
HBase
A Comprehensive Introduction

James Chin, Zikai Wang

Monday, March 14, 2011

CS 227 (Topics in Database Management)

CIT 367



Overview



Overview: History

 Began as project by Powerset to process massive 
amounts of data for natural language search

 Open-source implementation of Google’s BigTable
 Lots of semi-structured data

 Commodity Hardware

 Horizontal Scalability

 Tight integration with MapReduce

 Developed as part of Apache’s Hadoop project and runs on 
top of HDFS (Hadoop Distributed Filesystem)
 Provides fault-tolerant way of storing large quantities of sparse 

data.



Overview: What is HBase?

 Non-relational, distributed database

 Column‐Oriented

 Multi‐Dimensional

 High Availability

 High Performance



Data Model & Operators



Data Model

 A sparse, multi-dimensional, sorted map

 {row, column, timestamp} -> cell

 Column = Column Family : Column Qualifier

 Rows are sorted lexicographically based on row key

 Region: contiguous set of sorted rows

 HBase: a large number of columns, a low number of column 

families (2-3)



Operators

 Operations are based on row keys

 Single-row operations:

 Put

 Get

 Scan

 Multi-row operations:

 Scan

 MultiPut

 No built-in joins (use MapReduce)



Physical Structures



Physical Structures: Data Organization

 Region: unit of distribution and availability

 Regions are split when grown too large

 Max region size is a tuning parameter

 Too low: prevents parallel scalability

 Too high: makes things slow



Physical Structures: Need for Indexes

 HBase has no built-in support for secondary indexes

 API only exposes operations by row key

 Find all players from Spain?

 With built-in API, scan the entire table

 Manually build a secondary index table

 Exploit the fact that rows are sorted lexicographically by row key 

based on byte order

Row Key Name Position Nationality

“1” Nowitzki, Dirk PF Germany

“2” Kaman, Chris C Germany

“3” Gasol, Paul PF Spain

“4” Fernandez, Rudy SG Spain



Physical Structures: Secondary Index

 Data Table:

Row Key Name Position Nationality

“1” Nowitzki, Dirk PF Germany

“2” Kaman, Chris C Germany

“3” Gasol, Paul PF Spain

“4” Fernandez, Rudy SG Spain

Row Key Dummy

“Germany 1” Germany 1

“Germany 2” Germany 2

“Spain 3” Spain 3

“Spain 4” Spain 4

 Index table on nationality 

column
 a scan operation

 start row = "Spain"

 stop scanning: set a RowFilter

with a BinaryPrefixComparator on 

the end value("Spain")

 range queries are also supported



Physical Structures: Secondary Index (cont.)

 Find all power forwards from Spain?

 A composite index 

 Row keys are plain byte arrays

 Byte order = your desired order?

 Convert strings, integers, floats, decimals carefully to bytes

 Default sorting is ascending; if descending indexes are needed, 

reverse bit order



Physical Structures: More Indexing

 Lily’s HBase Indexing Library 

 Aids in building and querying indexes in HBase

 Hides the details of playing with byte[] row keys 

 HBase + full text indexing and searching systems

 Apache Lucene (Apache Solr, elasticsearch) 

 Lily, HAvroBase (HBase + Solr), HBasene (HBase + Lucene)



System Architecture



System Architecture: Overview



System Architecture: Write-Ahead-Log Flow



System Architecture: WAL (cont.)



System Architecture: HFile and KeyValue



APIs



APIs: Overview

 Java
 Get, Put, Delete, Scan

 IncrementColumnValue

 TableInputFormat - MapReduce Source

 TableOutputFormat - MapReduce Sink

 Rest

 Thrift

 Scala

 Jython

 Groovy DSL

 Ruby shell

 Java MR, Cascading, Pig, Hive



ACID Properties



ACID Properties

 HBase not ACID-compliant, but does guarantee certain 
specific properties

 Atomicity
 All mutations are atomic within a row. Any put will either wholely 

succeed or wholely fail.

 APIs that mutate several rows will not be atomic across the multiple 
rows.

 The order of mutations is seen to happen in a well-defined order for 
each row, with no interleaving.

 Consistency and Isolation
 All rows returned via any access API will consist of a complete row 

that existed at some point in the table's history.



ACID Properties (cont.)

 Consistency of Scans
 A scan is not a consistent view of a table. Scans do not exhibit 

snapshot isolation.

 Those familiar with relational databases will recognize this isolation 
level as "read committed".

 Durability
 All visible data is also durable data. That is to say, a read will never 

return data that has not been made durable on disk.

 Any operation that returns a "success" code (e.g. does not throw an 
exception) will be made durable.

 Any operation that returns a "failure" code will not be made durable 
(subject to the Atomicity guarantees above).

 All reasonable failure scenarios will not affect any of the listed ACID 
guarantees.



Users



Users: Just to name a few…



Users: Facebook - Messaging System



Users: Facebook - Messaging System (cont.)

 Previous Solution: Cassandra

 Current Solution: HBase

 Why? Cassandra's replication behavior



Users: Twitter - People Search



Users: Twitter - People Search (cont.)

 Customer Indexing

 Previous Solution: offline process at a single node

 Current Solution:

 Import user data into HBase

 Periodically MapReduce job reading from HBase

 Hits FlockDB and other internal services in mapper

 Write data to sharded, replicated, horizontally scalable, in-memory, 

low-latency Scala service 

 Vs. Others:

 HDFS: Data is mutable

 Cassandra: OLTP vs. OLAP?



Users: Mozilla - Socorro



Users: Mozilla – Socorro (cont.)

 Socorro, Mozilla’s crash reporting system (https://crash-

stats.mozilla.com/products)

 Catches, processes, and presents crash data for Firefox, 

Thunderbird, Fennec, Camino, and Seamonkey.

 2.5 million crash reports per week, 320GB per day

 Previous Solution: NFS (raw data), PostgreSQL (analyze 

results)

 15% of crash reports are processed

 Current Solution: Hadoop (processing) + HBase (storage)



HBase vs. RDBMS



HBase vs. RDBMS

HBase RDBMS

Column-oriented Row oriented (mostly)

Flexible schema, add columns on the

fly

Fixed schema

Good with sparse tables Not optimized for sparse tables

No query language SQL

Wide tables Narrow tables

Joins using MR – not optimized Optimized for joins (small, fast ones

too!)

Tight integration with MR Not really...



HBase vs. RDBMS (cont.)

HBase RDBMS

De-normalize your data Normalize as you can

Horizontal scalability – just add

hardware

Hard to shard and scale

Consistent Consistent

No transactions Transactional

Good for semi-structured data as well

as structured data

Good for structured data



Questions?



Thanks!


