
Parallel Databases

CS227, Spring 2011

Yang Lu

James Tavares

Overview

• Motivations

• Architectures

• Partitioning Schemes

• Relational Operator Parallelism
– Parallel Sort, Join, Selection, etc.

• Gamma
– Architecture, Performance Analysis

• XPRS Design

Why parallel database ?

• Driving force
– Demand on storing and analyzing large volumes of

data
– Demand on high throughput for transaction

processing

 Prices of microprocessors, memory and disks have
dropped sharply

• Relational databases are ideally suited to
parallelization.

Relation database parallelization

• Relations can be partitioned on multiple disks.

– Horizontal partitioning : tuples of a relation are
divided among many disks.

– Partitioning techniques.

• Operations can be executed in parallel

– Pipelined parallelism

Interconnection Networks

Architectures
• shared-memory:

– share direct access to a common global.

• shared-disks

– Each processor has direct access to all disks.

• shared-nothing:

– The Teradata, Tandem, Gamma

Architectures

Partitioning a Relation across Disks

• Principles
– It is better to assign a small relation to a single disk.

– Large relations are preferably partitioned across all
the available disks
• m disk blocks and n disks

• should be allocated min(m,n) disks

• Techniques
– Round-robin

– Hash partitioning

– Range partitioning

Partitioning Techniques

Round-robin:

Send the ith tuple inserted in the relation to disk i mod n.

Hash partitioning:

– Choose one or more attributes as the partitioning
attributes.

– Choose hash function h with range 0…n - 1

– Let i denote result of hash function h applied to
the partitioning attribute value of a tuple. Send
tuple to disk i.

Partitioning Techniques

• Range partitioning:
– Choose an attribute as the partitioning attribute.

– A partitioning vector [vo, v1, ..., vn-2] is chosen.

– Let v be the partitioning attribute value of a tuple.
Tuples such that vi vi+1 go to disk i+ 1. Tuples with v <
v0 go to disk 0 and tuples with v vn-2 go to the last
disk.

Comparison of Partitioning Techniques

• A. Sequential scan

• B. Point queries.

E.g. employee-name=“Campbell”.

• C. Range queries.

E.g. 10000<salary<20000

Round-R

Hash

Range C

B

A

Parallelism Hierarchy

• Interquery

– Queries/transactions execute in parallel with one
another

• Locking and logging must be coordinated by passing
messages between processors.

• Cache-coherency has to be maintained

• Intraquery

– Execution of a single query in parallel on multiple
processors

Parallelism Hierarchy

• Two complementary forms of intraquery
parallelism:

– Intraoperation Parallelism – parallelize the
execution of each individual operation in the
query.

– Interoperation Parallelism – execute the different
operations in a query expression in parallel.

Parallel Sort

• Range-Partitioning Sort

– Redistribution using a range-partition strategy

– Each processor sorts its partition locally

• Parallel External Merge-Sort

– Each processor Pi locally sorts the data on disk Di.

– The sorted runs on each processor are then
merged.

Parallel External Merge-Sort

Parallel Join

• Partitioned Join

– Use the same partitioning function on both
relations

• Range partitioning on the join attributes

• Hash partitioning on the join attributes

– Equi-joins and natural joins

Partitioned Join

Partitioned Parallel Hash-Join

• Simple Hash-Join

– Route tuples to their appropriate joining site.

– The smaller joining relation staged in an in-
memory hash(which is formed by hashing on the
join attribute of each tuple).

– Tuples of the larger joining relations probe the
hash table for matches.

• Other optimization: Hybrid Hash-Join

Parallel Join

• Fragment-and-Replicate Join
– Partitioning not possible for some join conditions

• E.g., non-equijoin conditions, such as r.A > s.B.

– fragment and replicate technique

Fragment-and-Replicate Join

Interoperator Parallelism

• Pipelined Parallelism

– The output tuples of one operation are consumed
by a second operation.

– No need to write any of the intermediate results
to disk.

