
東京キャビネット 京都キャビネット
Tokyo Cabinet

Kyoto Cabinet

Katie Bambino

Marcelo Martins

CSCI2270

Tokyo Cabinet

Tokyo Family

•  Tokyo Cabinet

•  Core DB library

•  Tokyo Tyrant

•  Network accessible

•  Tokyo Dystopia

•  Full Text Indexing/

Search

•  Tokyo Promenade

•  CMS

Tokyo Cabinet

•  Modern implementation of DBM

•  e.g., NDBM, GDBM, TDBM, CDB, Berkeley DB, QDBM

•  Library for managing key/value-type store

•  High performance, efficient use of space

•  C99 and POSIX compatible

•  64-bit architecture support

•  Database size limit is 8EB

•  LGPL

The High Points

•  Multiple data storage options

•  Hash tables, B+-tree tables, fixed-length arrays

•  Offers breadth of functionality

•  Interfaces for several languages

•  Ruby, Java, Lua, and Perl

History

History

  2001: Development of Estraier using GDBM

  2003: Development of QDBM, applied to Estraier

  2004: Development of Hyper Estraier

  2006: Joins Mixi.jp, production run of Hyper
Estraier

  2007: Tokyo Cabinet development

  2008: Tokyo Tyrant and Tokyo

Distopia development

  2010: Leaves Mixi.jp, founds FAL

Labs

  Releases Kyoto Cabinet

Features

  High concurrency

  Multi-thread safe

  read/write locking by records

  High scalability

  Hash and B+-tree structures = O(1) and O(log n)

  Transactions

  Write ahead logging and shadow paging

  ACID properties (atomicity and durability)

  Various APIs

  On-memory list/hash/tree

  File hash/B+ tree/array/table

Data Storage Options – Hash Table

  Standard hash
semantics

  Permits insert/lookup/
delete and traversal of
keys

  Unordered

  Fast operations

  O(1) for retrieval, store and

deletion

  Collision managed by
separate chaining

Hash Table - Optimizations

•  Chains are built from binary
search trees

•  Bucket array is mmap’ed

•  Three modes for store:

•  Insert

•  Replace

•  Concatenate

•  How to deal with
fragmentation

•  Padding

•  Free block pool

Hash Table – Typical Use Cases

•  Job/message queue

•  Sub-index of relational database

•  Dictionary of words

•  Inverted index for full-text search

•  Temporary storage for map-reduce

•  Archive of many small files

Hash Table – Tuning

•  bnum - Specifies the number of elements to use in the bucket array.

•  rcnum - Specifies the maximum number of records to be cached.

Data Storage Options – B+ Tree

•  Keys can be duplicated

•  Records stored in
order

•  Same operations of
HT, plus range queries

•  Inserts are fast, but
lookup is slower than
HT

•  More space-efficient
than HT

B+ Tree Example

require "rubygems" 
require "tokyocabinet" 

include TokyoCabinet 

bdb = BDB::new  # B‐Tree database; keys may have multiple values 
bdb.open("casket.bdb", BDB::OWRITER | BDB::OCREAT) 

# store records in the database, allowing duplicates 
bdb.putdup("key1", "value1") 
bdb.putdup("key1", "value2") 
bdb.put("key2", "value3") 
bdb.put("key3", "value4") 

# retrieve all values 
p bdb.getlist("key1") 
# => ["value1", "value2"] 

# range query, find all matching keys 
p bdb.range("key1", true, "key3", true) 

B+ Tree - Optimizations

•  Records are stored

and arranged in nodes

•  Sparse index for
accessing nodes in
memory

•  Each leaf node is
stored on disk as a
hash table record

•  Nodes can be
compressed using
ZLIB or BZIP2

•  Size can be reduced to

about 25%

B+ Tree – Typical Use Cases

•  Session management for a web service

•  User account database

•  Document database

•  Access counter

•  Cache of CMS

•  Graph/text mining

B+ Tree – Tuning

•  bnum - Specifies the number of elements to use in the bucket array.

•  cmpfunc - Specifies the comparison function used to order B+Tree
Databases.

•  lmemb (nmemb) - Specifies the number of members in each leaf
(non-leaf) page.

•  lcnum (ncnum) - Specifies the maximum number of leaf (non-leaf)
nodes to be cached.

Data Storage Options – Fixed-Length Array

•  Keyed by unique
integers

•  Fixed record size –
limited length for each
value

•  Fastest insert/lookup

•  Uses mmap() to reduce
file I/O overhead

•  Multiple processes

share same memory
space

Fixed-Length Database – Tuning

•  width - Specifies the width of values (255 by
default).

