
東京キャビネット  京都キャビネット 
Tokyo Cabinet Kyoto Cabinet

Katie Bambino

Marcelo Martins

CSCI2270



Tokyo Cabinet



Tokyo Family

•  Tokyo Cabinet
•  Core DB library

•  Tokyo Tyrant
•  Network accessible

•  Tokyo Dystopia
•  Full Text Indexing/

Search

•  Tokyo Promenade
•  CMS



Tokyo Cabinet

•  Modern implementation of DBM
•  e.g., NDBM, GDBM, TDBM, CDB, Berkeley DB, QDBM

•  Library for managing key/value-type store

•  High performance, efficient use of space

•  C99 and POSIX compatible

•  64-bit architecture support

•  Database size limit is 8EB

•  LGPL



The High Points

•  Multiple data storage options
•  Hash tables, B+-tree tables, fixed-length arrays

•  Offers breadth of functionality

•  Interfaces for several languages
•  Ruby, Java, Lua, and Perl



History



History

  2001: Development of Estraier using GDBM

  2003: Development of QDBM, applied to Estraier

  2004: Development of Hyper Estraier

  2006: Joins Mixi.jp, production run of Hyper 
Estraier

  2007: Tokyo Cabinet development

  2008: Tokyo Tyrant and Tokyo 

Distopia development

  2010: Leaves Mixi.jp, founds FAL 

Labs
  Releases Kyoto Cabinet



Features

  High concurrency
  Multi-thread safe

  read/write locking by records

  High scalability
  Hash and B+-tree structures = O(1) and O(log n)

  Transactions
  Write ahead logging and shadow paging

  ACID properties (atomicity and durability)

  Various APIs
  On-memory list/hash/tree

  File hash/B+ tree/array/table



Data Storage Options – Hash Table

  Standard hash 
semantics

  Permits insert/lookup/
delete and traversal of 
keys

  Unordered

  Fast operations
  O(1) for retrieval, store and 

deletion

  Collision managed by 
separate chaining



Hash Table - Optimizations

•  Chains are built from binary 
search trees

•  Bucket array is mmap’ed

•  Three modes for store:
•  Insert

•  Replace

•  Concatenate

•  How to deal with 
fragmentation
•  Padding

•  Free block pool



Hash Table – Typical Use Cases

•  Job/message queue

•  Sub-index of relational database

•  Dictionary of words

•  Inverted index for full-text search

•  Temporary storage for map-reduce

•  Archive of many small files



Hash Table – Tuning

•  bnum - Specifies the number of elements to use in the bucket array.

•  rcnum - Specifies the maximum number of records to be cached.



Data Storage Options – B+ Tree

•  Keys can be duplicated

•  Records stored in 
order

•  Same operations of 
HT, plus range queries

•  Inserts are fast, but 
lookup is slower than 
HT

•  More space-efficient 
than HT



B+ Tree Example

require "rubygems" 
require "tokyocabinet" 

include TokyoCabinet 

bdb = BDB::new  # B‐Tree database; keys may have multiple values 
bdb.open("casket.bdb", BDB::OWRITER | BDB::OCREAT) 

# store records in the database, allowing duplicates 
bdb.putdup("key1", "value1") 
bdb.putdup("key1", "value2") 
bdb.put("key2", "value3") 
bdb.put("key3", "value4") 

# retrieve all values 
p bdb.getlist("key1") 
# => ["value1", "value2"] 

# range query, find all matching keys 
p bdb.range("key1", true, "key3", true) 



B+ Tree - Optimizations
•  Records are stored 

and arranged in nodes

•  Sparse index for 
accessing nodes in 
memory

•  Each leaf node is 
stored on disk as a 
hash table record

•  Nodes can be 
compressed using 
ZLIB or BZIP2
•  Size can be reduced to 

about 25%



B+ Tree – Typical Use Cases

•  Session management for a web service

•  User account database

•  Document database

•  Access counter

•  Cache of CMS

•  Graph/text mining



B+ Tree – Tuning

•  bnum - Specifies the number of elements to use in the bucket array. 

•  cmpfunc - Specifies the comparison function used to order B+Tree 
Databases.

•  lmemb (nmemb) - Specifies the number of members in each leaf 
(non-leaf) page.

•  lcnum (ncnum) - Specifies the maximum number of leaf (non-leaf) 
nodes to be cached.



Data Storage Options – Fixed-Length Array

•  Keyed by unique 
integers

•  Fixed record size – 
limited length for each 
value

•  Fastest insert/lookup

•  Uses mmap() to reduce 
file I/O overhead
•  Multiple processes 

share same memory 
space



Fixed-Length Database – Tuning

•  width - Specifies the width of values (255 by 
default).

