
SCALARIS
Irina Calciu
Alex Gillmor

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

Motivation (NoSQL)

"One size doesn't fit all"

Stonebraker
Reinefeld

Design Goals

Key/Value store

Scalability: many concurrent write accesses

Strong data consistency

Evaluate on a real-world web app
Wikipedia

Implemented in Erlang

Java API

Motivation (Consistency)

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

High Level Overview

Erlang implementation of a distributed key-value
store that has majority based transactions on top of

replication on top of a structured peer to peer overlay
network

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

Architecture - P2P Layer

Architecture - Chord

Architecture - Chord - Properties

Load balancing
consistent hashing

Logarithmic routing
finger tables

Scalability

Availability

Elasticity

Architecture - Chord # - Properties

No consistent hashing

Keys are ordered lexicographically

Efficient range queries

Load balancing
must be done periodically if the keys are not randomly
distributed

Chord #

Architecture - Replication Layer

Replication Layer

Symmetric replication

Replicated to r nodes

Operations performed on a majority of replicas

Replication Layer

Can tolerate at most (r - 1) / 2 failures

Objects have version numbers

Return the object with the highest version number from a
majority of votes

Architecture - Transaction Layer

Transaction Layer

Writes use the adapted Paxos commit protocol

Non-blocking protocol

Strong consistency
Update all replicas of a key consistently

Atomicity
Multiple keys transactions.

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

Data Model
Key - Value Store

Keys are represented as strings

Values are represented as binary large objects

In-memory

Persistence is difficult with quorum algorithms

Snapshot mechanism is best option for persistence

Database back ends provide storage beyond RAM & Swap

Data Model
The dictionary has three operators

Scalaris implements a distributed dictionary

Distributed Dictionary on Chord #

Items are stored on their clockwise successor

Adapted Paxos Commit

Middle Layer of Scalaris

Ensures that all replicas of a single key are updated consistently

Used for implementing transactions over multiple keys

Realizes ACID

Adapted Paxos Commit

Replica Management

All key/value pairs over r nodes using symmetric
replication

Read and write operations are performed on a majority
of the replicas, thereby tolerating the unavailability of
up to ⌊(r − 1)/2⌋ nodes

A single read operation accesses ⌈(r + 1)/2⌉ nodes,
which is done in parallel.

Failure Management

Self-Healing
Continuously monitors the system
Nodes can crash

If they announce the system handles gracefully
Unresponsive nodes lead to false positives

Failure detector reduces FP to .001
When a node crashes, the overlay network is
immediately rebuilt

Crash Stop
 Assumption is that a majority of replicas are available
 If a majority of replicas are not available, the data is lost

Consistency Model

Strict consistency between replicas
adapted Paxos protocol
atomic transactions

ACID Properties

Atomicity, Consistency and Isolation
majority based distributed transactions
Paxos protocol

Durability
replication
no disk persistence
Scalaxis: branch version, adds disk persistence

Elasticity

Implemented at the p2p layer level

Transparent addition and removal of nodes in Chord #
failures
replication
automatic load distribution

Self-organization

Low maintenance

Load Balancing

Based on p2p system properties

Chord: consistent hashing

Chord #: explicit load balancing

efficient adaptation to heterogeneous hardware and item
popularity

Optimizing for Latency

Multiple datacenters
Only one overlay network

Symmetric replication

Store replicas at consecutive nodes
i.e. same datacenter

Chord # supports explicit load balancing

Place replicas to minimize latency to majority of clients
e.g. German pages of Wikipedia in European
datacenters

Optimizing for Latency

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

Implementation
19,000 lines of code of Erlang

2,400 lines of code for the transactional layer
16,500 for the rest of the system

8,000 lines of code of the Java API
1,700 lines of code for the Python API

Each Scalaris node runs the following processes:
Failure Detector
Configuration
Key Holder
Statistics Collector
Chord # Node
Database

Implementation

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

Performance: Wikipedia

50,000 requests per second
 - 48,000 handled by proxy
 - 2,000 hit the DB cluster

Proxies and web servers
were
"embarrassingly parallel and
trivia to scale"

Focus therefore was
implementing the data layer

Translating the Wikipedia Data Model

Performance: Wikipedia

MySQL

 Master/Slave setup

200 servers

2,000 requests

Scaling is an issue

Scalaris��

Chord# setup
16 servers
2,500 requests per second
Scales almost linearly
All updates are handled in
transactions
 Replica synchronization is
handled automatically

RoadMap

Motivation
Overview
Architecture
Features
Implementation
Benchmarks
API
Users
Demo
Conclusion

API - Erlang interface

API - Java Interface
// new Transaction object
Transaction transaction = new Transaction();

// start new transaction
transaction.start();
//read account A
int accountA =
 new Integer(transaction.read(”accountA”)).intValue();
//read account B
int accountB =
 new Integer(transaction.read(”accountB”)).intValue();

//remove 100$ from accountA
transaction.write(”accountA”, new Integer(accountA - 100).toString());
//add 100$ to account B
transaction.write(”accountB”, new Integer(accountB + 100).toString());

transaction.commit();

API - Erlang
TFun = fun(TransLog) ->
 Key = ”Increment”,
 {Result, TransLog1} = transaction_api:read(Key, TransLog),
 {Result2, TransLog2} =
 if Result == fail ->
 Value = 1, % new key
 transaction_api:write(Key, Value, TransLog);
 true ->
 {value, Val} = Result, % existing key
 Value = Val + 1,
 transaction_api:write(Key, Value, TransLog1)
 end,
 % error handling
 if Result2 == ok ->
 {{ok, Value}, TransLog2};
 true -> {{fail, abort}, TransLog2}
 end
end,
SuccessFun = fun(X) -> {success, X} end,
FailureFun =
 fun(Reason)-> {failure, ”test increment failed”, Reason} end,
% trigger transaction
transaction:do_transaction(State, TFun, SuccessFun, FailureFun, Source_PID).

Users

Mostly an academic project
Actively developed by Zuse Institute

onScale
Zuse spin-off
Scalarix

DB snapshotting
multi-datacenter optimization

Eonblast
Scalaris fork
Scalaxis

Disk Persistence
Externel Interface, Atomic Operations, Query
Extensions, more

Demo

Conclusions

Scalable key/value store

Strong data consistency

Good performance
Wikipedia

Implemented in Erlang

Java API

Opinions

 Joe Armstrong (Ericsson):

“So my take on this is that this is one of the sexiest applications I've seen in many a year. I've been
waiting for this to happen for a long while. The work is backed by quadzillion Ph.D's and is really good
believe me. “

Richard Jones (lastfm):

"Scalaris is probably the most face-meltingly awesome thing you could build in Erlang. CouchDB,
Ejabberd and RabbitMQ are cool, but Scalaris packs by far the most impressive collection of sexy

technologies."

Discussion

Do we need strict consistency?

Discussion

Does it affect performance?

Discussion

Does it make implementation more complex?

Discussion

Is Scalaris a practical system?

