
MapReduce and Dryad

CS227

Li Jin, Jayme DeDona



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



Map/Reduce function

• Map

– For each pair in a set of key/value pairs, produce a 
new key/value pair.

• Reduce

– For each key

• Look at all the values associated with that key and 
compute a new value.



Map/Reduce Function Example



Implementation Sketch

• Map’s input pairs divided into M splits

– stored in DFS

• Output of Map divided into R pieces

• One master process is in charge: farms out 
work to W worker processes.

– each process on a separate computer



Implementation Sketch

• Master partitions splits among some of the 
workers
– Each worker passes pairs to map function

– Results stored in local files
• Partitioned into R pieces

– Remaining works perform reduce tasks
• The R pieces are partitioned among them

• Place remote  procedure calls to map workers to get 
data

• Put output to DFS



Implementation Sketch



Implementation Sketch



More Details

• Input files split into M pieces, 16MB-64MB 
each.

• A number of worker machines are started

– Master schedules M map tasks and R reduce tasks 
to workers, one task at a time

– Typical values:

• M = 200,000

• R = 5000

• 2000 worker machines.



More Details

• Worker assigned a map task processes the 
corresponding split, calling the map function 
repeatedly; output buffered in memory

• Buffered output written periodically to local 
files, partitioned into R regions.

– Locations sent back to master



More Details

• Reduce tasks

– Each handles one partition

– Access data from map workers via RPC

– Data is sorted by key

– All values associated with each key are passed to 
the reduce function

– Result appended to DFS output file



Coping with Failure

• Master maintains state of each task

– Idle (not started)

– In progress

– Completed

• Master pings workers periodically to 
determine if they’re up



Coping with Failure 

• Worker crashes

– In-progress tasks have state set back to idle

• All output is lost

• Restarted from beginning on another worker

– Completed map tasks

• All output is lost

• Restarted from beginning on another worker

• Reduce tasks using output are notified of new worker



Coping with Failure 

• Worker crashes(continued)

– Completed reduce tasks

• Output already on DFS

• No restart necessary

• Master crashes

– Could be recovered from checkpoint

– In practice

• Master crashes are rare

• Entire application is restarted



Counterpoint

• MapReduce: A major step backwards

– http://databasecolumn.vertica.com/database-
innovation/mapreduce-a-major-step-backwards/

• A giant step backward in the programming paradigm for 
large-scale data intensive applications

• Sub optimal. Use brute force instead of indexing

• Not novel at all – it represents a specific 
implementation of well known techniques nearly 25 
years ago

• …

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/


Countercounterpoint

• Mapreduce is not a database system, so don’t 
judge it as one

• Mapreduce has excellent scalability; the proof 
of Google’s use

• Mapreduce is cheap and databases are 
expensive. (As a countercountercounterpoint
to this, a Vertica guy told me they ran 3000 
times faster than a hadoop job in one of their 
client’s cases) 



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



Dryad goals

• General-purpose execution environment for 
distributed, data-parallel applications

– Concentrates on throughput not latency

– Assumes private data center

• Automatic management of scheduling, 
distribution, fault tolerance, etc.



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



Where does Dryad fit in the stack?

• Many programs can be represented as a 
distributed execution graph

• Dryad is middleware abstraction that runs 
them for you

– Dryad sees arbitrary graphs

• Simple, regular scheduler, fault-tolerance, etc.

• Independent of programming model

– Above Dryad is graph manipulation



Job = Directed Acyclic Graph

Processing

vertices
Channels

(file, pipe,

shared

memory)

Inputs

Outputs



Inputs and Outputs

• “Virtual” graph vertices

• Extensible abstraction

• Partitioned distributed files

– Input file expands to set of vertices

• Each partition is one virtual vertex

– Output vertices write to individual partitions

• Partitions concatenated when outputs completes



Channel Abstraction

• Sequence of structured (typed) items

• Implementation
– Temporary disk file

• Items are serialized in buffers

– TCP pipe
• Items are serialized in buffers

– Shared-memory FIFO
• Pass pointers to items directly

• Simple, general data model



Why a Directed Acyclic Graph?

