MapReduce and Dryad

CS227
Li Jin, Jayme DeDona

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ

Map/Reduce function

* Map

— For each pair in a set of key/value pairs, produce a
new key/value pair.

e Reduce

— For each key

* Look at all the values associated with that key and
compute a new value.

Map/Reduce Function Example

map (String key, String walue) {
// key: document name
// wvalue: document contents
for each word w in wvalue
EmitIntermediate(w, "1");

reduce (String key, Iterator wvalues) {
// key: a word
// wvalues: a list of counts
for sach v in wvalues
result += Parselnt (v) ;
Emit (AsString (result));

Implementation Sketch

* Map’s input pairs divided into M splits
— stored in DFS
* Output of Map divided into R pieces

* One master process is in charge: farms out
work to W worker processes.
— each process on 4d separate computer

Implementation Sketch

* Master partitions splits among some of the
workers

— Each worker passes pairs to map function

— Results stored in local files
* Partitioned into R pieces

— Remaining works perform reduce tasks
* The R pieces are partitioned among them

* Place remote procedure calls to map workers to get
data

* Put output to DFS

Implementation Sketch

Input Data

Output Data

Split Sort Merge
[k1, v1] by k1 [k1, [v1, v2, v3 ...]]

Distributed File System

Implementation Sketch

Distributed File System

Distributed File System

More Details

* |nput files split into M pieces, 16 MB-64MB
each.

* A number of worker machines are started

— Master schedules M map tasks and R reduce tasks
to workers, one task at a time

— Typical values:
* M =200,000
* R=5000
e 2000 worker machines.

More Details

* Worker assigned a map task processes the

corresponding split, calling the map function
repeatedly; output buffered in memory

e Buffered output written periodically to local
files, partitioned into R regions.

— Locations sent back to master

More Details

* Reduce tasks
— Each handles one partition
— Access data from map workers via RPC
— Data is sorted by key

— All values associated with each key are passed to
the reduce function

— Result appended to DFS output file

Coping with Failure

* Master maintains state of each task
— Idle (not started)
— |In progress
— Completed

* Master pings workers periodically to
determine if they’re up

Coping with Failure

e Worker crashes

— In-progress tasks have state set back to idle
* All output is lost
* Restarted from beginning on another worker

— Completed map tasks
* All output is lost

» Restarted from beginning on another worker
* Reduce tasks using output are notified of new worker

Coping with Failure

 Worker crashes(continued)

— Completed reduce tasks
* Output already on DFS
* No restart necessary

* Master crashes
— Could be recovered from checkpoint

— |In practice
* Master crashes are rare
* Entire application is restarted

Counterpoint

* MapReduce: A major step backwards

— http://databasecolumn.vertica.com/database-
innovation/mapreduce-a-major-step-backwards/

* A giant step backward in the programming paradigm for
large-scale data intensive applications
* Sub optimal. Use brute force instead of indexing

* Not novel at all — it represents a specific
implementation of well known techniques nearly 25

years ago

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

Countercounterpoint

 Mapreduce is not a database system, so don’t
judge it as one

 Mapreduce has excellent scalability; the proof
of Google’s use

* Mapreduce is cheap and databases are
expensive. (As a countercountercounterpoint
to this, a Vertica guy told me they ran 3000
times faster than a hadoop job in one of their
client’s cases)

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ

Dryad goals

* General-purpose execution environment for
distributed, data-parallel applications

— Concentrates on throughput not latency

— Assumes private data center

* Automatic management of scheduling,
distribution, fault tolerance, etc.

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ

Where does Dryad fit in the stack?

 Many programs can be represented as a
distributed execution graph

* Dryad is middleware abstraction that runs

them for you

— Dryad sees arbitrary graphs
» Simple, regular scheduler, fault-tolerance, etc.

* Independent of programming model

— Above Dryad is graph manipulation

Job = Directed Acyclic Graph

A A \Outputs
Processing/ \ (
vertlces\ @ o " Channels
O e (file, pipe,
< shared
w Q& memory)
ORPS @ /

o o0 . O

Inputs and Outputs

e “Virtual” graph vertices
e Extensible abstraction
e Partitioned distributed files

— Input file expands to set of vertices

e Each partition is one virtual vertex

— Output vertices write to individual partitions
e Partitions concatenated when outputs completes

Channel Abstraction

e Sequence of structured (typed) items

* Implementation
— Temporary disk file

* Items are serialized in buffers
— TCP pipe

* Items are serialized in buffers
— Shared-memory FIFO

* Pass pointers to items directly

* Simple, general data model

Why a Directed Acyclic Graph?

