
Dynamo & Bigtable

CSCI 2270, Spring 2011
Irina Calciu
Zikai Wang

Dynamo
Amazon's highly available key-value store

Amazon's E-commerce Platform

Hundreds of services (recommendations, order fulfillment,
fraud detection, etc.)

Millions of customers at peak time

Tens of thousands of servers in geographically distributed
data centers

Reliability (always-on experience)

Fault Tolerance

Scalability, Elasticity

Why not RDBMS?

Most �Amazon services only needs read/write by primary
key

RDBMS's complex querying and management
functionalities are unnecessary and expensive

Available replication technologies are limited and typically
choose consistency over availability

Not easy to scale out databases or use smart partitioning
schemes for load balancing

System Assumptions & Requirements

Query model: no need for relational schema, simple
read/write operations based on primary key are enough

ACID Properties: Weak consistency (in exchange for high
availability), no isolation, only single key updates

Efficiency: function on commodity hardware infrastructure,
be able to meet stringent SLAs on latency and throughput

Other assumptions: non-hostile operation environment, no
security related requirements

Design considerations

Optimistic replication & eventually consistency

Always writable & resolve update conflicts during reads

Applications are responsible for conflict resolution

Incremental scalability

Symmetry

Decentralization

Heterogeneity

Architecture Highlights

Partitioning

Replication

Versioning

Membership

Failure Handling

Scaling

API / Operators

get(key) returns:
one object or a list of objects with conflicting versions
a context

put(key, context, object):
find correct locations
writes replicas to disk
context contains metadata about the object

Partitioning

variant of consistent hashing similar to Chord

each node gets keys between its predecessor and itself

accounts for heterogeneity of nodes using virtual nodes

the system scales incrementally

load balancing

Replication

Versioning

put operation can always be executed

eventual consistency

reconciled using vector clocks

if automatic reconciliation not possible, the system returns a
list of versions to the client

Versioning

Executing a read / write

coordinator node = first node to store the key
put operation - written to W nodes (w/ the coord. vector
clock)
get operation - coordinator reconciles R versions or sends
conflicting versions to the client
if R + W > N (preference list size) - quorum like system
usually R + W < N to decrease latency

Hinted Handoff

the N nodes to which a request is sent are not always the
first N nodes in the preference list, if there are failures

instead a node can temporarily store a key for another node
and give it back when that nodes comes back up

Replica Synchronization

compute Merkle tree for each key range
periodically check that key ranges are consistent between
nodes

Membership

Ring join / leave propagated via gossip protocol
Logical partitions avoided using seed nodes
When a node joins the keys it becomes responsible for are
transferred to it by its peers

Summary

Durability vs. Performance

Durability vs. Performance

Conclusion

Combine different techniques to provide a single highly-
available system
An eventually-consistent system could be use in production
with demanding applications
Balancing performance, durability and consistency by tuning
parameters N, R, W

Bigtable
A distributed storage system for

structured data

Applications and Requirements

wide applicability for a variety of systems
scalability
high performance
high availability

Data Model
key / value pairs structure
added support for sparse semi-structured data
key: <row key, column key, timestamp>
value: uninterpreted array of bytes
example: Webtable

Data Model

multidimensional map
lexicographic order by row key
row access is atomic
row range dynamically partitioned (tablet)
can achieve good locality of data

e.g. webpages stored by reversed domain
static column families
variable columns
timestamps used to index different versions

API / Operators

create / delete table
create / delete column families
change metadata (cluster / table / column family)
single-row transactions
use cells as integer counts
execute client supplied scripts on the servers

Architecture at a Glance

 GFS & Chubby

GFS
Google's distributed file system
Scalable, fault-tolerant, with high aggregate performance
Store logs, tablets (SSTables)

Chubby
Distributed coordination service
Highly available, persistent
Data model after directory tree structure of file systems
Membership maintenance (the master & tablet servers)
Location of root tablet of METADATA table (bootstrap)
Schema information, access control lists

The Master

Detecting addition and expiration of tablet servers
Assign tablets to tablet servers
Balancing tablet-server load
Garbage collection of GFS files
Handling schema changes

 Performance bottleneck?

Tablet Servers

Manage a set of tablets
Handle users' read/write requests for those tablets
Split tablets that have grown too large

Tablet servers' in-memory structures
Two-level cache (scan & block)
Bloom filters
Memtables
SSTables (if requested)

Architecture at a Glance

Locate a Tablet: METADATA Table

METADATA table stores tablet locations of user tables
Row key of METADATA table encodes table ID + end row
Clients caches tablet locations

Assign a Tablet
For tablet servers:

Each tablet is assigned to one tablet server
Each tablet server is managing several tablets

For the master:
Keep track of live tablet servers with Chubby
Keep track of current assignment of tablets
Assign unassigned tablets to tablet servers considering
load balancing issues

Read/Write a Tablet(1)

Persistent state of a tablet includes a tablet log and SSTables
Updates are committed to tablet log that stores redo records
Memtable, a in-memory sorted buffer stores latest updates
SSTables stores older updates

Read/Write a Tablet(2)

Write operation
Write to commit log, commit it, write to memtable
Group commit

Read operation
Read on a merged view of memtable and SSTables

Compactions

Minor compaction
Write the current memtable into a new SSTable on GFS
Less memory usage, faster recovery

Merging compaction
Periodically merge a few SSTables and memtable into a
new SSTable
Simplify merged view for reads

Major compaction
 Rewrite all SSTables into exactly one SSTable
 Reclaim resources used by deleted data
 Deleted data disappears in a timely fashion

Optimizations(1)

 Locality groups
Group column families typically accessed together
Generate a separate SSTable for each locality group
Specify in-memory locality groups (METADATA:location)
More efficient reads

Compression
Control if SSTables for a locality group are compressed
Speed VS space, network transmission cost
Locality has influences over compression rate

Optimizations(2)

Two-level cache for read performance
Scan cache: caches accessed key-value pairs
Block cache: caches accessed SSTables blocks

Bloom filters
Created for SSTables in certain locality groups
Identify whether SSTable might contain data queried

Commit-log implementation
Single commit log per tablet servers
Co-mingle mutations for different tablets
Decrease number of log files
Complicate recovery process

Optimizations(3)

�Speeding up tablet recovery
Two minor compaction when moving tablet
between tablet servers
Reduce uncompacted state in commit log

Exploiting immutability
SSTables are immutable
No synchronization for reads
Writes generate new SSTables
Copy-on-write for memtables
Tablets are allowed to share SSTables

Evaluation

Number of operations per second per tablet server

Evaluation

Aggregate number of operations per second

Applications

Click Table
Summary Table

One table storing
raw imagery, served
from disk

User data
Row: userid
Each group can
add their own
user column

Lessons Learned

1. many types of failures, not just network partitions
2. add new features only if needed
3. improve the system by careful monitoring
4. keep the design simple

Conclusion

Bigtable is used in production code since April 2005
used extensively by several Google projects
"unusual interface"

compared to the traditional relational model
It has empirically shown its performance, availability and
elasticity

Dynamo vs. Bigtable

