Parallel Databases

CS227, Spring 2011
Yang Lu
James Tavares



Overview

Motivations
Architectures
Partitioning Schemes

Relational Operator Parallelism
— Parallel Sort, Join, Selection, etc.

Gamma
— Architecture, Performance Analysis

XPRS Design



Why parallel database ?

* Driving force

— Demand on storing and analyzing large volumes of
data

— Demand on high throughput for transaction
processing

e Prices of microprocessors, memory and disks have
dropped sharply

* Relational databases are ideally suited to
parallelization.



Relation database parallelization

Source
Data

Source
Data

pipeline parallelism partitioned data allows partitioned parallelism

* Operations can be executed in parallel
— Pipelined parallelism



Interconnection Networks

(a) bus

(b) mesh

011

101

001

010

v

000

100

(c) hypercube

111

110




Architectures
* shared-memory:

— share direct access to a common global.
* shared-disks

— Each processor has direct access to all disks.

* shared-nothing:
— The Teradata, Tandem, Gamma



Architectures

o @ o @
Interconnection Network T
LTlobal Shared Memory

Shared Memory Multiprocessor Shared Disk Multiprocessor

( Interconnection Network




Partitioning a Relation across Disks

* Principles
— It is better to assign a small relation to a single disk.

— Large relations are preferably partitioned across all
the available disks

* m disk blocks and n disks
* should be allocated min(m,n) disks

* Techniques
— Round-robin
— Hash partitioning
— Range partitioning



Partitioning Techniques

Round-robin:
Send the ith tuple inserted in the relation to disk i mod n.

Hash partitioning:

— Choose one or more attributes as the partitioning
attributes.

— Choose hash function h with range 0..n - 1

— Let i denote result of hash function h applied to
the partitioning attribute value of a tuple. Send

tuple to disk i.



Partitioning Techniques

* Range partitioning:
— Choose an attribute as the partitioning attribute.

— A partitioning vector [v,, v,, ..., v, ,] is chosen.

— Let v be the partitioning attribute value of a tuple.
Tuples such that v. <v,,, go to disk i+ 1. Tuples with v <

V, g0 to disk 0 and tuples with v= v, , go to the last
disk.



Comparison of Partitioning Techniques

 A.Sequential scan
* B. Point queries.

E.g. employee-name=“Campbell”.
* (. Range queries.

E.g. 10000<salary<20000

Round-R

Range




Parallelism Hierarchy

* |nterquery
— Queries/transactions execute in parallel with one

another

* Locking and logging must be coordinated by passing
messages between processors.

* Cache-coherency has to be maintained

* |Intraquery

— Execution of a single query in parallel on multiple
processors



Parallelism Hierarchy

 Two complementary forms of intraquery
parallelism:

— Intraoperation Parallelism — parallelize the
execution of each individual operation in the

query.

— Interoperation Parallelism — execute the different
operations in a query expression in parallel.



Parallel Sort

* Range-Partitioning Sort
— Redistribution using a range-partition strategy
— Each processor sorts its partition locally

e Parallel External Merge-Sort

— Each processor P; locally sorts the data on disk D..

— The sorted runs on each processor are then
merged.



Parallel External Merge-Sort

P1| 5 3 1 7 P2 | 2
~—
Sort local data
P1| 1 3 5 7 P2 | 2
G [1,4]->P //" //" N~
[5.8]->P> N
1 3 2 4 5 7

— \ \
P11 2|34 P1] 5

o -
@ 1|2 |3|4|5|86]7




Parallel Join

e Partitioned Join

— Use the same partitioning function on both
relations
* Range partitioning on the join attributes
e Hash partitioning on the join attributes

— Equi-joins and natural joins



Partitioned Join

N

0004

NN




Partitioned Parallel Hash-Join

* Simple Hash-Join
— Route tuples to their appropriate joining site.

— The smaller joining relation staged in an in-
memory hash(which is formed by hashing on the
join attribute of each tuple).

— Tuples of the larger joining relations probe the
hash table for matches.

* Other optimization: Hybrid Hash-Join



Parallel Join

* Fragment-and-Replicate Join

— Partitioning not possible for some join conditions
* E.g., non-equijoin conditions, such as r.A > s.B.

