MapReduce and Dryad

CS227 Li Jin, Jayme DeDona

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

Map/Reduce function

• Map

 For each pair in a set of key/value pairs, produce a new key/value pair.

- Reduce
 - For each key
 - Look at all the values associated with that key and compute a new value.

Map/Reduce Function Example

```
map(String key, String value) {
    // key: document name
    // value: document contents
    for each word w in value
        EmitIntermediate(w, "1");
}
```

```
reduce(String key, Iterator values) {
    // key: a word
    // values: a list of counts
    for each v in values
        result += ParseInt(v);
    Emit(AsString(result));
}
```

- Map's input pairs divided into M splits
 stored in DFS
- Output of Map divided into R pieces
- One master process is in charge: farms out work to W worker processes.
 - each process on a separate computer

- Master partitions splits among some of the workers
 - Each worker passes pairs to map function
 - Results stored in local files
 - Partitioned into R pieces
 - Remaining works perform reduce tasks
 - The R pieces are partitioned among them
 - Place remote procedure calls to map workers to get data
 - Put output to DFS

More Details

- Input files split into M pieces, 16MB-64MB each.
- A number of worker machines are started
 - Master schedules M map tasks and R reduce tasks to workers, one task at a time
 - Typical values:
 - M = 200,000
 - R = 5000
 - 2000 worker machines.

More Details

- Worker assigned a map task processes the corresponding split, calling the map function repeatedly; output buffered in memory
- Buffered output written periodically to local files, partitioned into R regions.
 - Locations sent back to master

More Details

- Reduce tasks
 - Each handles one partition
 - Access data from map workers via RPC
 - Data is sorted by key
 - All values associated with each key are passed to the reduce function
 - Result appended to DFS output file

Coping with Failure

- Master maintains state of each task
 - Idle (not started)
 - In progress
 - Completed
- Master pings workers periodically to determine if they're up

Coping with Failure

- Worker crashes
 - In-progress tasks have state set back to idle
 - All output is lost
 - Restarted from beginning on another worker
 - Completed map tasks
 - All output is lost
 - Restarted from beginning on another worker
 - Reduce tasks using output are notified of new worker

Coping with Failure

- Worker crashes(continued)
 - Completed reduce tasks
 - Output already on DFS
 - No restart necessary
- Master crashes
 - Could be recovered from checkpoint
 - In practice
 - Master crashes are rare
 - Entire application is restarted

Counterpoint

- MapReduce: A major step backwards
 - <u>http://databasecolumn.vertica.com/database-</u> <u>innovation/mapreduce-a-major-step-backwards/</u>
 - A giant step backward in the programming paradigm for large-scale data intensive applications
 - Sub optimal. Use brute force instead of indexing
 - Not novel at all it represents a specific implementation of well known techniques nearly 25 years ago
 - •

Countercounterpoint

- Mapreduce is not a database system, so don't judge it as one
- Mapreduce has excellent scalability; the proof of Google's use
- Mapreduce is cheap and databases are expensive. (As a countercountercounterpoint to this, a Vertica guy told me they ran 3000 times faster than a hadoop job in one of their client's cases)

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

Dryad goals

- General-purpose execution environment for distributed, data-parallel applications
 - Concentrates on throughput not latency

Assumes private data center

• Automatic management of scheduling, distribution, fault tolerance, etc.

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

Where does Dryad fit in the stack?

- Many programs can be represented as a distributed execution graph
- Dryad is middleware abstraction that runs them for you
 - Dryad sees arbitrary graphs
 - Simple, regular scheduler, fault-tolerance, etc.
 - Independent of programming model
 - Above Dryad is graph manipulation

Inputs and Outputs

- "Virtual" graph vertices
- Extensible abstraction
- Partitioned distributed files
 - Input file expands to set of vertices
 - Each partition is one virtual vertex
 - Output vertices write to individual partitions
 - Partitions concatenated when outputs completes

Channel Abstraction

- Sequence of structured (typed) items
- Implementation
 - Temporary disk file
 - Items are serialized in buffers
 - TCP pipe
 - Items are serialized in buffers
 - Shared-memory FIFO
 - Pass pointers to items directly
- Simple, general data model

Why a Directed Acyclic Graph?

- Natural "most general" design point
- Allowing cycles causes trouble
- Mistake to be simpler
 - Supports full relational algebra and more
 - Multiple vertex inputs or outputs of different types
 - Layered design
 - Generic scheduler, no hard-wired special cases
 - Front ends only need to manipulate graphs

Why a general DAG?

• "Uniform" stages aren't really uniform

Why a general DAG?

• "Uniform" stages aren't really uniform

Graph complexity composes

- Non-trees common
- E.g. data-dependent re-partitioning
 Combine this with merge trees etc.

Distribute to equal-sized ranges

Sample to estimate histogram

Randomly partitioned inputs

- Scheduling is easy
 - Vertex can run anywhere once all its inputs are ready.
 - Directed-acyclic means there is no deadlock
 - Finite-length channels means vertices finish.

- Scheduling is easy
 - Vertex can run anywhere once all its inputs are ready.
 - Directed-acyclic means there is no deadlock
 - Finite-length channels means vertices finish.

- Scheduling is easy
 - Vertex can run anywhere once all its inputs are ready.
 - Directed-acyclic means there is no deadlock
 - Finite-length channels means vertices finish.

