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ABSTRACT

Multitenant data infrastructures for large cloud platforms hosting
hundreds of thousands of applications face the challenge of serv-
ing applications characterized by small data footprint and unpre-
dictable load patterns. When such a platform is built on an elas-
tic pay-per-use infrastructure, an added challenge is to minimize
the system’s operating cost while guaranteeing the tenants’ service
level agreements (SLA). Elastic load balancing is therefore an im-
portant feature to enable scale-up during high load while scaling
down when the load is low. Live migration, a technique to migrate
tenants with minimal service interruption and no downtime, is crit-
ical to allow lightweight elastic scaling. We focus on the prob-
lem of live migration in the database layer. We propose Zephyr,
a technique to efficiently migrate a live database in a shared noth-
ing transactional database architecture. Zephyr uses phases of on-
demand pull and asynchronous push of data, requires minimal syn-
chronization, results no service unavailability and few or no aborted
transactions, minimizes the data transfer overhead, provides ACID
guarantees during migration, and ensures correctness in the pres-
ence of failures. We outline a prototype implementation using an
open source relational database engine and an present a thorough
evaluation using various transactional workloads. Zephyr’s effi-
ciency is evident from the few tens of failed operations, 10-20%
change in average transaction latency, minimal messaging, and no
overhead during normal operation when migrating a live database.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational databases,

Transaction processing; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed systems

General Terms

Design, Experimentation, Performance, Reliability
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1. INTRODUCTION
The increasing popularity of service oriented computing has seen

hundreds of thousands of applications being deployed on various
cloud platforms [15]. The sheer scale of the number of applica-
tion databases, or tenants, and their small footprint (both in terms
of size and load) mandate a shared infrastructure to minimize the
operating cost [11, 19, 25, 26]. These applications often have un-
predictable load patterns, such as flash crowds originating from a
sudden and viral popularity, resulting in the tenants’ resource re-
quirements changing with little notice. Load balancing is therefore
an important feature to minimize the impact of a heavily loaded
tenant on the other co-located tenants. Furthermore, a platform
deployed on a pay-per-use infrastructure (like Amazon EC2) pro-
vides the potential to minimize the system’s operating cost. Elastic-

ity, i.e. the ability to scale up to deal with high load while scaling
down in periods of low load, is a critical feature to minimize the
operating cost. Elastic load balancing is therefore a first class fea-
ture in the design of modern database management systems for the
cloud [11,12], and requires a low cost technique to migrate tenants
between hosts, a feature referred to as live migration [8, 20].1

Our focus is the problem of live migration in the database layer
supporting a multitenant cloud platform where the service provider
manages the applications’ databases. Force.com, Microsoft Azure,
and Google AppEngine are examples of such multitenant cloud
platforms. Even though a number of techniques are prevalent to
scale the DBMS layer, elasticity is often ignored primarily due to
static infrastructure provisioning. In a multitenant platform built
on an infrastructure as a service (IaaS) abstraction, elastic scal-
ing allows minimizing the system’s operating cost leveraging the
pay-per-use pricing. Most current DBMSs, however, only sup-
port heavyweight techniques for elastic scale-up where adding new
nodes requires manual intervention or long service disruption to
migrate a tenant’s database to these newly added nodes. Therefore,
to enable lightweight elasticity as a first class notion, live migration
is a critical functionality.

We present Zephyr,2 a technique for live migration in a shared
nothing transactional database. Das et al. [13] proposed a solution
for live database migration in a shared storage architecture while
Curino et al. [10] outlined a possible solution for live migration in
a shared nothing architecture. Zephyr is the first complete solution
for live migration in a shared nothing database architecture.

Zephyr minimizes service interruption for the tenant being mi-
grated by introducing a synchronized dual mode that allows both
the source and destination to simultaneously execute transactions

1Our use of the term migration is different from migration between
different database versions or different schema.
2Zephyr, meaning a gentle breeze, is symbolic of the lightweight
nature of the proposed technique.



for the tenant. Migration starts with the transfer of the tenant’s
metadata to the destination which can then start serving new trans-
actions, while the source completes the transactions that were ac-
tive when migration started. Read/write access (called ownership)
on database pages of the tenant is partitioned between the two nodes
with the source node owning all pages at the start and the desti-
nation acquiring page ownership on-demand as transactions at the
destination access those pages. The index structures are replicated
at the source and destination and are immutable during migration.
Lightweight synchronization between the source and the destina-
tion, only during the short dual mode, guarantees serializability,
while obviating the need for two phase commit [16]. Once the
source node completes execution of all active transactions, migra-
tion completes with the ownership transfer of all database pages
owned by the source to the destination node. Zephyr thus allows
migration of individual tenant databases that share a database pro-
cess at a node and where live VM migration [8] cannot be used.

Zephyr guarantees no service disruption for other tenants, no
system downtime, minimizes data transferred between the nodes,
guarantees safe migration in the presence of failures, and ensures
the strongest level of transaction isolation. Zephyr uses standard
tree based indices and lock based concurrency control, thus allow-
ing it to be used in a variety of DBMS implementations. Zephyr
does not rely on replication in the database layer, thus providing
greater flexibility in selecting the destination for migration, which
might or might not have the tenant’s replica. However, considerable
performance improvement is possible in the presence of replication
when a tenant is migrated to one of the replicas.