• Natural “most general” design point

• Allowing cycles causes trouble

• Mistake to be simpler

– Supports full relational algebra and more

• Multiple vertex inputs or outputs of different types

– Layered design

• Generic scheduler, no hard-wired special cases

• Front ends only need to manipulate graphs



Why a general DAG?

• “Uniform” stages aren’t really uniform



Why a general DAG?

• “Uniform” stages aren’t really uniform



Graph complexity composes

• Non-trees common

• E.g. data-dependent re-partitioning

– Combine this with merge trees etc.

Distribute to equal-sized ranges

Sample to estimate histogram

Randomly partitioned inputs



Why no cycles?

• Scheduling is easy

– Vertex can run anywhere once all its inputs are 
ready.

– Directed-acyclic means there is no deadlock

– Finite-length channels means vertices finish.



Why no cycles?

• Scheduling is easy

– Vertex can run anywhere once all its inputs are 
ready.

– Directed-acyclic means there is no deadlock

– Finite-length channels means vertices finish.



Why no cycles?

• Scheduling is easy

– Vertex can run anywhere once all its inputs are 
ready.

– Directed-acyclic means there is no deadlock

– Finite-length channels means vertices finish.



Why no cycles?

• Scheduling is easy

– Vertex can run anywhere once all its inputs are 
ready.

– Directed-acyclic means there is no deadlock

– Finite-length channels means vertices finish.



Why no cycles?

• Scheduling is easy

– Vertex can run anywhere once all its inputs are 
ready.

– Directed-acyclic means there is no deadlock

– Finite-length channels means vertices finish.



Why no cycles?

• Scheduling is easy

– Vertex can run anywhere once all its inputs are 
ready.

– Directed-acyclic means there is no deadlock

– Finite-length channels means vertices finish.

• Fault tolerance is easy (with deterministic 
code)



Optimizing Dryad applications

• General-purpose refinement rules

• Processes formed from subgraphs

– Re-arrange computations, change I/O type

• Application code not modified

– System at liberty to make optimization choices

• High-level front ends hide this from user

– SQL query planner, etc.



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



Runtime

• Services
– Name server
– Daemon

• Job Manager
– Centralized coordinating process
– User application to construct graph
– Linked with Dryad libraries for scheduling vertices

• Vertex executable
– Dryad libraries to communicate with JM
– User application sees channels in/out
– Arbitrary application code, can use local FS

V V V



Scheduler state machine

• Scheduling is independent of semantics

– Vertex can run anywhere once all its inputs are 
ready

• Constraints/hints place it near its inputs

– Fault tolerance

• If A fails, run it again

• If A’s inputs are gone, run upstream vertices again 
(recursively)

• If A is slow, run another copy elsewhere and use output 
from whichever finishes first



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



SkyServer DB Query

• 3-way join to find gravitational lens effect

• Table U: (objId, color) 11.8GB

• Table N: (objId, neighborId) 41.8GB

• Find neighboring stars with similar colors:
– Join U+N to find

T = U.color,N.neighborId where U.objId = N.objId

– Join U+T to find
U.objId where U.objId = T.neighborID

and U.color ≈ T.color



D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

• Took SQL plan

• Manually coded in Dryad

• Manually partitioned data

SkyServer DB query

u: objid, color
n: objid, neighborobjid
[partition by objid]

select
u.color,n.neighborobjid

from u join n
where
u.objid = n.objid

(u.color,n.neighborobjid)
[re-partition by n.neighborobjid]
[order by n.neighborobjid]

[distinct]
[merge outputs]

select
u.objid

from u join <temp>
where
u.objid = <temp>.neighborobjid and
|u.color - <temp>.color| < d



SkyServer DB query

• M-S-Y : SHM

– “in-memory” : D-M is TCP and SHM 

– “2-pass” : D-M is Temp Files.