— fragment and replicate technique



Fragment-and-Replicate Join

A
PP
&
|

OO

P

1 n—1,m-1

(a) Asymmetric (b) Fragment and replicate
fragment and replicate



Interoperator Parallelism

* Pipelined Parallelism

— The output tuples of one operation are consumed
by a second operation.

— No need to write any of the intermediate results
to disk.



Pipelined parallelism

— Consider a join of four relations
rAXr,XryXr,
* Let P1 be assigned the computation of  templ=r,
X,
* Let P2 be assigned the computation of
temp2 =templ X ry
* And P3 be assigned the computation of temp2 x

ry



Measuring DB Performance

* Throughput

— The number of tasks, or the size of task, that can
be completed in a given time interval

* Response Time

— The amount of time it takes to complete a single
task from the time it is submitted

* Goal: improve both through parallelization



Absolute vs. Relativistic

 Absolute

— Q: Does system meet my requirements?
— Q: How does system compare with system Y?

e Relativistic

— As some resource is varied, determine how system
scales and how speed is affected

— Q: Will increased resources let me process larger
datasets?

— Q: Can | speed up response time by adding resources?



Scaleup

Baseline: Task Q runs
on M in T, seconds

Task Qy runs on M, in
T, seconds

Q,, M, are N times
larger than Q, M.,
respectively

Scaleup = T./T,
— Linear: T,=T,
— Sublinear: T >T;

T/T, 2

—linear
scaleup

—sublinear
scaleup

=

problem size 2



Speedup

* Task Q runs on M¢ and

—linear

responds in time T, speedup
e Same task Q runs on —sublinear
. speedup
M, and responds in "
time T, ks
&
wm

— Goal: T, should be
time: T, * (S/L)

* Speedup =T./T,

resources =



Performance Factors

* |Interference

— Parallel processes compete for shared resources
(e.g., system bus, network, or locks)

* Start-up costs

— Associated with initiating a single process

— Start-up time may overshadow processing time
e Skew

— Difficult to subdivide tasks in to equal-sized parts
— Most-skewed subtask governs response time



Gamma Overview

* First operational prototype 1985, U. of
Wisconsin

e Shared-nothing architecture

— Interconnected by communications network

— Promotes commodity-based hardware, lots of
processors

* Hash-based parallel algorithms to disburse
load



Gamma Hardware

* Version 1.0
— (18) VAX 11/750 machines, with 2MB RAM
— 8 machines with 333 MB HD; balance is diskless
— 80mbit/s token ring, 4mbit/s at each CPU

* Version 2.0

— 32x Intel 386 iPSC/2 hypercube CPUs, with 8MB
RAM

— 330 MB HDD per CPU
— 8 x 22.4Mbps/s serial hypercube channels



Gamma Storage Engine

* Horizontally Partitioned
— Round robin, hashed, or range partitioned
— For performance analysis:

* Hashed for source relations
 Round-robin for destination relations
 Clustered and non-clustered indexes offered
within each partition

— Clustered index allowed on non-partition attribute



Recovery: Chained Declustering

Assume N nodes, and N fragments of R, R
Backup copy stored at node: (i+1) mod N
On failure, nodes assumes 1/(N-1) of the load
Multiple failures permitted as long as no two
adjacent nodes fail together
Node [ o X 2 3 4 s 6 7|
PrimaryCopy | RO~ R~ R~ RS —  Ré—  R5—~ R6—~ RI-
BakupCopy > 17 >0l Sr SR S M S 56|
__Sﬂd_e__:_ _ﬂl___l_ 2 3 4 _5_ 6
Primary Copy RO

7
-— R2 E3 R4 RS E& E7—|
AN R NN NI N
-— rl 6 2 :' 3 4 3 I3 — 10 |
Y S A AN S S |

Backup Copy ||-) 1 17




Gamma Architecture

One per active
user

One per

database

QUERY
MANAGER

QUERY
MANAGER

A

*| CATALOG [
MANAGER

One per active
query

PROCESSORS
SCHEDULER

RECOVERY PROCESSES DEADLOCK
>=1 per a ctive PROCESS . Dg(E)EIIEISgN
tree node 7 i