We implemented Zephyr in an open source RDBMS. Our evalu-
ation using a variety of transactional workloads shows that Zephyr
results in only a few tens of failed operations, compared to hun-
dreds to thousands of failed transactions when using a simple heavy-
weight migration technique. Zephyr results in no operational over-
head during normal operation, minimal messaging overhead dur-
ing migration, and between 10-20% increase in average transac-
tion latency compared to an execution where no migration was per-
formed. These results demonstrate the lightweight nature of Zephyr
allowing live migration with minimal service interruption.

The main contributions of this paper are as follows:

• We present Zephyr, the first complete end-to-end solution for
live migration in a shared nothing database architecture.

• We present a detailed analysis of the guarantees provided by
Zephyr, analyze the associated trade-offs, and prove safety
and liveness guarantees in the presence of failures.

• We provide a detailed evaluation of our prototype evalua-
tion using a variety of workloads that demonstrate interesting
trade-offs in performance.

The rest of the paper is organized as: Section 2 provides back-
ground on multitenancy models, the system model used, migration
cost measures, and describes some straightforward migration tech-
niques. Section 3 describes Zephyr, Section 4 proves transaction
correctness, and Section 5 discusses some extensions and optimiza-
tions. Section 6 describes the details of a prototype implementation
and Section 7 provides a detailed evaluation. Section 8 provides a
survey of related literature and Section 9 concludes the paper.

2. BACKGROUND

2.1 Multitenancy Models
The three most common multitenancy models are: shared table,

shared process, and shared machine. The shared table model is
used primarily in the context of Software as a Service (SaaS) such

Figure 1: A shared nothing multitenant DBMS architecture.

as in Saleforce.com [25]. It allows efficient resource sharing while
providing row level isolation between tenants. All tenants’ data is
stored in a few big tables, with additional access structures or ta-
bles for metadata management and query processing. For instance,
in the Saleforce.com architecture [25], a centralized table (called
the heap) stores all tenants’ data, while additional tables (called
pivot tables) are used to access data in the heap. To allow schema
flexibility, the heap table cannot use native types and hence custom
query processing and indexing layers are needed. Such a design
is suitable when most of the tenants have almost similar schema
with minor customizations per tenant. However, this model leads
to various challenges when application schemas differ consider-
ably. Moreover, row level isolation between tenants complicates
on-demand tenant migration.

The shared machine model [24] uses different virtual machines
(VM) or database processes per tenant, thus allowing for stronger
VM or OS level isolation. Using a VM per tenant can leverage VM
migration techniques [8, 20] for elastic load balancing. However,
experimental studies have shown that this stronger isolation comes
at the cost of increased overhead during normal operation resulting
in inefficient resource sharing between tenants [10]. This overhead
due to redundant components can be significantly reduced by the
shared process model.

The shared process model allows independent schemas for ten-
ants while sharing the database process amongst multiple tenants [3,
10, 11, 26]. This model provides better isolation compared to the
shared table model while allowing effective sharing and consolida-
tion of multiple tenants in the same database process [10]. How-
ever, such a model cannot leverage VM migration to move individ-
ual tenants from a shared database process. This calls for efficient
and low cost live database migration techniques, such as Zephyr, to
provide a good mix of effective sharing and ease of migration.

2.2 System Architecture
We use a standard shared nothing database model for transaction

processing (OLTP) systems executing short running transactions,
with a two phase locking [14] based scheduler, and a page based
model with a B+ tree index [4]. Figure 1 provides an overview of
the architecture. Following are the salient features of the system.
First, clients connect to the database through query routers that
handle client connections and hide the physical location of the ten-
ant’s database. Routers store this mapping as metadata which is
updated whenever there is a migration. Second, we use the shared

process multitenancy model which strikes a balance between iso-
lation and scale. Conceptually, each tenant has its own transaction
manager and buffer pool. However, since most current systems do
not support this, we use a design where co-located tenants share all
resources within a database instance, but is shared nothing across



nodes. Finally, there exists a system controller that determines the
tenant to be migrated, the initiation time, and the destination of mi-
gration. The system controller gathers usage statistics and builds a
model to optimize the system’s operating cost while guaranteeing
the tenant’s SLAs. The detailed design and implementation of the
controller is orthogonal to the problem considered in this paper and
is left for future work.

2.3 Migration Cost
The goal of any migration technique is to minimize migration

cost. Das et al. [13] discuss some measures to quantify the cost
of migration. Low migration cost allows the system controller to
effectively use it for elastic load balancing.

• Service interruption: Live migration must ensure minimal ser-
vice interruption for the tenant being migrated and should not
result in downtime.3 We use downtime for an entire system out-
age and service interruption for small interruption in service for
some tenants. The number of transactions or operations aborted
during migration is a measure of service interruption and is used
to determine the impact of migration on the tenant’s SLA.

• Migration Overhead: Migration overhead is the additional work
done or resources consumed to enable and perform migration.
This cost also includes performance impact as a result of mi-
gration, such as increase in transaction latency or reduction in
throughput. This comprises of:

– Overhead during normal operation: Additional work done
during normal database operation to enable migration.