•  Anything beyond specified length will be silently discarded.

•  limsiz - Specifies the limit on database file size in 
bytes (268435456 by default).

•  Setting width = 1024 and limsiz = 1024 * 4, will produce a 
database that holds only 4 keys.



Data Storage Options – Table Database

  Built out of other table 
types

  Free form-schema, 
resembles document-
oriented DB

  Permits sophisticated 
querying

  Arbitrary indexes on 
columns

  Slower, but easy to use



Table DB Example

require "rubygems" 
require "rufus/tokyo/cabinet/table" 

t = Rufus::Tokyo::Table.new('table.tdb', :create, :write) 

# populate table with arbitrary data (no schema!) 
t['pk0'] = { 'name' => 'alfred', 'age' => '22', 'sex' => 'male' } 
t['pk1'] = { 'name' => 'bob', 'age' => '18' } 
t['pk2'] = { 'name' => 'charly', 'age' => '45', 'nickname' => 

'charlie' } 
t['pk3'] = { 'name' => 'doug', 'age' => '77' } 
t['pk4'] = { 'name' => 'ephrem', 'age' => '32' } 

# query table for age >= 32 
p t.query { |q| 
  q.add_condition 'age', :numge, '32' 
  q.order_by 'age' 
} 

# => [ {"name"=>"ephrem", :pk=>"pk4", "age"=>"32"}, 
#      {"name"=>"charly", :pk=>"pk2", "nickname"=>"charlie", 

"age"=>"45"}, 
#      {"name"=>"doug", :pk=>"pk3", "age"=>"77"} ] 



ACID Properties: Atomicity

• Transactions

•  Isolation levels:
• Serializable

• Read uncommitted

• Locking granularity
• Per record

Hash database

Fixed-length database

• Per file
others



ACID Properties: Durability

Shadow paging (COW) Write-ahead logging



Tokyo Tyrant

•  Network interface for 
Tokyo Cabinet DB

•  Turns TC into a 
database server

•  Client/server model

•  Multiple applications 
can access one 
database



TT Features

•  High concurrency via thread pool

•  Speaks three different protocols: binary, 
memcached, and HTTP

•  Uses abstract API to converse with internal 
storage

•  Embedded Lua scripts



Replication I

Master-slave(s) topology

•  All participants must 
record the update log

•  Each server must have 
a unique ID



Replication II

Dual master

•  Reciprocal replication

•  May cause 
inconsistencies



Replication II



Tokyo vs. DBM Family (time)

0
2
4
6
8

10
12
14
16
18
20

Write Time (s) Read Time (s)



Tokyo vs. DBM Family (file size)

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

File size (bytes)



Tokyo vs. NoSQL (qualitative)

http://perfectmarket.com/blog/not_only_nosql_review_solution_evaluation_guide_chart 



Tokyo vs. NoSQL (Small data)

•  “2.8 million records (6GB) were loaded, and then 
a half million records were retrieved from the 
database”

•  http://bcbio.wordpress.com/2009/05/10/
evaluating-key-value-and-document-stores-for-
short-read-data/

Database Load time Retrieval time File size

Tokyo Cabinet/
Tyrant

12 minutes 3 1/2 minutes 24MB

CouchDB 22 hours 14 1/2 minutes 236MB

MongoDB 3 minutes 4 minutes 192-960MB



Case Study: Storage cache at mixi.jp

•  Work as proxy
•  Mediate insert/search

•  Lua extension
•  Atomic access per record

•  Uses LuaSocket to access 
storage

•  Proper DB scheme
•  On-memory hash: suitable 

for generic cache

•  File hash table: suitable for 
large records, e.g., images

•  File fixed array: suitable for 
small, fixed-length records, 
e.g., timestamps



Case Study: Ravelry

•  Uses Tokyo Cabinet/
Tyrant to cache larger 
objects

•  Tons of rendering Markdown 
into HTML

•  Too large to store in 
memcached

•  Online knit and 
crochet community
•  Organizational tool

•  Yarn/pattern database

•  Social site: forums, groups, 
friend-related features

•  Ruby on Rails

•  70,000 DAU  (2009)

•  3.6 million pageviews per 
day (2009)



Case Study: Ravelry

Casey Forbes, Ravelry’s only developer, on TC/TT:

•  “I think it is a very nice solution for storing large 
chunks of HTML, etc.— MySQL is not a very good 
solution for this (waste of Innodb buffer pools, lots of 
growth in database files, less than ideal performance 
when dealing with large tables of blobs) and 
memcached can become full very fast depending on 
how much memory you have to devote to caches.”