OPERATOR
PROCESSES

OPERATOR
PROCESSES

OPERATOR
PROCESSES

OPERATOR
PROCESSES

DATABASE DATABASE




Gamma Operator & Split Table

CONTROL PACKET

|
|
|
|
|
't

_ ] PROCESS
STREAM OF TUPLES SPLIT
»| EXECUTING 3
TABLE
OPERATOR

Operators Include:
SCAN, SELECT, JOIN, STORE, UPDATE, etc

OUTGOING STREAMS

OF TUPLES

b

Fad

kot
s

Value

Destination Process

W

0

1
2
f"

(Processor #3, Port #5)
(Processor #2, Port #13)
(Processor #7, Port #6)
(Processor #9, Port #15)




Example Query

QUERY QUERY
MANAGER MANAGER

b £

Step 2: Scheduler Process N
Assigned by Query MANAGER Gprm A M P
Manager C - C

Step 6: Partitioned Hash

Fdi LILIVIIS A,D LU INUUEDS \% Join using Nodes 1,2
1,2 <o

e ® Steps: schequl
‘ @ ~ ep 8: Scheduler
‘.g completes, Query

C.1 l CilcC2§gc2 Manager returns result
g | B !
OPERATOR OPERATOR OPERATOR OPERATOR
PROCESSES PROCESSES PROCESSES PROCESSES
2 3 4
| |
s
——
Step 4: Scheduler start ——

JOIN processes on Nodes N IE

AB 4 i AB 4

.l



Nonindexed Selections (seconds)

160 Gamma Loses 1%,

140 Wins 10%

120
100

B Gamma 1%
80

M Teradata 1%
60

40 M Gamma 10%

20 M Teradata 10%

10,000 tuples
100,000 tuples

1,000,000 tuples



Non-clustered Indexed Selections

140 Gamma’s B+ Tree
outperforms Teradata’s
120 unordered indexes

100

B Gamma 1%
80

M Teradata 1%
60
40

20

10,000 tuples
100,000 tuples

1,000,000 tuples



Selection Speedup

Nonindexed Selection Indexed Selection
107 A 0% selectivity 107 - ) _ _
o 1% selectivity 1% 11011—cluste.1‘ed mdex se.lec‘rlon
9 - O 10% selectivity 91 o 10% clustered index selection
i a 1% clustered index selection
81 8- + 0% clustered index selectio%
71 [ /0O Bound L
61 6 - o’
51 51
4 A 4
31 3 -
21 21
1 b 1 .
0 1 1 1 1 1 1 T 1 0 T T T T I T T 1
o 23 4 S5 6 7 3 0 1 2 3 4 5 6 71 8

PROCESSORS WITH DISKS PROCESSORS WITH DISKS



Gamma Join Performance

* Relations

— A—100,000 tuples

— Bprime — 10,000 tuples

— A X Bprime — 10,000 tuples
* Join Types

— Local

 join occurs only on disk nodes

— Remote
* join occurs only on disk-less nodes

— Allnodes
* join occurs on both disk and disk-less nodes

— Scans always run on respective disk node



Join A,Bprime Speedup

Join Attr = Partitioning Attr

SPEEDUP
817 .
A& Local Joins
7 ¢ Remote Joins
U Allnodes Joins
6 -
5 .
4 .
3 .
System:
Constant Memory (no overflow)
21 4 Kbyte disk pages
100,000 tuple relations
Query:
1- JomABprime
(Join attrs = Partitioning Afttrs)
0 1 2 3 4 5 6 7 8

PROCESSORS WITH DISKS

Join Attr != Partitioning Attr

SPEEDUP

8_

A& Local Joins
o

Remote Joins
U Allnodes Joins

System:
Constant Memory (no overflow)
4 Kbyte disk pages
100,000 tuple relations

Query:
JomnABprime
(Join attrs <> Partitioning Attrs)

2 3 4 5 6 7 8
PROCESSORS WITH DISKS



Join A,Bprime Response Time

Join Attr = Partitioning Attr Join Attr != Partitioning Attr

RESPONSE TIME (SECONDS) RESPONSE TIME (SECONDS)
360 1 3607
330 1 <1|> 3301 ¢

|I I|
300 1 Eli A Local Joins 3001 | A Local Joms
1 © Remote Joins \ ¢ Remote Joins

2701 \| D Allnodes Joins 2701 ”‘n D Allnodes Joins

i J ¢I". I"\ I"-I'n
240 W System: 2401 A\ | System:
210 \ H‘\i Constant Memory (no overflow) ) Constant Memory (no overflow)