– Overhead during migration: Performance impact on the ten-
ant being migrated as well as other tenants co-located at the
source or destination of migration.

– Overhead after migration: Performance impact on transac-
tions executing at the destination node after migration.

• Additional data transferred: Since the source and destination
of migration do not share storage, the persistent image of the
database must be moved from the source to the destination. This
measure accounts for any data transfer that migration incurs, in
addition to transferring the persistent database image.

2.4 Known Migration Techniques
Most enterprise database infrastructures are statically provisioned

for the peak capacity. Migrating tenants on-demand for elasticity
is therefore not a common operation. As a result, live migration is
not a feature supported off-the-shelf by most database systems, re-
sulting in the use of heavyweight techniques. We now discuss two
known techniques for database migration.
Stop and copy: This is the simplest and arguably most heavy-
handed approach to migrate a database. In this technique, the sys-
tem stops serving updates for the tenant, checkpoints the state,
moves the persistent image, and restarts the tenant at the destina-
tion. This technique incurs a long service interruption and a high
post migration penalty to warm up the cache at the destination.
The advantage is its simplicity and efficiency in terms of minimiz-
ing the amount of data transferred. However inefficient this tech-
nique might be, this is the only technique available in many current
database systems (including RDBMSs like MySQL and Key-Value

stores such as HBase) to migrate a tenant to a node which is not
already running a replica.
Iterative State Replication: The long unavailability of stop and

copy arises due to the time taken to create the checkpoint and to

3A longer interruption might result in a penalty. For instance, in
platforms like Windows Azure, service availability below 99.9%
results in a penalty. http://www.microsoft.com/windowsazure/sla/

copy it to the destination. An optimization, Iterative State Repli-
cation (ISR), is to use an iterative approach, similar to [13], where
the checkpoint is created and iteratively copied. The source check-
points the tenant’s database and starts migrating the checkpoint to
the destination, while it continues serving requests. While the des-
tination loads the checkpoint, the source maintains the differential
changes which are iteratively copied until the amount of change
to be transferred is small enough or a maximum iteration count is
reached. At this point, a final stop and copy is performed. The it-
erative copy can be performed using either page level copying or
shipping the transaction log and replaying it at the destination.

Consider applications such as shopping cart management or on-
line games such as Farmville that represent workloads with a high
percentage of reads followed by updates, and that require high avail-
ability for continued customer satisfaction. In ISR, the tenant’s
database is unavailable to updates during the final stop phase. Even
though the system can potentially serve read-only transactions dur-
ing this window, all transactions with at least one update will be
aborted during this small window. On the other hand, Zephyr does
not render the tenant unavailable by allowing concurrent transac-
tion execution at both the source and the destination. However,
during migration, Zephyr will abort a transaction in two cases: (i)
if at the source it accesses an already migrated page, or (ii) if at
either node, it issues an update operation that modifies the index
structures. Hence, Zephyr may abort a fraction of update transac-
tions during migration. The exact impact of either technique on
transaction execution will depend on the workload and other tenant
characteristics, and needs to be evaluated experimentally.

The iterative copying of differential updates in ISR can lead to
more data being transferred during migration, especially for update
heavy workloads that result in more changes to the database state.
Zephyr, on the other hand, migrates a database page only once and
hence is expected to have lower data transfer overhead.

Since ISR creates multiple checkpoints during migration, it will
result in higher disk I/O at the source. Therefore, when migrating
a tenant from a heavily loaded source node, this additional disk I/O
can result in significant impact on co-located tenants which are po-
tentially already disk I/O limited due to increased load. However,
due to the log replay, the destination will start with a warm cache
and hence will minimize the post migration overhead. On the other
hand, Zephyr does not incur additional disk I/O at the source due to
checkpointing, but the cold start at the destination results in higher
post migration overhead and more I/O at the destination. There-
fore, Zephyr results in less overhead at the source and is suitable
for scale-out scenarios where the source is already heavily loaded,
while ISR is attractive for consolidation during scale-down where it
will result in lower impact on tenants co-located at the destination.

Finally, since ISR creates a replica of the tenant’s state at another
node, it can iteratively copy the updates to multiple nodes, thus
creating replicas on the fly during migration. Zephyr however does
not allow for this easy extension.

It is therefore evident that ISR and Zephyr are both viable tech-
niques for live database migration; a detailed experimental compar-
ison between the two is left for future work. This paper focusses
on Zephyr since it is expected to have minimal service interruption
which is critical to ensure high tenant availability.

3. ZEPHYR DESIGN
In this section, we provide an overview of Zephyr using some

simplifying assumptions to ease presentation. We assume no fail-

ures, small tenants limited to a single node in the system, and no

replication. Furthermore, the index structures are made immutable

during migration. Failure handling and correctness is discussed in

http://www.microsoft.com/windowsazure/sla/


Notation Description

DM The tenant database being migrated
NS Source node for DM

ND Destination node for DM

TSi, TDi Transaction executing at nodes NS and ND respectively
Pk Database page k

Table 1: Notational Conventions.

Section 4, while an extended design relaxing these assumptions is
described in Section 5. The notational conventions used are sum-
marized in Table 1.

