© Feasibility of Consistent,
Available, Partition—-Tolerant
Web Services

Meng Wang Jingxin Feng
Feb 14, 2011

- o~ -

N7~
uvelv

1ew

e Background
e Formal Model
e Analysis in Asynchronous Networks

e Analysis in Partially Synchronous
Networks

e Conclusion
e Other opinions

P T

o <o A
kground

o
ay)
(‘>

e What do you expect for web
services?

This wiki has a problem

Sorryd Thin vite in sxperisariag bechaical diflicaltie.
Try wisting 4 fe rimates wad reboadkeg

w o e Caasst conracy the Exubals seec o mefioag same secver Unkmasa amed |10 02 380
LT

Voa oy e earchiang v Joogle m the meamane

Sty cha ibeemdnies of cur contme oy b ook of date

Gﬂl Ek- ;"-'I'ﬁ..'pﬂi.l (SR LI RTE ‘:-‘_-P_F

.._l....
LR

Conjecture by Eric Brewer, at PODC 2000 :

It is impossible for a web service to provide
following three guarantees:

e Consistency
e Availability

e Partition—tolerance

Q.
@)
N
Ocz
C>
,__>
@N
/'\
C>
,_.>
N—

e Consistency - all nodes should see
the same data at the same time.

e Availability - node failures do
not prevent survivors from
continuing to operate

e Partition—tolerance - the system
continues to operate despite
arbitrary message loss

Q.
Ce
o~
OC
C}
,__>
@
/'\
C:
N—

e CAP Theorem

o Conjecture since 2000

o Established as theorem in 2002: Lynch,
Nancy, and Seth Gilbert. Brewer’ s
conjecture and the feasibility of

consistent, available, partition—tolerant
web services. ACM SIGACT News, v.33(2),
2002, p. 51-H9.

Formal Model

O
e Atomic/ Linearizable Data Objects

o Something like ACID, but not quite--

o Under this guarantee, there must
exist a total order on all operations
such that each operation looks as if
1t were completed at a single instant.

DB

Users N-Z

Users A-Z7

Consistent

Consistent

Need some worke:-

-~

. 11 (N~ \
mMmal MoOodel \UOTI .}

e Available Data Objects

o Every request received by a non—
failing node in the system must
result in a response.

o That is, any algorithm used by
service must eventually terminate.

Not highly
available
DB
Not highly
Users N-Z available

Highly available

Users A-7

el M~ A~T1 ("~ \
lHlal MOdUJE 1L \U ont.)

-

For

e Partition Tolerance

o Partition: all messages sent form one node
in one component to nodes in another
component are lost.

o Partition Tolerance : No set of failures
less than total network failure i1s allowed
to cause the system to respond incorrectly

a1 M A T (O

rormal nmModel \LoIlt.)
e Partition Tolerance

i a 2

DB

Users A-Z

DB

Users A-Z

r
-

.

o The atomicity req
e

will be atomic,

ul
v

4
ment implies that every response
though arbitrary messages sent as

part of the algorlthm might not be delivered

o The availability requirement therefore implies that
every node receiving request from a client must respond,
even through arbitrary messages that are sent may be

lost
o Can we?

<71~~~ o~11 0~ N~ 4
YIICIIT OIIOUS INCLU

A -
AS
e Theorem

[t 1s impossible in the asynchronous network
model to implement a R/W data object that
guarantees the following properties:

o Availability

> Atomic consistency

In all fair executions(including those in
which messages are lost.)

- | R NT

A ~<rim ~ A
ASYIICIIT OIIOUS Net

e There 1s no clock

e Nodes must make decisions based
only on messages received and
local computation.

The diagram above shows two nodes,N; and N,.
They both share a piece of data V , which has
a value V,. A writes new values of V and B

reads values of V.

M

1

S
B ©

M,

A B

M2
—

(1) First A writes a new value of V, which
we 11 call V,. (2) Then a message (M) is
passed from N, to N, which updates the copy of

V there. (3) Now any read by B of V will
return V,.

1 2 3

e However:---

M4
S

Mz

e
B &

1 2 3

o o

If the network partitions (that is
messages from N, to N, are not delivered)
then N, contains an inconsistent value of
V when step (3) occurs.

