
HBase
A Comprehensive Introduction

James Chin, Zikai Wang

Monday, March 14, 2011

CS 227 (Topics in Database Management)

CIT 367



Overview



Overview: History

 Began as project by Powerset to process massive 
amounts of data for natural language search

 Open-source implementation of Google’s BigTable
 Lots of semi-structured data

 Commodity Hardware

 Horizontal Scalability

 Tight integration with MapReduce

 Developed as part of Apache’s Hadoop project and runs on 
top of HDFS (Hadoop Distributed Filesystem)
 Provides fault-tolerant way of storing large quantities of sparse 

data.



Overview: What is HBase?

 Non-relational, distributed database

 Column‐Oriented

 Multi‐Dimensional

 High Availability

 High Performance



Data Model & Operators



Data Model

 A sparse, multi-dimensional, sorted map

 {row, column, timestamp} -> cell

 Column = Column Family : Column Qualifier

 Rows are sorted lexicographically based on row key

 Region: contiguous set of sorted rows

 HBase: a large number of columns, a low number of column 

families (2-3)



Operators

 Operations are based on row keys

 Single-row operations:

 Put

 Get

 Scan

 Multi-row operations:

 Scan

 MultiPut

 No built-in joins (use MapReduce)



Physical Structures



Physical Structures: Data Organization

 Region: unit of distribution and availability

 Regions are split when grown too large

 Max region size is a tuning parameter

 Too low: prevents parallel scalability

 Too high: makes things slow



Physical Structures: Need for Indexes

 HBase has no built-in support for secondary indexes

 API only exposes operations by row key

 Find all players from Spain?

 With built-in API, scan the entire table

 Manually build a secondary index table

 Exploit the fact that rows are sorted lexicographically by row key 

based on byte order

Row Key Name Position Nationality

“1” Nowitzki, Dirk PF Germany

“2” Kaman, Chris C Germany

“3” Gasol, Paul PF Spain

“4” Fernandez, Rudy SG Spain



Physical Structures: Secondary Index

 Data Table:

Row Key Name Position Nationality

“1” Nowitzki, Dirk PF Germany

“2” Kaman, Chris C Germany

“3” Gasol, Paul PF Spain

“4” Fernandez, Rudy SG Spain

Row Key Dummy

“Germany 1” Germany 1

“Germany 2” Germany 2

“Spain 3” Spain 3

“Spain 4” Spain 4

 Index table on nationality 

column
 a scan operation

 start row = "Spain"

 stop scanning: set a RowFilter

with a BinaryPrefixComparator on 

the end value("Spain")

 range queries are also supported



Physical Structures: Secondary Index (cont.)

 Find all power forwards from Spain?

 A composite index 

 Row keys are plain byte arrays

 Byte order = your desired order?

 Convert strings, integers, floats, decimals carefully to bytes

 Default sorting is ascending; if descending indexes are needed, 

reverse bit order



Physical Structures: More Indexing

 Lily’s HBase Indexing Library 

 Aids in building and querying indexes in HBase

 Hides the details of playing with byte[] row keys 

 HBase + full text indexing and searching systems

 Apache Lucene (Apache Solr, elasticsearch) 

 Lily, HAvroBase (HBase + Solr), HBasene (HBase + Lucene)



System Architecture



System Architecture: Overview



System Architecture: Write-Ahead-Log Flow



System Architecture: WAL (cont.)



System Architecture: HFile and KeyValue



APIs



APIs: Overview

 Java
 Get, Put, Delete, Scan

 IncrementColumnValue

 TableInputFormat - MapReduce Source

 TableOutputFormat - MapReduce Sink

 Rest

 Thrift

 Scala

 Jython

 Groovy DSL

 Ruby shell

 Java MR, Cascading, Pig, Hive



ACID Properties



ACID Properties

 HBase not ACID-compliant, but does guarantee certain 
specific properties

 Atomicity
 All mutations are atomic within a row. Any put will either wholely 

succeed or wholely fail.

 APIs that mutate several rows will not be atomic across the multiple 
rows.

 The order of mutations is seen to happen in a well-defined order for 
each row, with no interleaving.

 Consistency and Isolation
 All rows returned via any access API will consist of a complete row 

that existed at some point in the table's history.



ACID Properties (cont.)

 Consistency of Scans
 A scan is not a consistent view of a table. Scans do not exhibit 

snapshot isolation.

 Those familiar with relational databases will recognize this isolation 
level as "read committed".

 Durability
 All visible data is also durable data. That is to say, a read will never 

return data that has not been made durable on disk.

 Any operation that returns a "success" code (e.g. does not throw an 
exception) will be made durable.

 Any operation that returns a "failure" code will not be made durable 
(subject to the Atomicity guarantees above).

 All reasonable failure scenarios will not affect any of the listed ACID 
guarantees.



Users



Users: Just to name a few…



Users: Facebook - Messaging System



Users: Facebook - Messaging System (cont.)

 Previous Solution: Cassandra

 Current Solution: HBase

 Why? Cassandra's replication behavior



Users: Twitter - People Search



Users: Twitter - People Search (cont.)

 Customer Indexing

 Previous Solution: offline process at a single node

 Current Solution:

 Import user data into HBase

 Periodically MapReduce job reading from HBase

 Hits FlockDB and other internal services in mapper

 Write data to sharded, replicated, horizontally scalable, in-memory, 

low-latency Scala service 

 Vs. Others:

 HDFS: Data is mutable

 Cassandra: OLTP vs. OLAP?



Users: Mozilla - Socorro



Users: Mozilla – Socorro (cont.)

 Socorro, Mozilla’s crash reporting system (https://crash-

stats.mozilla.com/products)

 Catches, processes, and presents crash data for Firefox, 

Thunderbird, Fennec, Camino, and Seamonkey.

 2.5 million crash reports per week, 320GB per day

 Previous Solution: NFS (raw data), PostgreSQL (analyze 

results)

 15% of crash reports are processed

 Current Solution: Hadoop (processing) + HBase (storage)



HBase vs. RDBMS



HBase vs. RDBMS

HBase RDBMS

Column-oriented Row oriented (mostly)

Flexible schema, add columns on the

fly

Fixed schema

Good with sparse tables Not optimized for sparse tables

No query language SQL

Wide tables Narrow tables

Joins using MR – not optimized Optimized for joins (small, fast ones

too!)

Tight integration with MR Not really...



HBase vs. RDBMS (cont.)

HBase RDBMS

De-normalize your data Normalize as you can

Horizontal scalability – just add

hardware

Hard to shard and scale

Consistent Consistent

No transactions Transactional

Good for semi-structured data as well

as structured data

Good for structured data



Questions?



Thanks!