- Scheduling is easy
 - Vertex can run anywhere once all its inputs are ready.
 - Directed-acyclic means there is no deadlock
 - Finite-length channels means vertices finish.

- Scheduling is easy
 - Vertex can run anywhere once all its inputs are ready.
 - Directed-acyclic means there is no deadlock
 - Finite-length channels means vertices finish.

- Scheduling is easy
 - Vertex can run anywhere once all its inputs are ready.
 - Directed-acyclic means there is no deadlock
 Finite-length channels means vertices finish.
- Fault tolerance is easy (with deterministic code)

Optimizing Dryad applications

- General-purpose refinement rules
- Processes formed from subgraphs

 Re-arrange computations, change I/O type
- Application code not modified
 - System at liberty to make optimization choices
- High-level front ends hide this from user

- SQL query planner, etc.

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

Runtime

- Services
 - Name server
 - Daemon
- Job Manager
 - Centralized coordinating process
 - User application to construct graph
 - Linked with Dryad libraries for scheduling vertices
- Vertex executable
 - Dryad libraries to communicate with JM
 - User application sees channels in/out
 - Arbitrary application code, can use local FS

Scheduler state machine

- Scheduling is independent of semantics
 - Vertex can run anywhere once all its inputs are ready
 - Constraints/hints place it near its inputs
 - Fault tolerance
 - If A fails, run it again
 - If A's inputs are gone, run upstream vertices again (recursively)
 - If A is slow, run another copy elsewhere and use output from whichever finishes first

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

SkyServer DB Query

- 3-way join to find gravitational lens effect
- Table U: (objId, color) 11.8GB
- Table N: (objld, neighborld) 41.8GB
- Find neighboring stars with similar colors:
 - Join U+N to find
 - T = U.color, N.neighborId where U.objId = N.objId
 - Join U+T to find

U.objId where U.objId = T.neighborID and U.color ≈ T.color

SkyServer DB query

Η

n

<u>4n</u>

<u>n</u>

n

M

Х

U

S

M

D

Х

- M-S-Y : SHM
 - "in-memory" : D-M is TCP and SHM
 - "2-pass" : D-M is Temp Files.
- Other Edges:
 - Temp Files

Outline

- Map Reduce
- Dryad
 - Computational Model
 - Architecture
 - Use cases
 - DryadLINQ

Dryad Software Stack

DryadLINQ

- LINQ: Relational queries integrated in C#
- More general than distributed SQL
 - Inherits flexible C# type system and libraries

Data-clustering, EM, ...

LINQ

Collection<T> collection;

bool IsLegal(Key);

string Hash(Key);

var results = from c in collection
 where IsLegal(c.key)
 select new { Hash(c.key), c.value};

DryadLINQ = LINQ + Dryad

Performance

- 10% code.(In comparison to programming directly on the Dryad middleware)
- 30% slower than "expert code".

Summary

- General-purpose platform for scalable distributed data-processing of all sorts
- Very flexible
 - Optimizations can get more sophisticated
- Designed to be used as middleware
 - Slot different programming models on top
 - LINQ is very powerful

Yahoo! Cloud Serving Benchmark

Xiaowei

Motivation

Benchmark tiers

- Tier 1 Performance
 - A system with better performance will achieve the desired latency and throughput with fewer servers
- Tier 2 Scalability
 - Latency as database, system size increases
 - "Scaleup"
 - Latency as we elastically add servers
 - "Elastic speedup"

Benchmark tiers

• Tier 3 – Availability

- Measure the Impact of failures on the system

- Tier 4 Replication
 - Measure the effects of Replication Strategy on the system's performance

Architecture

DB interface

- read()
- insert()
- update()
- delete()
- scan()
 - Execute range scan, reading specified number of records starting at a given record key

Test

- Setup
 - Six server-class machines
 - 8 cores (2 x quadcore) 2.5 GHz CPUs, 8 GB RAM, 6 x 146GB 15K RPM SAS drives in RAID 1+0, Gigabit ethernet, RHEL 4
 - Plus extra machines for clients, routers, controllers, etc.
 - Cassandra 0.5.0 (0.6.0-beta2 for range queries)
 - HBase 0.20.3
 - MySQL 5.1.32 organized into a sharded configuration
 - PNUTS/Sherpa 1.8 with MySQL 5.1.24
 - No replication; force updates to disk (except HBase, which primarily commits to memory)
- Workloads
 - 120 million 1 KB records = 20 GB per server
- Caveat
 - We tuned each system as well as we knew how, with assistance from the teams of developers

https://github.com/brianfrankcooper/YCSB/tree/master/workloads

Elasticity

Run a read-heavy workload

Running a workload

- Set up the database system to test
- <u>Choose the appropriate DB interface layer</u>
- <u>Choose the appropriate workload</u>
- <u>Choose the appropriate runtime parameters</u> (number of client threads, target throughput, etc.)
- Load the data
- Execute the workload

Tips

• Only one Tip!

Conclusions

- YCSB is an opensource benchmark for cloud serving systems
- Experimental results show tradeoffs between systems
- <u>https://github.com/brianfrankcooper/YCSB/wiki/</u>
- <u>http://arunxjacob.blogspot.com/2011/03/sett</u> <u>ing-up-ycsb-for-low-latency-data.html</u>

