
Feasibility of Consistent,Feasibility of Consistent,Feasibility of Consistent, Feasibility of Consistent,
Available, PartitionAvailable, Partition--Tolerant Tolerant
Web ServicesWeb Services

Meng Wang Jingxin Feng

Feb 14, 2011Feb 14, 2011

OverviewOverviewOverviewOverview

B k dBackground

Formal Model

Analysis in Asynchronous Networks

Analysis in Partially SynchronousAnalysis in Partially Synchronous
Networks

Conclusion

Other opinionsOther opinions

BackgroundBackgroundBackgroundBackground

Wh t d t f bWhat do you expect for web
services?

Background(cont)Background(cont)Background(cont.)Background(cont.)

Conjecture by Eric Brewer, at PODC 2000 :

It i i ibl f r b r i t r idIt is impossible for a web service to provide
following three guarantees:

C i tConsistency

Availability

Partition-tolerance

Background(cont)Background(cont)Background(cont.)Background(cont.)

C i t ll d h ldConsistency– all nodes should see
the same data at the same time.

Availability – node failures do
not prevent survivors fromnot prevent survivors from
continuing to operate

P titi t l th tPartition-tolerance – the system
continues to operate despite
arbitrary message loss

Background(cont)Background(cont)Background(cont.)Background(cont.)

CAP ThCAP Theorem
◦ Conjecture since 2000
◦ Established as theorem in 2002: Lynch,
Nancy, and Seth Gilbert. Brewer’s
conjecture and the feasibility ofconjecture and the feasibility of
consistent, available, partition-tolerant
web services. ACM SIGACT News, v.33(2), , (),
2002, p. 51-59.

Formal ModelFormal ModelFormal ModelFormal Model

At i / Li i bl D t Obj tAtomic/ Linearizable Data Objects

◦ Something like ACID, but not quite…
◦ Under this guarantee, there must
exist a total order on all operations
such that each operation looks as if
it were completed at a single instant.

Formal Model(Cont)Formal Model(Cont)Formal Model(Cont.)Formal Model(Cont.)

Consistent

Consistent

Need some work…

Formal Model(Cont)Formal Model(Cont)Formal Model(Cont.)Formal Model(Cont.)

A il bl D t Obj tAvailable Data Objects

◦ Every request received by a non-
failing node in the system must
result in a response.

◦ That is, any algorithm used by
service must eventually terminate.

Formal Model(Cont)Formal Model(Cont)Formal Model(Cont.)Formal Model(Cont.)

Not highly
available

Not highly
available

Highly available

Formal Model(Cont)Formal Model(Cont)Formal Model(Cont.)Formal Model(Cont.)

P titi T lPartition Tolerance
◦ Partition: all messages sent form one node
i t t d i thin one component to nodes in another
component are lost.

◦ Partition Tolerance : No set of failures◦ Partition Tolerance : No set of failures
less than total network failure is allowed
to cause the system to respond incorrectlyy p y

Formal Model(Cont)Formal Model(Cont)Formal Model(Cont.)Formal Model(Cont.)

Partition TolerancePartition Tolerance

◦ The atomicity requirement implies that every responseThe atomicity requirement implies that every response
will be atomic, even though arbitrary messages sent as
part of the algorithm might not be delivered

◦ The availability requirement therefore implies that
every node receiving request from a client must respond,
even through arbitrary messages that are sent may be
lost

◦ Can we?◦ Can we?

Asynchronous NetworkAsynchronous NetworkAsynchronous NetworkAsynchronous Network

ThTheorem
It is impossible in the asynchronous network

d l t i l t R/W d t bj t th tmodel to implement a R/W data object that
guarantees the following properties:

◦ Availability◦ Availability
◦ Atomic consistency
In ll f ir uti n (in ludin th inIn all fair executions(including those in
which messages are lost.)

Asynchronous NetworkAsynchronous NetworkAsynchronous NetworkAsynchronous Network

Th i l kThere is no clock

Nodes must make decisions based
only on messages received and
local computation.local computation.

Asynchronous NetworkAsynchronous NetworkAsynchronous NetworkAsynchronous Network

D t d lData model

The diagram above shows two nodes,N1 and N2.
They both share a piece of data V ,which has

l l da value V0. A writes new values of V and B
reads values of V.