I (o III

* Natural “most general” design point

* Allowing cycles causes trouble
* Mistake to be simpler

— Supports full relational algebra and more

* Multiple vertex inputs or outputs of different types
— Layered design

* Generic scheduler, no hard-wired special cases

* Front ends only need to manipulate graphs

Why a general DAG?

* “Uniform” stages aren’t really uniform

OO0 00O0000000

Why a general DAG?

* “Uniform” stages aren’t really uniform

A

Graph complexity composes

* Non-trees common
* E.g. data-dependent re-partitioning

— Combine this with merge trees etc.

Distribute to equal-sized ranges

Sample to estimate histogram

Randomly partitioned inputs Q/

Why no cycles?

* Scheduling is easy

— Vertex can run anywhere once all its inputs are
ready.

— Directed-acyclic means there is no deadlock
— Finite-length channels means vertices finish.

~~
~~
—

-
-
-
—

Why no cycles?

* Scheduling is easy

— Vertex can run anywhere once all its inputs are
ready.

— Directed-acyclic means there is no deadlock
— Finite-length channels means vertices finish.

—
~~

Why no cycles?

* Scheduling is easy

— Vertex can run anywhere once all its inputs are
ready.

— Directed-acyclic means there is no deadlock
— Finite-length channels means vertices finish.

—
~~

ﬁ____é

Why no cycles?

* Scheduling is easy

— Vertex can run anywhere once all its inputs are
ready.

— Directed-acyclic means there is no deadlock
— Finite-length channels means vertices finish.

Why no cycles?

* Scheduling is easy

— Vertex can run anywhere once all its inputs are
ready.

— Directed-acyclic means there is no deadlock
— Finite-length channels means vertices finish.

Why no cycles?

* Scheduling is easy

— Vertex can run anywhere once all its inputs are
ready.

— Directed-acyclic means there is no deadlock
— Finite-length channels means vertices finish.

* Fault tolerance is easy (with deterministic
code)

Optimizing Dryad applications

General-purpose refinement rules
Processes formed from subgraphs

— Re-arrange computations, change 1/0 type

Application code not modified

— System at liberty to make optimization choices

High-level front ends hide this from user
— SQL query planner, etc.

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ

Job schedule Data plane

Ru ntl me Z;;i Files, FIFO, Network
D D D

* Services \ i NS
— Name server e I T T [
— baemon Control plane

* Job Manager
— Centralized coordinating process
— User application to construct graph
— Linked with Dryad libraries for scheduling vertices

* Vertex executable
— Dryad libraries to communicate with JM

— User application sees channels in/out
— Arbitrary application code, can use local FS

Scheduler state machine

e Scheduling is independent of semantics

— Vertex can run anywhere once all its inputs are
ready

» Constraints/hints place it near its inputs

— Fault tolerance
* If A fails, run it again

 If A’s inputs are gone, run upstream vertices again
(recursively)

* If Ais slow, run another copy elsewhere and use output
from whichever finishes first

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ

SkyServer DB Query

3-way join to find gravitational lens effect
Table U: (objld, color) 11.8GB

Table N: (objld, neighborld) 41.8GB

Find neighboring stars with similar colors:
— Join U+N to find
T = U.color,N.neighborld where U.objld = N.objld

— Join U+T to find
U.objld where U.objld = T.neighborID
and U.color = T.color

SkyServer DB query

® [distinct]
[merge outputs]

°
° select
u.objid
from u join <temp>
where

u.objid = <temp>.neighborobjid and
| u.color - <temp>.color| < d

.

SkyServer DB query g

* M-S-Y : SHM
— “in-memory” : D-M is TCP and SH
— “2-pass” : D-M is Temp Files.

* Other Edges:

— Temp Files

Speed-up

16.0

14.0 —&—Dryad In-Memory
—B—Dryad Two-pass

120 1| _e—sQLserver 2005
10.0

8.0

6.0 __l/.'

-
o
4.0 -
-
2.0 o
3
0.0
o) 2 4 6

Number of Computers

Outline

* Map Reduce

* Dryad
— Computational Model
— Architecture

— Use cases
— DryadLINQ,

Dryad Software Stack

Machine T3]
sed, awk, grep, etc. . £
C# Learning =
legacy 5515 =
code PSQL Perl C++ Scope CH Vectors E
50L o
Distributed Shell (Nebula) DryadLING Ct+ server E
2
Dryad o
£
°
Distributed Filesystem (Cosmas) CIFS/MNTFS
Cluster Services
Windows Windows Windows Windows

Server Server server server

DryadLINQ

* LINQ: Relational queries integrated in C#
 More general than distributed SQL

— Inherits flexible C# type system and libraries
— Data-clustering, EM, ...