Figure 2: Timeline for different phases during migration. Ver-

tical lines correspond to the nodes, the broken arrows repre-

sent control messages and the thick solid arrows represent data

transfer. Time progresses from top towards the bottom.

3.1 Design Overview
Zephyr’s main design goal is to minimize the service interrup-

tion resulting from migrating a tenant’s database (DM ). Zephyr
does not incur a stop phase where DM is unavailable for executing
updates; it uses a sequence of three modes to allow the migration of
DM while transactions are executing on it. During normal opera-
tion (called the Normal Mode), NS is the node serving DM and ex-
ecuting all transactions TS1, . . . , TSk on DM . A node that has the
rights to execute update transactions on DM is called an owner of
DM . Once the system controller determines the destination for mi-
gration (ND), it notifies NS which initiates migration to ND . Fig-
ure 2 shows the timeline of this migration algorithm and the control
and data messages exchanged between the nodes. As time pro-
gresses from the top to the bottom, Figure 2 shows the progress of
the different migration modes, starting from the Init Mode which
initiates migration, the Dual Mode where both NS and ND share
the ownership of DM and simultaneously execute transactions on
DM , and the Finish Mode which is the last step of migration before
ND assumes full ownership of DM . Figure 3 shows the transition
of DM ’s data through the three migration modes, depicted using
ownership of database pages and executing transactions.
Init Mode: In the Init Mode, NS bootstraps ND by sending the
minimal information (the wireframe of DM ) such that ND can ex-
ecute transactions on DM . The wireframe consists of the schema
and data definitions of DM , index structures, and user authentica-
tion information. Indices migrated include the internal nodes of
the clustered index storing the database and all secondary indices.
Non-indexed attributes are accessed through the clustered index. In
this mode, NS is still the unique owner of DM and executes trans-

(a) Dual Mode. (b) Finish Mode.

Figure 3: Ownership transfer of the database pages during mi-

gration. Pi represents a database page and a white box around

Pi represents that the node currently owns the page.

actions (TS1, . . . , TSk) without synchronizing with any other node.
Therefore, there is no service interruption for DM while ND initial-
izes the necessary resources for DM . We assume a B+ tree index,
where the internal nodes of the index contain only the keys while
the actual data pages are in the leaves. The wireframe therefore
only includes these internal nodes of the indices for the database
tables. Figure 4 illustrates this, where the part of the tree enclosed
in a rectangular box is the index wireframe. At NS , the wireframe
is constructed with minimal impact on concurrent operations using
shared multi-granularity intention locks on the indices. When ND

receives the wireframe, it has DM ’s metadata, but the data is still
owned by NS . Since migration involves a gradual transfer of page
level ownership, both NS and ND must maintain a list of owned
pages. We use the B+ tree index for tracking page ownership. A
valid pointer to a database page implies unique page ownership,
while a sentinel value (NULL) indicates a missing page. In the init
mode, ND therefore initializes all the pointers to the leaf nodes of
the index to the sentinel value. Once ND completes initialization
of DM , it notifies NS , which then initiates the transition to the dual
mode. NS then executes the Atomic Handover protocol which
notifies the query router to direct all new transactions to ND .

Figure 4: B+ tree index structure with page ownership infor-

mation. A sentinel marks missing pages. An allocated database

page without ownership is represented as a grayed page.

Dual Mode: In the dual mode, both NS and ND execute transac-
tions on DM , and database pages are migrated to ND on-demand.
All new transactions (TD1, . . . , TDm) arrive at ND , while NS con-
tinues executing transactions that were active at the start of this
mode (TSk+1, . . . , TSl). Since NS and ND share ownership of
DM , they synchronize to ensure transaction correctness. Zephyr
however requires minimal synchronization between these nodes.

At NS , transactions execute normally using local index and page
level locking, until a transaction TSj accesses a page Pj which has
already been migrated. In our simplistic design, a database page is



migrated only once. Therefore, such an access fails and the transac-
tion is aborted. When a transaction TDi executing at ND accesses
a page Pi that is not owned by ND , it pulls Pi from NS on demand

(pull phase as shown in Figure 3(a)); this pull request is serviced
only if Pi is not locked at NS , in which case the request is blocked.
As the pages are migrated, both NS and ND update their owner-
ship mapping. Once ND receives Pi, it proceeds to execute TDi.
Apart from fetching missing pages from NS , transactions at NS

and ND do not need to synchronize. Due to our assumption that
the index structure cannot change at NS , local locking of the index
structure and pages is enough. This ensures minimal synchroniza-
tion between NS and ND only during this short dual mode, while
ensuring serializable transaction execution.

