
REmote DIctionary Server

Chris Keith
James Tavares

Overview
History
Users
Logical Data Model

Atomic Operators
Transactions

Programming Language APIs
System Architecture

Physical Data Structures
Data Persistence
Replication, Consistency, Availability

Benchmarks

History
Early 2009 - Salvatore Sanfilippo, an Italian developer,
started the Redis project
He was working on a real-time web analytics solution and
found that MySQL could not provide the necessary
performance.
June 2009 - Redis was deployed in production for the
LLOOGG real-time web analytics website
March 2010 - VMWare hired Sanfilippo to work full-time on
Redis (remains BSD licensed)
Subsequently, VMWare hired Pieter Noordhuis, a major
Redis contributor, to assist on the project.

http://lloogg.com/demo

Other Users

Logical Data Model

Data Model
Key

 Printable ASCII

Value
Primitives

Strings
Containers (of strings)

Hashes
Lists
Sets
Sorted Sets

Logical Data Model

Data Model
Key

 Printable ASCII

Value
Primitives

Strings
Containers (of strings)

Hashes
Lists
Sets
Sorted Sets

Logical Data Model

Data Model
Key

 Printable ASCII

Value
Primitives

Strings
Containers (of strings)

Hashes
Lists
Sets
Sorted Sets

Logical Data Model

Data Model
Key

 Printable ASCII

Value
Primitives

Strings
Containers (of strings)

Hashes
Lists
Sets
Sorted Sets

Logical Data Model

Data Model
Key

 Printable ASCII

Value
Primitives

Strings
Containers (of strings)

Hashes
Lists
Sets
Sorted Sets

Logical Data Model

Data Model
Key

 Printable ASCII

Value
Primitives

Strings
Containers (of strings)

Hashes
Lists
Sets
Sorted Sets

Shopping Cart Example
Relational Model
carts

cart_lines

UPDATE cart_lines
SET Qty = Qty + 2
WHERE Cart=1 AND Product=28

Cart Product Qty
1 28 1
1 372 2
2 15 1
2 160 5
2 201 7

CartID User
1 james
2 chris
3 james

Shopping Cart Example
Relational Model
carts

cart_lines

UPDATE cart_lines
SET Qty = Qty + 2
WHERE Cart=1 AND Product=28

Redis Model
set carts_james (1 3)
set carts_chris (2)
hash cart_1 {
 user : "james"
 product_28 : 1
 product_372: 2
}
hash cart_2 {
 user : "chris"
 product_15 : 1
 product_160: 5
 product_201: 7
}

HINCRBY cart_1 product_28 2

Cart Product Qty
1 28 1
1 372 2
2 15 1
2 160 5
2 201 7

CartID User
1 james
2 chris
3 james

Atomic Operators - KV Store
Strings - O(1)

GET key
SET key value
EXISTS key
DEL key

SETNX key value
Set if not exists

GETSET key value
Get old value, set new

Hashes - O(1)
�HGET key field
HSET key field value
HEXISTS key field

HDEL key field

Hashes - O(N)
HMGET key f1 [f2 ...]

Get fields of a hash

KKEYS key | HVALS key
All keys/values of hash

Atomic Operators - Sets
Sets - O(1)

SADD, SREM, SCARD
SPOP key

Return random
member of the set

Sets - O(N)
SDIFF key1 key2
SUNION key1 key2

Sets - O(C)
SINTER key1 key2

Atomic Operators - Sets
Sets - O(1)

SADD, SREM, SCARD
SPOP key

Return random
member of the set

Sets - O(N)
SDIFF key1 key2 ...
SUNION key1 key2 ...

Sets - O(C*M)
SINTER key1 key2 ...

Sorted Sets - O(1)
ZCARD key

Sorted Sets - O(log(N))
ZADD key score member
ZREM key member
ZRANK key member

Sorted Sets - O(log(N)+M))
ZRANGE key start stop
ZRANGEBYSCORE

 key min max

Transactions
All commands are serialized and executed sequentially
Either all commands or no commands are processed
Keys must be overtly specified in Redis transactions
Redis commands for transactions:

WATCH
MULTI
DISCARD
EXEC
UNWATCH

Programming Language APIs

ActionScript
C

C#
C++

Clojure
Common Lisp

Erlang
Go

Haskell
haXe

Io

Java
Lua
Objective-C
Perl
PHP
Python
Ruby
Scala
Smalltalk
Tcl

API Examples

System Architecture
Redis Instance

Main memory database
Single-threaded event loop (no locks!)