LINQ

Collection<T> collection;

‘bool IsLegal(Key);
\strmg Hash(Key);)
Vs)

[var resultﬁ = from c in collection
where IsLegal(c.key)

& select new { Hash(c.key), c.value}; /

Vertex
code

DryadLINQ = LINQ + Dryad

~

/Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

o

[var results)

= from c in collection

where IsLegal(c.key)

select new { Hash(c.key), c.value}; /

CE collection

(/alih

o]

Query
plan
(Dryad job)

é) results

Performance

* 10% code.(In comparison to programming
directly on the Dryad middleware)

e 30% slower than “expert code”.

Summary

* General-purpose platform for scalable
distributed data-processing of all sorts

* Very flexible
— Optimizations can get more sophisticated

* Designed to be used as middleware
— Slot different programming models on top
— LINQ is very powerful

Yahoo! Cloud Serving Benchmark

Xiaowel

Motivation

Nilf HYPERTABLE SQL Azure

' Project Voldemort

[|
‘s’ amazon sriak

CouchDB

Benchmark tiers

e Tier 1 —Performance

— A system with better performance will achieve the desired
latency and throughput with fewer servers

* Tier 2 —Scalability
— Latency as database, system size increases
— “Scaleup”

— Latency as we elastically add servers
— “Elastic speedup”

Benchmark tiers

* Tier 3 — Availability
— Measure the Impact of failures on the system

* Tier 4 — Replication

— Measure the effects of Replication Strategy on the system’s
performance

Architecture

>

_—

Command-line parameters
* DB to use

e Target throughput

* Number of threads

YCSB client

Client N

N
threads o

Stats

1\

Extensible: define new workloads

|

Extensible: plug in new clients

Cloud DB

https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
https://github.com/brianfrankcooper/YCSB/tree/master/db
https://github.com/brianfrankcooper/YCSB/tree/master/src/com/yahoo/ycsb/generator
https://github.com/brianfrankcooper/YCSB/tree/master/src/com/yahoo/ycsb/generator

DB interface

read()
insert()
update()
delete()

scan()

— Execute range scan, reading specified number of
records starting at a given record key

Test

* Setup

— Six server-class machines

e 8 cores (2 x quadcore) 2.5 GHz CPUs, 8 GB RAM, 6 x 146GB 15K RPM SAS drives in
RAID 1+0, Gigabit ethernet, RHEL 4

— Plus extra machines for clients, routers, controllers, etc.
— Cassandra 0.5.0 (0.6.0-beta2 for range queries)

— HBase 0.20.3

— MySQL 5.1.32 organized into a sharded configuration

— PNUTS/Sherpa 1.8 with MySQL 5.1.24

— No replication; force updates to disk (except HBase, which primarily commits
to memory)

 Workloads
— 120 million 1 KB records = 20 GB per server

e (Caveat

— We tuned each system as well as we knew how, with assistance from the
teams of developers

https://github.com/brianfrankcooper/YCSB/tree/master/workloads

https://github.com/brianfrankcooper/YCSB/tree/master/workloads

Elasticity

Run a read-heavy workload

HBasg Elasticity - 5th to 6th Server

250

Cassandra Elasticity — 5 to 6t server

200

=]
i

(8w) Aauage| peay

=
(=]

*

4

50

3 ’_
¢

o3
v
L 4

e TN PO
Y
58,5
Ve e 4%
S S
.
*

s,
X
*

*
*

800
700

o O
o O
©

o
o
<

o
o
™

:
o O
o O
N

(sw) Aouare| peay

30

25

20

15

0

100 150 200 250 300 3

50

Test duration (min)

Duration of test (min)

Running a workload

Set up the database system to test
Choose the appropriate DB interface layer

Choose the appropriate workload

Choose the appropriate runtime parameters
(number of client threads, target throughput,

etc.)
Load the data

Execute the workload

https://github.com/brianfrankcooper/YCSB/tree/master/db
https://github.com/brianfrankcooper/YCSB/tree/master/workloads
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload

Tips

* Only one Tip!

Conclusions

YCSB is an opensource benchmark for cloud
serving systems

Experimental results show tradeoffs between
systems

nttps://github.com/brianfrankcooper/YCSB/wi
ki/

nttp://arunxjacob.blogspot.com/2011/03/sett
ing-up-ycsb-for-low-latency-data.html

https://github.com/brianfrankcooper/YCSB/wiki/
https://github.com/brianfrankcooper/YCSB/wiki/
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html

Thanks!