•  Anything beyond specified length will be silently discarded.

•  limsiz - Specifies the limit on database file size in
bytes (268435456 by default).

•  Setting width = 1024 and limsiz = 1024 * 4, will produce a
database that holds only 4 keys.

Data Storage Options – Table Database

  Built out of other table
types

  Free form-schema,
resembles document-
oriented DB

  Permits sophisticated
querying

  Arbitrary indexes on
columns

  Slower, but easy to use

Table DB Example

require "rubygems" 
require "rufus/tokyo/cabinet/table" 

t = Rufus::Tokyo::Table.new('table.tdb', :create, :write) 

# populate table with arbitrary data (no schema!) 
t['pk0'] = { 'name' => 'alfred', 'age' => '22', 'sex' => 'male' } 
t['pk1'] = { 'name' => 'bob', 'age' => '18' } 
t['pk2'] = { 'name' => 'charly', 'age' => '45', 'nickname' => 

'charlie' } 
t['pk3'] = { 'name' => 'doug', 'age' => '77' } 
t['pk4'] = { 'name' => 'ephrem', 'age' => '32' } 

# query table for age >= 32 
p t.query { |q| 
  q.add_condition 'age', :numge, '32' 
  q.order_by 'age' 
} 

# => [ {"name"=>"ephrem", :pk=>"pk4", "age"=>"32"}, 
#      {"name"=>"charly", :pk=>"pk2", "nickname"=>"charlie", 

"age"=>"45"}, 
#      {"name"=>"doug", :pk=>"pk3", "age"=>"77"} ] 

ACID Properties: Atomicity

• Transactions

•  Isolation levels:

• Serializable

• Read uncommitted

• Locking granularity

• Per record

Hash database

Fixed-length database

• Per file

others

ACID Properties: Durability

Shadow paging (COW)
 Write-ahead logging

Tokyo Tyrant

•  Network interface for
Tokyo Cabinet DB

•  Turns TC into a
database server

•  Client/server model

•  Multiple applications
can access one
database

TT Features

•  High concurrency via thread pool

•  Speaks three different protocols: binary,
memcached, and HTTP

•  Uses abstract API to converse with internal
storage

•  Embedded Lua scripts

Replication I

Master-slave(s) topology

•  All participants must
record the update log

•  Each server must have
a unique ID

Replication II

Dual master

•  Reciprocal replication

•  May cause
inconsistencies

Replication II

Tokyo vs. DBM Family (time)

0

2

4

6

8

10

12

14

16

18

20

Write Time (s)
 Read Time (s)

Tokyo vs. DBM Family (file size)

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

File size (bytes)

Tokyo vs. NoSQL (qualitative)

http://perfectmarket.com/blog/not_only_nosql_review_solution_evaluation_guide_chart

Tokyo vs. NoSQL (Small data)

•  “2.8 million records (6GB) were loaded, and then
a half million records were retrieved from the
database”

•  http://bcbio.wordpress.com/2009/05/10/
evaluating-key-value-and-document-stores-for-
short-read-data/

Database
 Load time
 Retrieval time
 File size

Tokyo Cabinet/
Tyrant

12 minutes
 3 1/2 minutes
 24MB

CouchDB
 22 hours
 14 1/2 minutes
 236MB

MongoDB
 3 minutes
 4 minutes
 192-960MB

Case Study: Storage cache at mixi.jp

•  Work as proxy

•  Mediate insert/search

•  Lua extension

•  Atomic access per record

•  Uses LuaSocket to access
storage

•  Proper DB scheme

•  On-memory hash: suitable

for generic cache

•  File hash table: suitable for
large records, e.g., images

•  File fixed array: suitable for
small, fixed-length records,
e.g., timestamps

Case Study: Ravelry

•  Uses Tokyo Cabinet/
Tyrant to cache larger
objects

•  Tons of rendering Markdown
into HTML

•  Too large to store in
memcached

•  Online knit and
crochet community

•  Organizational tool

•  Yarn/pattern database

•  Social site: forums, groups,
friend-related features

•  Ruby on Rails

•  70,000 DAU (2009)

•  3.6 million pageviews per
day (2009)

Case Study: Ravelry

Casey Forbes, Ravelry’s only developer, on TC/TT:

•  “I think it is a very nice solution for storing large
chunks of HTML, etc.— MySQL is not a very good
solution for this (waste of Innodb buffer pools, lots of
growth in database files, less than ideal performance
when dealing with large tables of blobs) and
memcached can become full very fast depending on
how much memory you have to devote to caches.”

•  “We've stored up to 25 GB but we are currently
storing 10 GB of data. Performance is so close to
memcached (even though it hits the disk) that speed
is really a non-issue.”