Virtual Memory
Evicts "values" rather than "pages"
Smarter than OS with complex data structures
May use threads

Sharding: application's job!

Data Persistence
Periodic Dump ("Background Save")

fork() with Copy-on-Write, write entire DB to disk
When?

After every X seconds and Y changes, or,
BGSAVE command

Append Only File
On every write, append change to log file
Flexible fsync() schedule:

Always, Every second, or, Never
Must compact with BGREWRITEAOF

Data Structure Internals
Key-Value Store ("hash table")

Incremental, auto-resize on powers of two
Collisions handled by chaining

Hash Collection
< 512 entries

"zipmap" -- O(N) lookups, O(mem_size) add/delete

> 512 entries
Hash Table

Data Structure Internals
Set Collection

< 512 integers: "intset" -- O(N) lookups
everything else: Hash Table

Sorted Set Collection -- O(log N) insets/deletes
Indexable Skip List: Scores+Key => Values
Hash Table: Key => Score

List Collection
< 512 entries: "ziplist"

O(mem_size) inserts/deletes
> 512 entries: Doubly Linked List

O(1) left/right push/pop

Replication
Topology (Tree)

Master is largely "unaware" of slaves
No quorums (only master need accept the write)

Selection of master left to client!
All nodes accept "writes"
All nodes are master of their own slaves
Writes propagated downstream ONLY (asynchronously)

Slave Roles:
Offload save-to-disk
Offload reads (load
balancing up to client)
Data redundancy

Write Global
Data Here

Write Local
Data Here

Redis & CAP Theorem
C & A

Writes: single master
Reads: any node

Eventually consistent,
no read-your-own-writes

C & P
On failure: inhibit writes
Consequence: decreased availability

A & P
On failure: elect new master
Consequence: inconsistent data,
no easy reconciliation

"Redis Cluster" is in development
but not currently available

Benchmarks - Client Libraries

Benchmarks - Hardware

Questions?

Additional Slides

Motivation
Imagine

lots of data
stored in main memory as:

hash maps, lists, sets, and sorted sets
O(1) -- GET, PUT, PUSH, and POP operations
O(log(N)) -- sorted operations

Imagine 100k requests per second per machine

Imagine Redis!

Our Goal:
Give you an overview of Redis externals & internals

Replication Process
Chronology

SLAVE: Connects to master, sends "SYNC" command
MASTER: Begins "background save" of DB to disk
MASTER: Begins recording all new writes
MASTER: Transfers DB snapshot to slave
SLAVE: Saves snapshot to disk
SLAVE: Loads snapshot into RAM
MASTER: Sends recorded write commands
SLAVE: Applies recorded write commands
SLAVE: Goes live, begins accepting requests

Used in "crowd-sourcing" application for reviewing
documents related to MP's (members of Parliament)
expense reports
Major challenge was providing a random document to a
review
Initial implementation used SQL "ORDER BY RAND()"
command to choose an new document for a reviewer
RAND() statement account for 90% of DB load
Redis implementation leveraged SRANDMEMBER()
command to generate a random element (document id)
from a set
Redis was also used to manage account registration
process for document reviewers

Uses Redis as a three level site-caching solution
"Local-Cache" for 1 server/site pair

user sessions/pending view count updates
"Site-Cache" for all servers in a site

Hot question id lists/user acceptance rates
"Global-Cache" is shared among all sites and servers

Inbox/usage quotas
Cache typically includes approximately 120,000 keys

Most expire within minutes
Number is expected to grow as confidence is gained

Peak load is a few hundred reads/writes per second
CPU Usage on dedicated Redis machine is reported to
be 0%
Memory usage on dedicated Redis machine is < 1/2 GB

Schema
Schema

Informal, free-form "Namespaces"

Example Keys:
user:1000:pwd

User 1000's password

user.next.id
The next user ID to be assigned

Redis and the CAP Theorem
Achieving the ideals of the CAP Theorem depends greatly on
how an instance of Redis is configured. A clustered version of
Redis is in development but not currently available.

Consistency
A single node instance of
Redis would provide the
highest levels of
consistency. Writes
propagate down the
replication tree. Consistent
writes must be written
directly to the master
node. Consistent reads
depend on the speed of the
synchronization process.

Availability
Adding more nodes
increases availability for
reads and writes. However,
adding more nodes greatly
increases the complexity of
maintaining consistent data
due to the "down-hill"
propagation of write
operations.

Partition Tolerance
Tolerating network partitions
is a major weakness of a
Redis system. Logic for
detecting failures and
promoting slave nodes to
master's and reconfiguring
the replication tree must be
handled by the application
developer.