\\ 4 Kbyte disk pages 2107 4 Kbyte disk pages
| \ 100,000 tuple relations _ 100,000 tuple relations
180 \ Query: 1807 Query: :
JomnABprime o JommABprime o

1501 (Join attrs = Partitioning Attrs) 1501 (Join attrs < Partitioning Attrs)
120 - 170 \

90 1 90 - 3

601 601 [ —

301 Al Remote Wins

0 T T T T T T I 1 0 T T T T T T T 1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

PROCESSORS WITH DISKS PROCESSORS WITH DISKS



Gamma Join Overflow Performance

Simple Hash Join w/ Join
Attr. = Part. Attr

Memory was
incrementally reduced

Performance crossover

Why? Overflows handled\m

by recursive joins
— With new hash function!

— New hash equiv. of:
Join Attr. = Part. Attr

RESPONSE TIME (SECONDS)

500 7

4501

400

3501

100 1

501

0

2 Local Joins
¢ Remote Joins

i 11 Overflows
|

|
| System: _
\ Constant Configuration (17 nodes)

100,000 tuple relations

Query: _
JomABprime
. (Join attrs = Partitioning attrs)
\

\g\ 5 Overflows

2 Overflows
1 Overflow
§= 0 Overflows
=3

0.00 0.20 040 0.60 080 1.00 1.20

AVAILABLE MEMORY/SMALLER RELATION



Gamma (V2) Scaleup — Join A,Bprime

RESPONSE TIME (SECONDS)

* Intel Hypercube 1807 hash paritoned on non-oin atrbuts
* Ranges 1709 EEEE
— CPUs: [5, 30] e
— “A” relation: [1M, 6M] PO e -~
— “Bprime” relation: 1409
[100k, 600k] 1301
* Factors 120
— Scheduler on single CPU 110-
— Diminished short-circuiting 100 -
— Communications network % | | | | | |
0 5 10 15 20 25 30

PROCESSORS WITH DISKS



XPRS Overview

* Proposed extension to POSTGRES
— 2-D file allocation, and RAID
— Parallel queries, fast path, partial indexes
— Special purpose concurrency
— Parallel query plans

* Architecture
— Shared-memory (faster than network)

— General-purpose OS
— Large Sun machine or a SEQENT Symmetry



2-D File System B

A file is defined by:
— Starting disk

— Width, in disks

— Height, in tracks

— Starting track on each disk
Larger Widths il
— Increase throughput il Bl
— Minimize “hot spots” il I
Each “Logical Disk” is a i
group of physical disks,
protected by RAID5 D | D|D

Some disks smaller
than others



Changes to POSTQUEL

Parallel keyword alerts DBMS to statements that can
be executed in parallel (inter-query parallelism)

— RETRIEVE... PARALLEL RETRIEVE... PARALLEL RETRIEVE...

Fast Path

— Allow users to define stored procedures, which run pre-
compiled plans with given arguments

— Bypass: Type checking, parsing, and query optimization
Partial Indexes

— E.g.: INDEX on EMP(salary) WHERE age < 20

— Reduces index size, increases performance

Range-partitioned Relations

— E.g.: EMP where age < 20 TO filel
— E.g.: EMP where age >= 20 TO file2




Special Purpose Concurrency

* Exploit transactions that failure commute
e E.g.: Given two bank withdrawals

— Both will succeed if there are sufficient funds
— The failure of one has no impact on the other

 |dea: Mark transaction in class “C1” or “C2”

— Allow C1 transactions to run concurrently with
each other, but not with C2 transactions

— E.g.: Withdrawal as C1, Transfer as C2



Parallel Query Planner

Find BIG = min(RAM_Needed, Total RAM)

Find optimal sequential plan for memory
intervals:

— [BIG, BIG/2], [BIG/2, BIG/4], ..., [BIG/n, O]
Explore all possible parallel plans of each
sequential plan

— With a sprinkle of heuristics to limit plan space

Use optimal parallel plan



Conclusions

Parallel DBs important to meet future
demands

Historical context important

Proved many can be made to perform the
work of one, only better

Horizontal partitioning effective

Speedup and scaleup is possible, at least for
sufficiently “small” node counts



Questions?