Pipelined parallelism

– Consider a join of four relations

r1 ⋈ r2 ⋈ r3 ⋈ r4

• Let P1 be assigned the computation of temp1 = r1

⋈ r2

• Let P2 be assigned the computation of

temp2 = temp1 ⋈ r3

• And P3 be assigned the computation of temp2 ⋈
r4

Measuring DB Performance

• Throughput

– The number of tasks, or the size of task, that can
be completed in a given time interval

• Response Time

– The amount of time it takes to complete a single
task from the time it is submitted

• Goal: improve both through parallelization

Absolute vs. Relativistic

• Absolute

– Q: Does system meet my requirements?

– Q: How does system compare with system Y?

• Relativistic

– As some resource is varied, determine how system
scales and how speed is affected

– Q: Will increased resources let me process larger
datasets?

– Q: Can I speed up response time by adding resources?

Scaleup

• Baseline: Task Q runs
on MS in TS seconds

• Task QN runs on ML in
TL seconds

• QN, ML are N times
larger than Q, MS,
respectively

• Scaleup = TS/TL

– Linear: TS = TL

– Sublinear: TL > TS

linear
scaleup

sublinear
scaleup

problem size

T S/
T L

Speedup

• Task Q runs on MS and
responds in time TS

• Same task Q runs on
ML and responds in
time TL

– Goal: TL should be
time: TS * (S/L)

• Speedup = TS/TL

linear
speedup

sublinear
speedup

resources

Sp
e

ed

Performance Factors

• Interference
– Parallel processes compete for shared resources

(e.g., system bus, network, or locks)

• Start-up costs
– Associated with initiating a single process

– Start-up time may overshadow processing time

• Skew
– Difficult to subdivide tasks in to equal-sized parts

– Most-skewed subtask governs response time

Gamma Overview

• First operational prototype 1985, U. of
Wisconsin

• Shared-nothing architecture

– Interconnected by communications network

– Promotes commodity-based hardware, lots of
processors

• Hash-based parallel algorithms to disburse
load

Gamma Hardware

• Version 1.0
– (18) VAX 11/750 machines, with 2MB RAM

– 8 machines with 333 MB HD; balance is diskless

– 80mbit/s token ring, 4mbit/s at each CPU

• Version 2.0
– 32x Intel 386 iPSC/2 hypercube CPUs, with 8MB

RAM

– 330 MB HDD per CPU

– 8 x 22.4Mbps/s serial hypercube channels

Gamma Storage Engine

• Horizontally Partitioned

– Round robin, hashed, or range partitioned

– For performance analysis:

• Hashed for source relations

• Round-robin for destination relations

• Clustered and non-clustered indexes offered
within each partition

– Clustered index allowed on non-partition attribute

Recovery: Chained Declustering

• Assume N nodes, and N fragments of R, RN

• Backup copy stored at node: (i+1) mod N

• On failure, nodes assumes 1/(N-1) of the load

• Multiple failures permitted as long as no two
adjacent nodes fail together

X

Gamma Architecture
One per
database

One per active
user

One per active
query

>=1 per active
tree node

Gamma Operator & Split Table

Operators Include:
SCAN, SELECT, JOIN, STORE, UPDATE, etc

Example Query

Step 1: Query Parsed,
Optimized, Compiled

Step 3: A.SELECT and
B.SCAN processes started

on Nodes 3,4

1 2 3 4

A,B 3 A,B 3 A,B 4 A,B 4

Step 6: Partitioned Hash
Join using Nodes 1,2

Step 5: Split Table
Partitions A,B to Nodes

1,2

C.1 C.1 C.2 C.2

Step 4: Scheduler start
JOIN processes on Nodes

1,2

Step 8: Scheduler
completes, Query

Manager returns result

Step 7: JOIN results
round-robin to Nodes 3,4

Step 2: Scheduler Process
Assigned by Query

Manager

Nonindexed Selections (seconds)

0

20

40

60

80

100

120

140

160

10,000 tuples
100,000 tuples

1,000,000 tuples

Gamma 1%

Teradata 1%

Gamma 10%

Teradata 10%

Gamma Loses 1%,
Wins 10%

Non-clustered Indexed Selections
(seconds)

0

20

40

60

80

100

120

140

10,000 tuples
100,000 tuples

1,000,000 tuples

Gamma 1%

Teradata 1%

Gamma’s B+ Tree
outperforms Teradata’s

unordered indexes

Selection Speedup
Nonindexed Selection Indexed Selection

I/O Bound

Network
Bound

Overhead

Linear!