Asynchronous NetworkAsynchronous NetworkAsynchronous NetworkAsynchronous Network

In a sunny dayIn a sunny day

(1) First A writes a new value of V, which
we'll call V1. (2) Then a message (M) is

d h h d hpassed from N1 to N2 which updates the copy of
V there. (3) Now any read by B of V will
return V1.return V1.

Asynchronous NetworkAsynchronous NetworkAsynchronous NetworkAsynchronous Network

However…However…

If the network partitions (that is
messages from N to N are not delivered)messages from N1 to N2 are not delivered)
then N2 contains an inconsistent value of
V when step (3) occurs.

Asynchronous NetworkAsynchronous NetworkAsynchronous NetworkAsynchronous Network

C llCorollary
It is impossible in the asynchronous network

d l t i l t R/W d t bj t th tmodel to implement a R/W data object that
guarantees the following properties:

◦ Availability◦ Availability
◦ Atomic consistency in fair executions in no
messages are lostmessages are lost.

Solution in Asynchronous NetworkSolution in Asynchronous NetworkSolution in Asynchronous Network Solution in Asynchronous Network

D titi t lDrop partition tolerance
If you want to run without partitions, you
h t t th h i O t dhave to stop them happening. One way to do
this is to put everything (related to that
transaction) on one machinetransaction) on one machine.

◦ Example: Only one node maintains the value
of an object. No replicas.j p

Solution in Asynchronous NetworkSolution in Asynchronous NetworkSolution in Asynchronous Network Solution in Asynchronous Network

D il bilitDrop availability

◦ Trivial systems: ignores all the
requests.

◦ Or just wait on encountering a
partition event until data is
consistent.

Solution in Asynchronous NetworkSolution in Asynchronous NetworkSolution in Asynchronous Network Solution in Asynchronous Network

D C i tDrop Consistency

◦ Trivial systems: just return what you
have now…

◦ Or “Eventually Consistent”

Partially Synchronous Network Partially Synchronous Network
ModelModel

In the real world, most networks are not purely , p y
asynchronous

In partially synchronous model - every node hasIn partially synchronous model - every node has
a clock and all clocks increase(roughly) at the
same rate

Assume that every message is either delivered
within a given, known time Tmsg or it is lost

Also, every node processes a received message
within a given, known time Tlocal and local g ,
processing time is 0.

Partially Synchronous Networks : Partially Synchronous Networks :
Impossibility ResultImpossibility Result

Th 2 It i i ibl i thTheorem 2: It is impossible in the
partially synchronous network
model to implement a read/write
data object that guarantees the g
following properties:

AvailabilityAvailability

Atomic consistency

in all executions (even those in
which messages are lost)which messages are lost)

Proof Partially Synchronous Proof Partially Synchronous
NetworksNetworks

Solutions in the Partially Solutions in the Partially
Synchronous ModelSynchronous Model

Weaker Consistency ConditionsWeaker Consistency Conditions

Weaker Consistency ConditionsWeaker Consistency Conditions
write followed by readwrite followed by read

Weaker Consistency ConditionsWeaker Consistency Conditions
write followed by writewrite followed by write

Weaker Consistency ConditionsWeaker Consistency Conditions
read followed by readread followed by read

Weaker Consistency ConditionsWeaker Consistency Conditions
read followed by writeread followed by write

ConclusionConclusionConclusionConclusion

It is impossible to reliablyIt is impossible to reliably
provide atomic, consistent data
when there are partitions in thewhen there are partitions in the
network.

I i f ibl hIt is feasible, however, to
achieve any two of the three
properties.

In partially synchronous modes, it
is possible to achieve a practical
compromise between C and A.p

Other opinionsOther opinionsOther opinionsOther opinions

In the NoSQL community this theoremIn the NoSQL community, this theorem
has been used as the justification
f i i i tfor giving up consistency.

Eventually consistency, i.e., when
network connectivity has been re-
established and enough subsequent g q
time has elapsed for replica
cleanup. The justification forcleanup. The justification for
giving up C is so that the A and P
can be preservedcan be preserved.

Other opinionsOther opinionsOther opinionsOther opinions

Michael StonebrakerMichael Stonebraker

◦ The CAP Theorem analysis is suspect,
and that recovery from errors has
more dimensions to consider.