When NS has finished executing all transactions TSk+1, . . . , TSl

that were active at the start of dual mode (i.e. T(NS)= φ), it
initiates transfer of exclusive ownership to ND . This transfer is
achieved through a handshake between NS and ND after which
both nodes enter the finish mode for DM .
Finish Mode: In the finish mode, ND is the only node execut-
ing transactions on DM (TDm+1, . . . , TDn), but does not yet have
ownership of all the database pages (Figure 3(b)). In this phase,
NS pushes the remaining database pages to ND . While the pages
are migrated from NS , if a transaction TDi accesses a page that is
not yet owned by ND , the page is requested as a pull from NS in
a way similar to that in the dual mode. Ideally, NS must migrate
the pages at the highest possible transfer rate such that the delays
resulting from ND fetching missing pages is minimized. However,
such a high throughput push can impact other tenants co-located at
NS and ND . Therefore, the rate of transfer is a trade-off between
the tenant SLAs and migration overhead. The page ownership in-
formation is also updated during this bulk transfer. When all the
database pages have been moved to ND , NS initiates the termi-
nation of migration so that operation switches back to the normal
mode. This again involves a handshake between NS and ND . On
successful completion of this handshake, it is guaranteed that ND

has a persistent image of DM , and so NS can safely release all
of DM ’s resources. ND executes transactions on DM without any
interaction with NS . Once migration terminates, NS notifies the
system controller.

3.2 Migration Cost Analysis
Migration cost in Zephyr results from copying the initial wire-

frame, operation overhead during migration, and transactions or
operations aborted during migration. In the wireframe transferred,
the schema and authentication information is typically small. The
indices for the tables however have a non-trivial size. A simple
analysis provides an estimate of index sizes. Assuming 4KB pages,
8 byte keys (integers or double precision floating point numbers),
and 4 byte pointers, each internal node in the tree can hold about
4096/12 ≈ 340 keys. Therefore, a three-level B+ tree can have up
to 3402 = 115600 leaf nodes, which can index a (115600×4096×
0.8)/106 ≈ 400 MB database, assuming 80% page utilization.
Similarly, a four-level tree can index a 125 GB database. For a three
level tree, the size of the wireframe is a mere 340 × 4096/106 ≈

1.4 MB while for a 4-level tree, it is about 400 MB. For most mul-
titenant databases whose representative sizes are in the range of
hundreds of megabytes to a few gigabytes, an index size of the or-
der of tens of megabytes is a realistic conservative estimate [25,26].
These index sizes add up for the multiple tables and indices main-
tained for the database.

Overhead during migration stems from creating the wireframe
and fetching pages over the network. NS uses standard multi-

granularity locking [17] of the index to construct the index wire-

frame. This scan to create the wireframe needs intention read locks
at the internal nodes which only conflict with write locks [4] on
the internal node. Therefore, this scan can execute in parallel with
any transaction TSi executing at NS , only blocking update trans-
actions that result in an update in the index structure that requires
a conflicting write lock on an internal node. On the other hand,
on-demand pull of a page from NS over the network is also not
very expensive compared to fetches from the disk – disks have an
access latency of about a millisecond while most data center net-
works have round trip latencies of less than a millisecond. The
cost incurred by this remote pull is therefore of the same order as a
cache miss during normal operation resulting in a disk access. As-
suming an OLTP workload with predominantly small transactions,
the period for which DM remains in the dual mode is expected to
be small. Therefore, the cost incurred in this short period in the
dual mode is expected to be small.

Another contributor to the migration cost is failed transactions
at NS resulting from accesses to pages that have been migrated.
In its simplest form as described, Zephyr does not guarantee zero
transaction failure; this however can be guaranteed by an extended
design as shown later in Section 5.

4. CORRECTNESS AND FAULT TOLERANCE
Any migration technique should guarantee transaction correct-

ness and migration safety in the presence of arbitrary failures. We
first prove that Zephyr guarantees serializable isolation even during
migration. We then prove the atomicity and durability properties of
both transaction execution as well the migration protocol.

4.1 Isolation guarantees
Transactions executing with serializable isolation, use two phase

locking (2PL) [14] with multi-granularity [17]. In the init mode and
finish mode, only one of NS and ND is executing transactions on
DM . The init mode is equivalent to normal operation while in finish
mode, NS acts as the storage node for the database serving pages
on demand. Guaranteeing serializability is straightforward in these
modes. We only need to prove correctness in the dual mode where
both NS and ND are executing transactions on DM . In the dual
mode, NS and ND share the internal nodes of the index which are
immutable in our design, while the leaf nodes (i.e. the data pages)
are still uniquely owned by one of the two nodes. To guarantee se-
rializability, we first prove that the phantom problem [14] is impos-
sible, and then prove general serializability of transactions execut-
ing in the dual mode. The phantom problem arises from predicate
based accesses where a transaction inserts or deletes an item that
matches the predicate of a concurrently executing transaction.

LEMMA 1. Phantom problem: Local predicate locking at the

internal index nodes and exclusive page level locking between nodes

is enough to ensure impossibility of phantoms.

PROOF. Proof by contradiction: Assume for contradiction that
a phantom is possible resulting in predicate instability. Let T1 and
T2 be two transactions such that T1 has a predicate and T2 is in-
serting (or deleting) at least one element that matches T1’s predi-
cate. T1 and T2 cannot be executing at the same node, since local
predicate locking would prevent such a behavior. Therefore, these
transactions must be executing on different nodes. Without loss of
generality, assume that T1 is executing at NS and T2 is executing
at ND . Let T1’s predicate match pages Pi, Pi+1, . . . , Pj represent-
ing a range of keys. Since Zephyr does not allow an update that
changes the index during migration, therefore, T2 cannot insert to
a newly created page at ND . Therefore, if T2 was inserting to (or



deleting from) one of the pages Pi, Pi+1, . . . , Pj while T1 was ex-
ecuting, then it implies that both NS and ND have ownership of the
page. This results in a contradiction. Hence the proof.