Gamma Join Performance

• Relations
– A – 100,000 tuples
– Bprime – 10,000 tuples
– A ⋈ Bprime – 10,000 tuples

• Join Types
– Local

• join occurs only on disk nodes

– Remote
• join occurs only on disk-less nodes

– Allnodes
• join occurs on both disk and disk-less nodes

– Scans always run on respective disk node

Join A,Bprime Speedup
Join Attr = Partitioning Attr Join Attr != Partitioning Attr

Join A,Bprime Response Time
Join Attr = Partitioning Attr Join Attr != Partitioning Attr

Remote WinsLocal Wins

Gamma Join Overflow Performance

• Simple Hash Join w/ Join
Attr. = Part. Attr

• Memory was
incrementally reduced

• Performance crossover

• Why? Overflows handled
by recursive joins

– With new hash function!

– New hash equiv. of:

Join Attr. != Part. Attr

Gamma (V2) Scaleup – Join A,Bprime

• Intel Hypercube

• Ranges

– CPUs: [5, 30]

– “A” relation: [1M, 6M]

– “Bprime” relation:
[100k, 600k]

• Factors

– Scheduler on single CPU

– Diminished short-circuiting

– Communications network

25 CPUs?

XPRS Overview

• Proposed extension to POSTGRES
– 2-D file allocation, and RAID

– Parallel queries, fast path, partial indexes

– Special purpose concurrency

– Parallel query plans

• Architecture
– Shared-memory (faster than network)

– General-purpose OS

– Large Sun machine or a SEQENT Symmetry

2-D File System

• A file is defined by:
– Starting disk

– Width, in disks

– Height, in tracks

– Starting track on each disk

• Larger Widths
– Increase throughput

– Minimize “hot spots”

• Each “Logical Disk” is a
group of physical disks,
protected by RAID5

“Logical Disk”

Track 1 2 3 4 5 6 7 8

1
F F F E E

2
A A A C E E

3
A A A B C C C

4
A A A B C C C

5
B C C C

6
B C C

7
B

8
D D D D D D

Some disks smaller
than others

Track starts may be
staggered

Track starts may be
staggered

Track starts may be
staggered

Changes to POSTQUEL

• Parallel keyword alerts DBMS to statements that can
be executed in parallel (inter-query parallelism)
– RETRIEVE… PARALLEL RETRIEVE… PARALLEL RETRIEVE…

• Fast Path
– Allow users to define stored procedures, which run pre-

compiled plans with given arguments
– Bypass: Type checking, parsing, and query optimization

• Partial Indexes
– E.g.: INDEX on EMP(salary) WHERE age < 20
– Reduces index size, increases performance

• Range-partitioned Relations
– E.g.: EMP where age < 20 TO file1
– E.g.: EMP where age >= 20 TO file2

Special Purpose Concurrency

• Exploit transactions that failure commute

• E.g.: Given two bank withdrawals

– Both will succeed if there are sufficient funds

– The failure of one has no impact on the other

• Idea: Mark transaction in class “C1” or “C2”

– Allow C1 transactions to run concurrently with
each other, but not with C2 transactions

– E.g.: Withdrawal as C1, Transfer as C2

Parallel Query Planner

• Find BIG = min(RAM_Needed, Total_RAM)

• Find optimal sequential plan for memory
intervals:

– [BIG, BIG/2], [BIG/2, BIG/4], …, [BIG/n, 0]

• Explore all possible parallel plans of each
sequential plan

– With a sprinkle of heuristics to limit plan space

• Use optimal parallel plan

Conclusions

• Parallel DBs important to meet future
demands

• Historical context important

• Proved many can be made to perform the
work of one, only better

• Horizontal partitioning effective

• Speedup and scaleup is possible, at least for
sufficiently “small” node counts

Questions?