Errors in databaseErrors in databaseErrors in databaseErrors in database

1 A li ti1.Application errors.

◦ The application performed one or more
incorrect updates.

◦ Generally, this is not discovered for
minutes to hours thereafter.

◦ The database must be backed up to a p
point before the offending
transaction(s), and subsequent (), q
activity redone.

Errors in databaseErrors in databaseErrors in databaseErrors in database

2 R t bl DBMS2.Repeatable DBMS errors

◦ The DBMS crashed at a processing
node.

◦ Executing the same transaction on a
processing node with a replica will
cause the backup to crash.

Errors in databaseErrors in databaseErrors in databaseErrors in database

3 U t bl DBMS3. Unrepeatable DBMS errors

◦ The database crashed, but a replica
is likely to be ok.

Errors in databaseErrors in databaseErrors in databaseErrors in database

4 O ti t4. Operating system errors.

◦ The OS crashed at a node, generating
the “blue screen of death.”

Errors in databaseErrors in databaseErrors in databaseErrors in database

5 A h d f il i l l5. A hardware failure in a local
cluster.

◦ These include memory failures, disk
failures, etc. Generally, these cause
a “panic stop” by the OS or the
DBMS.

◦ However, sometimes these failures
appear as (3)Unrepeatable DBMS pp () p
errors.

Errors in databaseErrors in databaseErrors in databaseErrors in database

6 A t k titi i l l6. A network partition in a local
cluster

◦ The LAN failed and the nodes can no
longer all communicate with each
other.

Errors in databaseErrors in databaseErrors in databaseErrors in database

7 A di t7. A disaster.

◦ The local cluster is wiped out by a
flood, earthquake, etc. The cluster
no longer exists.

Errors in databaseErrors in databaseErrors in databaseErrors in database

8 A t k f il i th WAN8. A network failure in the WAN
connecting clusters together.

◦ The WAN failed and clusters can no
longer all communicate with each
other.

Errors in databaseErrors in databaseErrors in databaseErrors in database

Fi t t th t dFirst, note that app error and
repeatable DBMS error will cause
problems with any high
availability scheme.

In these two scenarios, there is
no way to keep going Alsono way to keep going. Also,
replica consistency is

i l h DBMSmeaningless; the current DBMS
state is simply wrong.

Errors in databaseErrors in databaseErrors in databaseErrors in database

In a disaster data will only beIn a disaster, data will only be
recoverable if a local transaction
is only committed after the y
assurance that the transaction has
been received by another WAN-

t d l tconnected cluster.
Few application builders are willing
to accept this kind of latencyto accept this kind of latency.
The performance penalty for avoiding
it is too high so designers chooseit is too high, so designers choose
to suffer data loss in this
situation.

Errors in databaseErrors in databaseErrors in databaseErrors in database

A h 1 2 d 7As such, errors 1, 2, and 7 are
examples of cases for which the
CAP theorem simply does not apply.
Any real system must be prepared
to deal with recovery in these
cases The CAP theorem cannot becases. The CAP theorem cannot be
appealed to for guidance.

Errors in databaseErrors in databaseErrors in databaseErrors in database

A partition in WAN is quite rearA partition in WAN is quite rear

Moreover, the most likely WAN
f il i llfailure is to separate a small
portion of the network from the

j imajority.

It seems unwise to give up
consistency all the time in
exchange for availability of a
small subset of the nodes in a
fairly rare scenario.y

Errors in databaseErrors in databaseErrors in databaseErrors in database
Lastly, consider a slowdown either in theLastly, consider a slowdown either in the
OS, the DBMS, or the network manager.
Why? Skew in load, buffer pool issues…
How to deal with? Fail the offending
component?
No! You push load to others in a highNo! You push load to others in a high
workload situation.
Solution:
◦ one should write software that can deal with
load spikes without failing

◦ good monitoring software will help identifygoo o o g o e e p e y
such problems early

◦ self-reconfiguring software that can absorb
additional resources quicklyadditional resources quickly

Other opinionsOther opinionsOther opinionsOther opinions

I h ld t thIn summary, one should not throw
out the C so quickly, since there
are real error scenarios where CAP
does not apply and it seems like a
bad tradeoff in many of the other
situationssituations.