AN ~<xriv~har i ~t10 N A4
ASYILHCIITOI10U INC U

e Corollary

[t 1s impossible in the asynchronous network
model to implement a R/W data object that
guarantees the following properties:

o Availability

> Atomic consistency in fair executions in no

moaccaocnce avro lnct
IIIUQQ(/LSL/LD Ll o 1 UV U

Delayed or lost?

e Drop partition tolerance

If you want to run without partitions, you
have to stop them happening. One way to do
this is to put everything (related to that
transaction) on one machine.

o Example: Only one node maintains the value
of an object. No replicas.

e Drop availability
o Trivial systems: ignores all the
requests.

o Or just walt on encountering a
partition event until data is
consistent.

e Drop Consistency

o Trivial systems: just return what you
have now--:

o Or “Eventually Consistent”

Partially Synchronous Network
Model

o In the real world, most networks are not purely
asynchronous

o In partially synchronous model — every node has
a clock and all clocks increase(roughly) at the
same rate

e Assume that every message i1s either delivered
within a given, known time Tmsg or it is lost

e Also, every node processes a received message
within a given, known time Tlocal and local
processing time 1s O.

Partially Synchronous Networks
Impossibility Result

e Theorem 2: It is impossible in the
partially synchronous network
model to implement a read/write
data object that guarantees the
following properties:

° Availability
® Atomic consistency

in all executions (even those in
which messages are lost)

Proof Partially Synchronous

Networks

Solutions in the Partially
Synchronous Model

8
object Store

«
- v

F =
LY
=
n--—-n“--—-,‘r-ﬂ-m-n------n--n-ni
- b
Fl ~

< (2% msg+t local)
read

) @ @ () wite

—_— pe——
- — message |ost ? .
. ack

bhest known value on

local node G1 G2

atomic consistency may be violated !

Weaker Consistency Conditions

012345

i i

serialize wnte requests

O

L]

object Store

;' broadcast |atest s2q num h\ B

(2"t msg+1i local)

read ' @ —

rEtum value

message

false
highest seque nce

number ever -4

returned from C

O

(2*t msg +1 local)

true

retransmit

Weaker Consistency Conditions
write followed by read

C wrte |«——»|read

012345 (= @
o | [[] |-
==rialize wie req'.nrea‘s DbjECtStﬂrE

£ broadcast |atest s2q num ‘.\
B o A w
(2"t mag + 1t local)

read @ @ write
(2*t msg+1 local) EE K
_—

reifum vaJ‘ue

messadge

false
true

highest seque nce
number ever -
returned from C

Weaker Consistency Conditions
write followed by write

c write |«— | wnte

o e - @
| EEEEL,
serialize wite requests A ubjectStan

" broadcast |atest seq num s B
© (2" _msg+t local)

wnfe @ — @) s
.q_
{2%f_mseg +{ local)

ack

ack message lost ?

false

true true

: retransmit
retransmit

Weaker Consistency Conditions
read followed by read

. read |«—| read
01523 4 & () @
W]
serialize wite reque.sa‘; g UbjECtStDrE

-~ broadcag |atest seq num B r
['E*f msg *{ local)

read e read
@ O
(2"t msg +1 local)

retum val'ue 2
message [ost 7l message [ost ?
false
highest seque nce true frue highest sequence
number ever -4 = number ever

returned from C returned from C

Weaker Consistency Conditions
read followed by write

C read |«——»| wnte

012345 @
uDllllm

seriglize wrile requesis

ubject Store
,." broadcast |atest seq num ‘; B

4 (2*t msg +1 local)

read @ @ wrile
(2* msg +t local) EEH
_—

;Etum value

messagd

false

highest seque nce true

number ever -
returned from C

o~

M A
COIIC 1

UuS10rI]
e [t is impossible to reliably
provide atomic, consistent data

when there are partitions in the
network.

e [t is feasible, however, to
achieve any two of the three
properties.

e In partially synchronous modes, it
1s possible to achieve a practical
compromise between C and A.

