SCALARIS

on S cdad | = Irina Calciu

wEE Alex Gillmor

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation
e Benchmarks

o API

e Users

e Demo

e Conclusion

Motivation (NoSQL)

"One size doesn't fit all"

Stonebraker ;
Reinefeld

Design Goals

e Key/Value store
e Scalability: many concurrent write accesses
e Strong data consistency

e Evaluate on a real-world web app
o Wikipedia

e Implemented in Erlang

e Java API

Motivation (Consistency)

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation
e Benchmarks

o API

e Users

e Demo

e Conclusion

High Level Overview

Erlang implementation of a distributed key-value
store that has majority based transactions on top of
replication on top of a structured peer to peer overlay
network

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation
e Benchmarks

o API

e Users

e Demo

e Conclusion

Architecture - P2P Layer

Application Layer

crash
Transaction Layer 4m implements ACID
. . improves availability
Replication Layer at the cost of consistency
crash stop implements
model P2P Layer - scalability
- eventual consistency

unreliable, distributed nodes

Figure 1. Scalaris system architecture.

Architecture - Chord

1

'I\@successnrm =1

Y,
"
II|

| | successor(2) = 3
146

successor(6) =0 | 2 It_|
\ I."I |
\ /
x\\s 3/@/,
", -_-.--.--___, EI

- [] -

o

Figure 2: An identifier circle consisting of the three nodes 0, 1,
and 3. In this example, key 1 is located at node 1, key 2 at node
3, and key 6 at node 0.

Architecture - Chord - Properties

e Load balancing
o consistent hashing

e Logarithmic routing
o finger tables

e Scalability
e Availability

e Elasticity

Architecture - Chord # - Properties

e No consistent hashing

e Keys are ordered lexicographically
e Efficient range queries

e Load balancing

o must be done periodically if the keys are not randomly
distributed

| I

Chord #

0-15

176-191 80-95

96-111

160-175

112-127 node space: N, - N,

144-159 key space : 0 - 255

128-143

Architecture - Replication Layer

Application Layer

crash
Transaction Layer 4m implements ACID
. . improves availability
Replication Layer at the cost of consistency
crash stop implements
model P2P Layer - scalability
- eventual consistency

unreliable, distributed nodes

Figure 1. Scalaris system architecture.

Replication Layer

e Symmetric replication
e Replicated to r nodes

e Operations performed on a majority of replicas

Replication Layer

e Can tolerate at most (r - 1) / 2 failures
e Objects have version numbers

e Return the object with the highest version number from a
majority of votes

Architecture - Transaction Layer

Application Layer

crash
Transaction Layer 4m implements ACID
. . improves availability
Replication Layer at the cost of consistency
crash stop implements
model P2P Layer - scalability
- eventual consistency

unreliable, distributed nodes

Figure 1. Scalaris system architecture.

Transaction Layer

e \Writes use the adapted Paxos commit protocol
e Non-blocking protocol

e Strong consistency
o Update all replicas of a key consistently

o Atomicity
o Multiple keys transactions.

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation
e Benchmarks

o API

e Users

e Demo

e Conclusion

Data Model

e Key - Value Store
e Keys are represented as strings

e Values are represented as binary large objects

e In-memory
e Persistence is difficult with quorum algorithms
e Snapshot mechanism is best option for persistence

e Database back ends provide storage beyond RAM & Swap

Data Model

e The dictionary has three operators

 insert(key, value)
 delete(key)

« lookup(key)
e Scalaris implements a distributed dictionary

node A
Key Value .
Clarke 2007 — JIURRSILLY node B
Allen 2006 ‘
.. >
Bachman | 1973 b Each node only
Thompson | 1983 } ~~~~~ S stores part of the
Knuth 1974 nodeD _ node C data
“teee., >
Codd 1981 > ‘ ‘

Distributed Dictionary on Chord #

| B

ltems are stored on their clockwise successor

Rivest

Ritchie

Yao

Wirth

Codd

| (Clarke, 2007)

(Bachman, 1973)

(Allen, 2006)

(Thompson, 1983)

Adapted Paxos Commit

e Middle Layer of Scalaris
e Ensures that all replicas of a single key are updated consistently
e Used for implementing transactions over multiple keys

e Realizes ACID

Adapted Paxos Commit

replicated Iltems at
Transaction Transaction
Leader Managers Participants
(TMs) (TPs)
1. Step: M ‘:i Gettp 1. Step
O(log N) hops g\r,te‘?“w | Reg'\Steer
ge/
g’ 2. Step
TMS a’)d] Prepare ~>
7o
2.-6. Step: S 3. Step
O(1) hops prepafedlAbod
3 “« 4. Step
K prepared/ s
AC
After majority 3. Step
Commit/Abort
> 6. Step
A\ A4 A4
W W

Replica Management

e All key/value pairs over r nodes using symmetric
replication

e Read and write operations are performed on a majority
of the replicas, thereby tolerating the unavailability of

up to | (r — 1)/2] nodes

e A single read operation accesses [(r + 1)/21 nodes,
which is done in parallel.

