for the Map-step.

– Sends results back to coordinating node

• Reduce-step
– Run reduce-step functions on the node

coordinating the Map Reduce query

17

Map Reduce

18

Map Reduce

• POST operation to map reduce resource

• POST –H “content-type: application/json”
http://localhost:8989/mapred --data @-

• Body application/json

– {“inputs”: […inputs…], “query”: […query…]}

– Inputs can be “bucket”, [bucket, key], [bucket, key,
keydata]

19

Linking

• Link is a HTTP header.

• Link: </riak/genre/bluegrass>; riaktag=“listens“

PUT –H Link: </riak/genre/bluegrass>; riaktag=“listens“ \

-H “content-type: text/plain” http://localhost:8989/riak/people/sbz \

-d “bluegrass music”

20

Link Walking

21

Data Storage

• Bucket/key pairs

• Links and Metadata

• Pluggable Backends

– Uses API to interact with storage system.

– Any thing k/v-shaped works.

– Default backend: Bitcast

22

Bitcast Goals

• Low latency per read/write

• High throughput

• Large Data w/o Degradation

• Crash Friendliness

Brewer proposes hash table log merging.

23

A Bitcast Instance: is basically a directory. Only one file is “active”
for writing. All other files closed and immutable.

The active file is written by appending a new entry (below).
Sequential writes do not require disk seeking.

A delete is a simply a write of a tombstone value, which indicates
an entry must be removed on the next merge.

24

After an append completes, the “keydir” is updated.

• keydir is a hash table.

• maps every key in a Bitcast to fixed-size structure.

• mapping provides file, offset, and size of last written entry.

A get(key) operation.

value

25

Applications on Riak

• Mozilla Test Pilot is using structured user feedback.
– Running Multiple Riak Clusters to gather user data and perform

large-scale analysis with MapReduce.
– Chose Riak over Cassandra and Hbase because the extensibility;

schema changes and bucket creation is completely dynamic.
– API: The reliable and heavily tested REST server is built in to riak.
– Cost : Light on memory requirements.

26

Decided to use Riak though mozilla is heavily
invested in the similar product, HBase.

Riak Search

• Inverted index of terms to document IDs.

• Enable buckets for search integration.

• Any objects stored in that bucket will be
indexed seamlessly with Riak Search.

27