Visual Guide to NoSQL Systems

Document-Criented

4 1+ ~ < e S
OLHGI OP1II1TOIlS
e In the NoSQL community, this theorem

has been used as the justification
for giving up consistency.

e Eventually consistency, 1.e., when
network connectivity has been re-—
established and enough subsequent
time has elapsed for replica
cleanup. The justification for
giving up C 1s so that the A and P
can be preserved.

e Michael Stonebraker

o The CAP Theorem analysis 1s suspect,
and that recovery from errors has
more dimensions to consider.

Errors in database

e 1. Application errors.

o The application performed one or more
incorrect updates.

o Generally, this is not discovered for
minutes to hours thereafter.

o The database must be backed up to a
point before the offending
transaction(s), and subsequent
activity redone.

o~ — - o~

| DN
ETr1roOors 11

. o o~ o~ o~

e 2. Repeatable DBMS errors

o The DBMS crashed at a processing
node.

o Executing the same transaction on a
processing node with a replica will
cause the backup to crash.

N o o~ o~ 1 1~ <~
EJ:'JZ'()I'S 111 databDas>Sc
e 3. Unrepeatable DBMS errors

o The database crashed, but a replica
is likely to be ok.

N e o~~~ o -+ 1~
EJZ'JZ'UI'S 111 daltabasScE
e 4. Operating system errors.

o The OS crashed at a node, generating
the “blue screen of death.”

—~ —~ o~ -~ 1 -J— A1A o~~~

Errors 1n database

e h. A hardware failure in a local
cluster.

o These include memory failures, disk
failures, etc. Generally, these cause

a “panic stop” by the OS or the
DBMS.

o However, sometimes these failures
appear as (3)Unrepeatable DBMS
errors.

N e o~~~ o -+ 1~

EJZ'JZ'()I'S 111 databDas>Sc

e 6. A network partition in a local
cluster

o The LAN failed and the nodes can no

longer all communicate with each
other.

B
i

B
i

n — - o~ PN 1 -J—A-IAANA

Errors 1n database

e (. A disaster.

o The local cluster is wiped out by a
flood, earthquake, etc. The cluster
no longer exists.

o~ — - o~

| DN
ETr1roOors 11

e 8. A network failure in the WAN
connecting clusters together.

o The WAN failed and clusters can no
longer all communicate with each

other.
fjgx
IJ_:I_]L;-.H
“x:l_:”'ﬂ %
!,_ LAN IJ_._I WAN IJ:’LIE\J\!"
H‘I&If ™ .!._""r
—| LAN |_|

g5 i

N e o~~~ o -+ 1~

EJZ'JZ'()I'S 111 databDas>Sc

e First, note that app error and
repeatable DBMS error will cause

problems with any high
availability scheme.

e In these two scenarios, there is
no way to keep going. Also,
replica consistency 1is
meaningless; the current DBMS
state 1s simply wrong.

T o o~ o o~ DA [ER PR

LIrrors 11

e In a disaster, data will only be
recoverable if a local transaction
1s only committed after the
assurance that the transaction has
been received by another WAN-
connected cluster.

e Few application builders are willing
to accept this kind of latency.

e The performance penalty for avoiding
1t 1s too high, so designers choose
to suffer data loss in this
situation.

Errors in database

e As such, errors 1, 2, and 7 are
examples of cases for which the
CAP theorem simply does not apply.
Any real system must be prepared
to deal with recovery in these
cases. The CAP theorem cannot be
appealed to for guidance.

—~ —~ o~ -~ 1 -J— A1A o~~~

Errors 1n database

e A partition in WAN 1s quite rear

e Moreover, the most likely WAN
failure 1is to separate a small
portion of the network from the
majority.

e [t seems unwise to give up
consistency all the time in
exchange for availability of a
small subset of the nodes in a
fairly rare scenario.

e ~u —~ -~ o 1A P — P

Errors in database

e LLastly, consider a slowdown either in the
0S, the DBMS, or the network manager.

e Why? Skew in load, buffer pool issues-:-:

e How to deal with? Fail the offending
component?

e No! You push load to others in a high
workload situation.
e Solution:

o one should write software that can deal with
load spikes without failing

o good monitoring software will help identify
such problems early

o self-reconfiguring software that can absorb
additional resources quickly

4 1. = e e

OLHGI OP1II1TOIlS

e In summary, one should not throw
out the C so quickly, since there
are real error scenarios where CAP
does not apply and it seems like a

bad tradeoff in many of the other
situations.