Failure Management

e Self-Healing

o Continuously monitors the system

o Nodes can crash
m |[f they announce the system handles gracefully
m Unresponsive nodes lead to false positives

m Failure detector reduces FP to .001
o When a node crashes, the overlay network is
immediately rebuilt

e Crash Stop
o Assumption is that a majority of replicas are available
o If a majority of replicas are not available, the data is lost

Consistency Model

e Strict consistency between replicas
o adapted Paxos protocol
o atomic transactions

ACID Properties

e Atomicity, Consistency and Isolation
o majority based distributed transactions
o Paxos protocol

e Durability
o replication
o no disk persistence
o Scalaxis: branch version, adds disk persistence

Elasticity

e Implemented at the p2p layer level

e Transparent addition and removal of nodes in Chord #
o failures
o replication
o automatic load distribution

e Self-organization

e Low maintenance

Load Balancing

e Based on p2p system properties
e Chord: consistent hashing
e Chord #: explicit load balancing

e efficient adaptation to heterogeneous hardware and item
popularity

Optimizing for Latency

e Multiple datacenters
o Only one overlay network

e Symmetric replication
o Store replicas at consecutive nodes
o I.e. same datacenter

e Chord # supports explicit load balancing
o Place replicas to minimize latency to majority of clients
m €.g. German pages of Wikipedia in European
datacenters

Optimizing for Latency

de:Main Page

replica groupy replica groupy

replica group,

Figure 3. Symmetric replication and multi-datacenter scenario. By
assigning the majority of the ‘de’-, ‘nl’-, and ‘se’-replicas to nodes
in Europe, latencies can be reduced.

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation
e Benchmarks

o API

e Users

e Demo

e Conclusion

Implementation

e 19,000 lines of code of Erlang
o 2,400 lines of code for the transactional layer
o 16,500 for the rest of the system

e 8,000 lines of code of the Java API

e 1,700 lines of code for the Python API

Each Scalaris node runs the following processes:
e Failure Detector
e Configuration
e Key Holder
e Statistics Collector
e Chord # Node
e Database

Implementation

nnnnnnnn

nnnnnnnnn

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation
e Benchmarks

o API

e Users

e Demo

e Conclusion

Performance: Wikipedia

mp

mp
mp

=

Key/Value Store
(simple DBMS)

Transactions

Replication

P2P Overlay

50,000 requests per second
- 48,000 handled by proxy
- 2,000 hit the DB cluster

Proxies and web servers
were

"embarrassingly parallel and
trivia to scale”

Focus therefore was
Implementing the data layer

Translating the Wikipedia Data Model

Wikipedia Chord#
—SQL DB ‘ — Key-Value Store
CREATE TABLE /*$wgDBprefix*/page (Map Relations to Key-Value Pairs

page_id int unsigned NOT . . .
NMULL auto increment, — (Title, List of Versions)

page_namespace int NOT NULL, — (CategoryName, List of Titles)
o — (Title, List of Titles) //Backlinks

Performance: Wikipedia

MySQL Scalaris1[]
o Master/Slave setup e Chord# setup
o 16 servers
o 200 servers o 2,500 requests per second
o Scales almost linearly
o 2,000 requests o All updates are handled in
transactions
o Scaling is an issue o Replica synchronization is

handled automatically

RoadMap

e Motivation

e Overview

e Architecture

e Features

e Implementation

e Benchmarks
— " o API

e Users

e Demo

e Conclusion

API - Erlang interface

F = fun (TransLog) ->
{X, TL1} = read(TransLog, "Account A"),
{Y, TL2} = read(TL1, "Account B"),

if
X > 100 ->
TL3 = write(TL2, "Account A", X - 100),
TL4 = write(TL3, "Account B", Y + 100)
{ok, TL4};
true ->
{ok, TL2};
end

end,
transaction:do transaction(F, ...).

API - Java Interface

// new Transaction object
Transaction transaction = new Transaction();

/[start new transaction
transaction.start();
//[read account A
iInt accountA =
new Integer(transaction.read(’accountA”)).intValue();
//read account B
int accountB =
new Integer(transaction.read("accountB”)).intValue();

/l[remove 100$ from accountA
transaction.write(’accountA”, new Integer(accountA - 100).toString());

/ladd 100% to account B
transaction.write("accountB”, new Integer(accountB + 100).toString());

transaction.commit();

APl - Erlang

TFun = fun(TransLog) ->
Key = ”Increment”,
{Result, TransLogl} = transaction api:read(Key, TransLog),
{Result2, TransLog2} =
if Result == fail ->
Value = 1, % new key
transaction api:write(Key, Value, TransLog);
true ->
{value, Val} = Result, % existing key
Value = Val + 1,
transaction_api:write(Key, Value, TransLog]1)
end,
% error handling
if Result2 == ok ->
{{ok, Value}, TransLog2};
true -> {{fail, abort}, TransLog2}
end
end,
SuccessFun = fun(X) -> {success, X} end,
FailureFun =
fun(Reason)-> {failure, test increment failed”, Reason} end,
% trigger transaction
transaction:do_transaction(State, TFun, SuccessFun, FailureFun, Source PID).

Users

e Mostly an academic project
o Actively developed by Zuse Institute
e onScale
o Zuse spin-off
o Scalarix
m DB snapshotting
m multi-datacenter optimization
e Eonblast
o Scalaris fork
o Scalaxis
m Disk Persistence
m Externel Interface, Atomic Operations, Query
Extensions, more

Demo

Conclusions

e Scalable key/value store
e Strong data consistency

e Good performance
o Wikipedia

e Implemented in Erlang

e Java API

Opinions

Joe Armstrong (Ericsson):

“So my take on this is that this is one of the sexiest applications I've seen in many a year. I've been
waiting for this to happen for a long while. The work is backed by quadzillion Ph.D's and is really good
believe me. *

Richard Jones (lastfm):

"Scalaris is probably the most face-meltingly awesome thing you could build in Erlang. CouchDB,
Ejabberd and RabbitMQ are cool, but Scalaris packs by far the most impressive collection of sexy

technologies.”

Discussion

e Do we need strict consistency?

Discussion

e Does it affect performance?

Discussion

e Does it make implementation more complex?

Discussion

e |s Scalaris a practical system?