Kyoto Cabinet

Kyoto Cabinet

•  Very similar to Tokyo
Cabinet

•  Dropped support for fixed-
length and table databases

•  Support for external
compression

•  LZO and LZMA

•  Support for atomic-
increment and CAS

•  Supports Win32

•  License: GPLv3 (TC: LGPL)

Kyoto Cabinet vs. Tokyo Cabinet

•  Better performance and concurrency

•  Parallelism in a multithreaded environment

•  Decreased efficiency per thread due to grained locking

•  User-land locking by CAS

•  Space efficiency

•  16B footprint/record (vs. TC’s 22B)

•  Robustness

•  Auto-transaction

•  Auto-recovery

•  New database types

•  Four new on-memory databases

•  Two new file-based databases

Storage Options - Volatile

Name
 Data
structure

Complexity
 Ordering
 Locking
 Usage

Proto
HashDB

Hash
table

O(1)
 None
 File
(rwlock)

None
(testing)

Proto
TreeDB

Red
black
tree

O(log n)
 Lexical
 File
(rwlock)

Ordered
records

StashDB
 Hash
table

O(1)
 None
 Record
(rwlock)

CacheDB
 Hash
table

O(1)
 None
 Record
(mutex)

General
caching

GrassDB
 B+ tree
 O(log n)
 Custom
 Page
(rwlock)

Choosing the Right Tool

•  No persistence required? On-memory DB

•  If order is important, use cache tree DB (GrassDB)

•  Time efficiency: CacheDB > StashDB >
ProtoHashDB > ProtoTreeDB > GrassDB

•  Space efficiency: GrassDB > StashDB >
CacheDB > ProtoHashDB > ProtoTreeDB

Auto Snapshot

•  Similar to the one in
Redis

•  Periodically saves on-
memory records into
files

•  Thanks to COW, each
snapshot operation is
performed atomically

•  Performance
comparison for 1M
records

Format
 Size
 Time

Raw
 22.888MB
 0.322s

LZO
 10.215MB
 0.411s

ZLIB
 6.367MB
 2.010s

LZMA
 2.787MB
 17.619s

Storage Options - File

Name
 Data
structure

Complexity
 Ordering
 Locking
 Usage

HashDB
 Hash
table

O(1)
 None
 Record
(rwlock)

Small, but
numerous
metadata

TreeDB
 B+ tree
 O(log n)
 Custom
 Page
(rwlock)

Small, but
numerous meta
data, ordered

DirDB
 Undefined
Undefined
 None
 Record
(rwlock)

Large but few
data

ForestDB
 B+ tree
 O(log n)
 Custom
 Page
(rwlock)

Large and many
data, ordered

Kyoto Tycoon

•  Persistent cache server

•  High concurrency

•  1M queries / 25 sec = 40,000 QPS or more

•  Supports auto-expiration mechanism

•  Discarded replication mechanism

•  Like TT and memcached, no data sharding

•  Usage: large web services

•  Access counters

•  Time stamp trackers

•  User account managers

•  Session data

Kyoto Tycoon

Auto Expiration

•  Expiration time given to each record

•  Records removed timer expiration

•  "GC cursor" eliminates expired regions gradually

BACKUP SLIDES

Primitive Map-Reduce with Tokyo Tyrant

•  Lua Extension

•  Defines DB operations as Lua functions

•  Client sends function name, plus key/value

•  Server returns function result

Emit: {word: 1}

Primitive Map-Reduce w/ Tokyo Tyrant

function wordcount() 
   function mapper(key, value, mapemit) 
      for word in string.gmatch(string.lower(value), "%w+")do 
         mapemit(word, 1) 
      end 
      return true 
   end 

   local res = "" 
   function reducer(key, values) 
      res = res .. key .. "\t" .. #values .. "\n" 
      return true 
   end 

   if not _mapreduce(mapper, reducer) then 
      res = nil 
   end 
   return res 

end 

Emit: {word: 1}

sizeof(values)

Primitive Map-Reduce w/ Tokyo Tyrant

function wordcount() 
   function mapper(key, value, mapemit) 
      for word in string.gmatch(string.lower(value), "%w+“)do 
         mapemit(word, 1) 
      end 
      return true 
   end 

   local res = "" 
   function reducer(key, values) 
      res = res .. key .. "\t" .. #values .. "\n" 
      return true 
   end 

   if not _mapreduce(mapper, reducer) then 
      res = nil 
   end 
   return res 

end 

Map-Reduce with Tokyo Tyrant (III)

Kyoto Cabinet - Visitor Pattern

Tyrant/Tycoon Internals