•  “We've stored up to 25 GB but we are currently 
storing 10 GB of data. Performance is so close to 
memcached (even though it hits the disk) that speed 
is really a non-issue.”



Kyoto Cabinet



Kyoto Cabinet

•  Very similar to Tokyo 
Cabinet

•  Dropped support for fixed-
length and table databases

•  Support for external 
compression
•  LZO and LZMA

•  Support for atomic-
increment and CAS

•  Supports Win32

•  License: GPLv3 (TC: LGPL) 



Kyoto Cabinet vs. Tokyo Cabinet

•  Better performance and concurrency
•  Parallelism in a multithreaded environment

•  Decreased efficiency per thread due to grained locking

•  User-land locking by CAS

•  Space efficiency
•  16B footprint/record (vs. TC’s 22B)

•  Robustness
•  Auto-transaction

•  Auto-recovery

•  New database types
•  Four new on-memory databases

•  Two new file-based databases



Storage Options - Volatile

Name Data 
structure

Complexity Ordering Locking Usage

Proto 
HashDB

Hash 
table

O(1) None File 
(rwlock)

None 
(testing)

Proto 
TreeDB

Red 
black 
tree

O(log n) Lexical File 
(rwlock)

Ordered 
records

StashDB Hash 
table

O(1) None Record 
(rwlock)

CacheDB Hash 
table

O(1) None Record 
(mutex)

General 
caching

GrassDB B+ tree O(log n) Custom Page 
(rwlock)



Choosing the Right Tool

•  No persistence required? On-memory DB

•  If order is important, use cache tree DB (GrassDB)

•  Time efficiency: CacheDB > StashDB > 
ProtoHashDB > ProtoTreeDB > GrassDB

•  Space efficiency: GrassDB > StashDB > 
CacheDB > ProtoHashDB > ProtoTreeDB



Auto Snapshot

•  Similar to the one in 
Redis

•  Periodically saves on-
memory records into 
files

•  Thanks to COW, each 
snapshot operation is 
performed atomically

•  Performance 
comparison for 1M 
records

Format Size Time

Raw 22.888MB 0.322s

LZO 10.215MB 0.411s

ZLIB 6.367MB 2.010s

LZMA 2.787MB 17.619s



Storage Options - File

Name Data 
structure

Complexity Ordering Locking Usage

HashDB Hash 
table

O(1) None Record 
(rwlock)

Small, but 
numerous 
metadata

TreeDB B+ tree O(log n) Custom Page  
(rwlock)

Small, but 
numerous meta 
data, ordered

DirDB Undefined Undefined  None Record 
(rwlock)

Large but few 
data

ForestDB B+ tree O(log n) Custom Page 
(rwlock)

Large and many 
data, ordered



Kyoto Tycoon

•  Persistent cache server

•  High concurrency
•  1M queries / 25 sec = 40,000 QPS or more

•  Supports auto-expiration mechanism

•  Discarded replication mechanism

•  Like TT and memcached, no data sharding

•  Usage: large web services
•  Access counters

•  Time stamp trackers

•  User account managers

•  Session data 



Kyoto Tycoon



Auto Expiration

•  Expiration time given to each record

•  Records removed timer expiration

•  "GC cursor" eliminates expired regions gradually



BACKUP SLIDES



Primitive Map-Reduce with Tokyo Tyrant

•  Lua Extension

•  Defines DB operations as Lua functions

•  Client sends function name, plus key/value

•  Server returns function result



Emit: {word: 1} 

Primitive Map-Reduce w/ Tokyo Tyrant

function wordcount() 
   function mapper(key, value, mapemit) 
      for word in string.gmatch(string.lower(value), "%w+")do 
         mapemit(word, 1) 
      end 
      return true 
   end 

   local res = "" 
   function reducer(key, values) 
      res = res .. key .. "\t" .. #values .. "\n" 
      return true 
   end 

   if not _mapreduce(mapper, reducer) then 
      res = nil 
   end 
   return res 

end 



Emit: {word: 1} 

sizeof(values)

Primitive Map-Reduce w/ Tokyo Tyrant

function wordcount() 
   function mapper(key, value, mapemit) 
      for word in string.gmatch(string.lower(value), "%w+“)do 
         mapemit(word, 1) 
      end 
      return true 
   end 

   local res = "" 
   function reducer(key, values) 
      res = res .. key .. "\t" .. #values .. "\n" 
      return true 
   end 

   if not _mapreduce(mapper, reducer) then 
      res = nil 
   end 
   return res 

end 



Map-Reduce with Tokyo Tyrant (III)



Kyoto Cabinet - Visitor Pattern



Tyrant/Tycoon Internals