LEMMA 2. Serializability at a node: Transactions executing

at the same node (either NS or ND) cannot have a cycle in the

conflict graph involving these transactions.

The proof of Lemma 2 follows directly from the correctness of
2PL [14], since all transactions executing at the same node use 2PL
for concurrency control.

LEMMA 3. Let TSj be a transaction executing at NS and TDi

be a transaction executing at ND , it is impossible to have a conflict

dependency TDi → TSj .

PROOF. Proof by contradiction: Assume for contradiction that
there exists a dependency of the form TDi → TSj . This implies
that TSj makes a conflicting access to an item in page Pi after TDi

accessed Pi. Due to the two phase locking rule, the conflict TDi

→ TSj implies that commit of TDi precedes the conflicting access
by TSj , which in turn implies that TSj accesses Pi after it was
migrated to ND as a result of an access by TDi. This leads to a
contradiction since in Zephyr, once Pi is migrated from NS to ND ,
all subsequent accesses to Pi at NS fail. Hence the proof.

Corollary 4 follows by applying induction on Lemma 3.

COROLLARY 4. It is impossible to have a path TDi → . . . →
TSj in the conflict graph.

THEOREM 5. Serializability in dual mode. It is impossible to

have a cycle in the conflict graph of transactions executing in the

dual mode.

PROOF. Proof by contradiction: Assume for contradiction that
there exists a set of transactions T1, T2, . . . , Tk such that there is a
cycle T1 → T2 → . . . → Tk → T1 in the conflict graph. If all
transactions are executing at the same node, then this is a contra-
diction to Lemma 2. Consider the case where some transactions are
executing at NS and some at ND . Let us first assume that T1 exe-
cuted at NS . Let Ti be the first transaction in the sequence which
executed at ND . The above cycle implies that there exists a path of
the form Ti → . . . → T1 where Ti executed at ND and T1 exe-
cuted at NS . This is a contradiction to Corollary 4. Similarly, if T1

executed at ND , then there exists at least one transaction Tj which
executed at NS , which implies a path of the form T1 → . . . → Tj ,
again a contradiction to Corollary 4. Hence the proof.

Snapshot Isolation (SI) [2], arguably the most commonly used
isolation level, can also be guaranteed in Zephyr. A transaction
Ti writing to a page Pi must have unique ownership of Pi, while
a read can be performed from a snapshot shared by both nodes.
This condition of unique page ownership is sufficient to ensure that
during validation of transactions in SI, the transaction manager can
detect two concurrent transactions writing to the same page and
abort one. Zephyr therefore guarantees transactional isolation with
minimal synchronization and without much migration overhead.

4.2 Fault tolerance
Our failure model assumes that all message transfers use reliable

communication channels that guarantee in-order, at most once de-
livery. We consider node crash failures and network partitions; we
however do not consider malicious node behavior. We assume that
a node failure does not lead to loss of the persistent disk image. In
case of a failure during migration, our design first recovers state of
the committed transactions and then recovers the state of migration.

4.2.1 Transaction State Recovery

Transactions executing during migration use write ahead logging
for transaction state recovery [4,23]. Updates made by a transaction
are forced to the log before it commits, thus resulting in a total
order on transactions executing at the node. After a crash, a node
recovers its transaction state using standard log replay techniques,
ARIES [23] being an example.

In the dual mode, NS and ND append transactions to their re-
spective node’s local transaction log. Log entries in a single log
file have a local order. However, since the log for DM is spread
over NS and ND , a logical global order of transactions on DM is
needed to ensure that the transactions from the two logs are applied
in the correct order to recover from a failure during migration. The
ordering of transactions is important only when there is a conflict
between two transactions. If two transactions, TS and TD , execut-
ing on NS and ND , conflict on item i, they must access the same
database page Pi. Since at any instant of time only one of NS and
ND is the owner of Pi, the two nodes must synchronize to arbi-
trate on Pi. This synchronization forms the basis for establishing
a total order between the transactions. During migration, a com-

mit sequence number (CSN) is assigned to every transaction at
commit time, and is appended along with the commit record of
the transaction. This CSN is a monotonically increasing sequence
number maintained locally at the nodes and determines the order
in which transactions commit. If Pi was owned by NS and TS was
the last committed transaction before the migration request for Pi

was made, then CSN(TS) is piggy-backed with Pi. On receipt of
a page Pi, ND sets its CSN as the maximum of its local CSN and
that received with Pi such that at ND , CSN(TD) > CSN(TS).
This causal conflict ordering creates a global order per database
page, where all transactions at NS accessing Pi are ordered before
all transactions at ND that access Pi. We formally state this prop-
erty as Theorem 6:

THEOREM 6. The transaction recovery and the conflict order-

ing protocol ensures that for every database page, conflicting trans-

actions are replayed in the same order in which they committed.