• Other Edges:

– Temp Files

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U



0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8 10

Number of Computers

S
p
e
e
d
-u

p

Dryad In-Memory

Dryad Two-pass

SQLServer 2005



Outline

• Map Reduce

• Dryad

– Computational Model

– Architecture

– Use cases

– DryadLINQ



Dryad Software Stack



DryadLINQ

• LINQ: Relational queries integrated in C#

• More general than distributed SQL

– Inherits flexible C# type system and libraries

– Data-clustering, EM, …



LINQ

Collection<T> collection;

bool IsLegal(Key);

string Hash(Key);

var results = from c in collection 
where IsLegal(c.key) 
select new { Hash(c.key), c.value};



Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection 
where IsLegal(c.key) 
select new { Hash(c.key), c.value};

DryadLINQ = LINQ + Dryad

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)

Data



Performance

• 10% code.(In comparison to programming 
directly on the Dryad middleware)

• 30% slower than “expert code”.



Summary

• General-purpose platform for scalable 
distributed data-processing of all sorts

• Very flexible

– Optimizations can get more sophisticated

• Designed to be used as middleware

– Slot different programming models on top

– LINQ is very powerful



Yahoo! Cloud Serving Benchmark

Xiaowei



Motivation

PNUTS



Benchmark tiers

• Tier 1 – Performance
– A system with better performance will achieve the desired 

latency and throughput with fewer servers

• Tier 2 – Scalability
– Latency as database, system size increases
– “Scaleup”

– Latency as we elastically add servers
– “Elastic speedup”



Benchmark tiers

• Tier 3 – Availability
– Measure the Impact of failures on the system

• Tier 4 – Replication
– Measure the effects of Replication Strategy on the system’s 

performance



Architecture

Workload 
parameter file
• R/W mix
• Record size
• Data set
• …

Command-line parameters
• DB to use
• Target throughput
• Number of threads
• …

YCSB client

D
B

 c
lie

n
t

Client 
threads

Stats

Workload 
executor

C
lo

u
d

 D
B

Extensible: plug in new clients
Extensible: define new workloads

https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/db
https://github.com/brianfrankcooper/YCSB/tree/master/src/com/yahoo/ycsb/generator
https://github.com/brianfrankcooper/YCSB/tree/master/src/com/yahoo/ycsb/generator


DB interface

• read()

• insert()

• update()

• delete()

• scan()

– Execute range scan, reading specified number of 
records starting at a given record key



Test

• Setup
– Six server-class machines

• 8 cores (2 x quadcore) 2.5 GHz CPUs, 8 GB RAM, 6 x 146GB 15K RPM SAS drives in 
RAID 1+0, Gigabit ethernet, RHEL 4

– Plus extra machines for clients, routers, controllers, etc.
– Cassandra 0.5.0 (0.6.0-beta2 for range queries) 
– HBase 0.20.3
– MySQL 5.1.32 organized into a sharded configuration 
– PNUTS/Sherpa 1.8 with MySQL 5.1.24
– No replication; force updates to disk (except HBase, which primarily commits 

to memory)

• Workloads
– 120 million 1 KB records = 20 GB per server

• Caveat
– We tuned each system as well as we knew how, with assistance from the 

teams of developers
https://github.com/brianfrankcooper/YCSB/tree/master/workloads

https://github.com/brianfrankcooper/YCSB/tree/master/workloads


Elasticity
• Run a read-heavy workload

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350

R
e
a
d

 l
a
te

n
c
y
 (

m
s
)

Duration of test (min)

Cassandra Elasticity – 5th to 6th server



Running a workload

• Set up the database system to test

• Choose the appropriate DB interface layer

• Choose the appropriate workload

• Choose the appropriate runtime parameters 
(number of client threads, target throughput, 
etc.)

• Load the data

• Execute the workload

https://github.com/brianfrankcooper/YCSB/tree/master/db
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload


Tips

• Only one Tip! 



Conclusions

• YCSB is an opensource benchmark for cloud 
serving systems

• Experimental results show tradeoffs between 
systems

• https://github.com/brianfrankcooper/YCSB/wi
ki/

• http://arunxjacob.blogspot.com/2011/03/sett
ing-up-ycsb-for-low-latency-data.html

https://github.com/brianfrankcooper/YCSB/wiki/
https://github.com/brianfrankcooper/YCSB/wiki/
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html