4.2.2 Migration State Recovery

Migration progress is logged to guarantee atomicity and consis-
tency in the presence of failures. Migration safety is ensured by
using rigorous recovery protocols. A failure of either NS or ND

in the dual mode or the finish mode requires coordinated recovery
between the two nodes. We first discuss recovering from a fail-
ure during transition of migration modes and discuss recovery after
failure in different migration modes.
Transitions of Migration Modes: During migration, a transition
from one state to another is logged. Except for the transition from
the init mode to dual mode, which involves the query router meta-
data in addition to NS and ND , all other transitions involve only
NS and ND . Such transitions occur through a one-phase handshake
between NS and ND (as shown in Figure 2). At the occurrence of
an event triggering a state transition, NS initiates the transition by
sending a message to ND . On receipt of the message, ND moves
to the next migration mode, forces a log entry for this change, and
sends an acknowledgment to NS . Receipt of this acknowledgment
completes this transition and NS forces another entry to its log.

If NS fails before sending the message to ND , the mode remains
unchanged when NS recovers, and NS re-initiates the transition. If
NS fails after sending the message, then it knows about the message
after it recovers and establishes contact with ND . Therefore, a state
transition results in two messages and two writes to the log. Log-
ging of messages at NS and ND provides message idempotence,



detects and rejects duplicate messages resulting from failure of NS

or ND , and guarantees safety with repeating failures.
Atomic Handover: A transition from the init mode to the dual
mode involves three participants (NS , ND , and the query router
metadata) that must together change the state. A one-phase hand-
shake is therefore not enough. We use the two-phase commit (2PC) [16]
protocol, a standard protocol for atomic commitment over multiple
sites. Once ND has acknowledged the initialization of DM , NS ini-
tiates the transition and sends a message to the router to direct all
future transactions accessing DM to ND , and a message to ND to
start accepting new transactions for DM whose ownership is shared
with NS . On receipt of the messages, both ND and the router log
their messages and reply back to NS . Once NS has received mes-
sages from both ND and the router, it logs the successful handover
in its own log, changes its state to dual mode and sends acknowl-
edgments to ND and the router which update their respective states.
Atomicity of this handover process follows directly from the atom-
icity proof of 2PC [16]. This protocol also exhibits the blocking
behavior of 2PC when NS (the coordinator) fails. This blocking
however only affects DM which is anyways unavailable as a re-
sult of NS’s failure. Atomic handover therefore does not introduce
any additional blocking when compared to traditional 2PC where a
coordinator failure blocks any other conflicting transaction.
Recovering Migration Progress: The page ownership information
is critical for migration progress as well as safety. A simple fault-
tolerant design is to make this ownership information durable – any
page (Pi) transferred from NS is immediately flushed to the disk at
ND . NS also makes this transfer persistent, either by logging the
transfer or by updating Pi’s parent page in the index, and flushing
it to the disk. This simple solution will guarantee resilience to fail-
ure but introduces a lot of disk I/O which considerably increases
migration cost and impacts other co-located tenants.

An optimized solution uses the semantics of the operation that
resulted in Pi’s on-demand migration. When Pi is migrated, NS

has its persistent (or at least recoverable) image. After the migra-
tion of Pi, if a committed transaction at ND updated Pi, then the
update will be in ND’s transaction log. Therefore, after a failure,
ND recovers Pi from its log and the persistent image at NS . The
presence of a log entry accessing Pi at ND implies that ND owns
Pi, thus preserving the ownership information after recovery. In
case Pi was migrated only for a read operation or if an update trans-
action at ND did not commit, then this migration is not persistent
at ND . When ND recovers, it synchronizes its knowledge of page
ownership with that of NS , any missing page Pi is detected during
this synchronization. For these missing pages, either NS or ND can
be assigned Pi’s ownership; assigning it to ND will need copying
Pi to ND yet again.

On the other hand, if NS fails after migrating Pi, it recovers
and synchronizes its page ownership information with ND when
the missing Pi is detected, and NS updates its ownership mapping.
Failure of both NS and ND immediately following Pi’s transfer is
equivalent to the failure of ND without Pi making it to the disk
at ND , and all undecided pages can be assigned ownership as de-
scribed earlier. Logging the pages at ND guarantees idempotence
of page transfers, thus allowing migration to deal with repeated
failures and prevent lost updates at ND . These optimizations con-
siderably reduces the disk I/O during the dual mode. However, in
the finish mode, since pages are transferred in bulk, the pages trans-
ferred can be immediately flushed to the disk; the large number of
pages per flush amortizes the disk I/O.

Since the transfer of pages to ND does not force an immediate
flush, after migration terminates, ND must ensure a flush before
the state of DM can be purged at NS . This is achieved through

a fuzzy checkpoint [4] at ND . A fuzzy checkpoint is used by a
DBMS during normal operation to reduce the recovery time after a
failure. It causes minimal disruption to transaction processing, as
a background thread scans through the database cache and flushes
modified pages, while the database can continue to process updates.
As part of the final state transition, ND initiates a fuzzy checkpoint
and acknowledges NS only after the checkpoint completes. After
the checkpoint, ND can independently recover and NS can safely
purge DM ’s state. This recovery protocol guarantees that in the
presence of a failure, migration recovers to a consistent point before
the crash. Theorem 7 formalizes this recovery guarantee.

THEOREM 7. Migration recovery: At any instant during mi-

gration, its progress is recoverable, i.e. after transaction state

recovery is complete, database page ownership information is re-

stored to a consistent state and every page has exactly one owner.

Failure and Availability: A failure in any migration mode results
in partial or complete unavailability. In the init mode, NS is still
the exclusive owner of DM . If ND fails, NS can single-handedly
abort the migration or continue processing new transactions until
ND recovers and migration is resumed. In case this migration is
aborted in the init mode, NS notifies the controller which might
select a new destination. A failure of NS however makes DM un-
available and is equivalent to NS’s failure during normal operation.
In this case, ND can abort migration at its discretion. If NS fails in
the dual mode or the finish mode, then ND can only process trans-
actions that access pages whose ownership was migrated to ND

before NS failed. This is equivalent to a disk failing, making parts
of the database unavailable. When ND fails, NS can only process
transactions that do not access the migrated pages. A failure of
ND in the finish mode however makes DM unavailable since ND is
now the exclusive owner of DM . This failure is equivalent to ND’s
failure during normal operation.

4.3 Migration Safety and Liveness
Migration safety ensures correctness in the presence of a failure,

while liveness ensures that ‘something good’ will eventually hap-
pen. We first establish formal definitions for safety and liveness,
and then show how Zephyr guarantees these properties.

DEFINITION 1. Safety of migration requires the following con-

ditions: (i) Transactional correctness: serializability is guaranteed

for transactions executing during migration; (ii) Transaction dura-
bility: updates from committed transactions are never lost; and

(iii) Migration consistency: a failure during migration does not

leave the system’s state and data inconsistent.

DEFINITION 2. Liveness of migration requires the following

conditions to be met: (i) Termination: if NS and ND are not faulty

and can communicate with each other for a sufficiently long period

during migration, this process will terminate; and (ii) Starvation
Freedom: in the presence of one or more failures, DM will eventu-

ally have at least one node that can execute its transactions.

Transaction correctness follows from Theorem 5. We now prove
transaction durability and migration consistency.

THEOREM 8. Transaction durability: Changes made by a com-

mitted transaction are never lost, even in the presence of an arbi-

trary sequence of failure.

PROOF. The proof follows from the following two conditions:
(i) during normal operation, transactions force their updates to the
log before commit, making them durable; and (ii) on successful



termination of migration, NS purges its transaction log and the
database image only after the fuzzy checkpoint at ND completes,
ensuring that changes at NS and ND during migration are durable.

THEOREM 9. Migration consistency: In the presence of arbi-

trary or repeated failures, Zephyr ensures: (i) updates made to data

pages are consistent even in the presence of failures; (ii) a failure

does not leave a page Pi of DM without an owner; and (iii) both

NS and ND are in the same migration mode.

The condition for exclusive page ownership along with Theo-
rem 5 and 6 ensures that updates to the database pages are always
consistent, both during normal operation and after a failure. Theo-
rem 7 guarantees that no database page is without an owner, while
the atomicity of the atomic handover and other state transition pro-
tocols discussed in Section 4.2.2 guarantee that both NS and ND

are in the same migration mode. Theorem 5, 8, and 9 therefore
guarantee migration safety.

THEOREM 10. Migration termination: If NS and ND are not

faulty and can communicate for a long enough period, Zephyr guar-

antees progress and termination.

PROOF. Zephyr successfully terminates if: (i) the set of active
transactions (T) at NS at the start of the dual mode have completed,
i.e. T = φ; and (ii) the persistent image of DM is migrated to
ND and is recoverable. If NS is not faulty in the dual mode, all
transactions in T will eventually complete, irrespective of whether
ND has failed or not. If there is a failure of NS at any point during
migration, after recovery, it is guaranteed that T = φ. Therefore,
the first condition is guaranteed to be satisfied eventually. After the
condition T = φ, if NS and ND can communicate long enough, all
the pages of DM at NS will be migrated and recoverable at ND .

THEOREM 11. Starvation freedom: Even after an arbitrary

sequence of failures, there will be at least one node that can execute

transactions on DM .

The proof of Theorem 11 follows from Theorem 9 which ensures
that NS and ND are in the same migration mode, and hence have a
consistent view of DM ’s ownership.

Theorem 10 and 11 together guarantee liveness. Zephyr guaran-
tees safety in the presence of repeated failures or a network parti-
tion between NS and ND , though progress is not guaranteed. Even
though such failures are rare, proven guarantees in such scenarios
improves the users’ reliance on the system.

5. OPTIMIZATIONS AND EXTENSIONS
We now discuss some extensions that relax some of the assump-

tions made to simplify our initial description of Zephyr.

5.1 Replicated Tenants
In our discussion so far, we assume that the destination of migra-

tion does not have any prior information about DM . Many produc-
tion database installations however use some form of replication for
fault-tolerance and availability. In such a scenario, DM can be mi-
grated to a node which already has its replica. Since most DBMS
implementations use lazy replication techniques to circumvent the
high cost of synchronous replication [4], replicas often lag behind
the master. Zephyr can be adapted to leverage this form of replica-
tion. Since ND already has a replica, there is no need for the init
mode. When NS is notified to initiate migration, it executes the
atomic handover protocol to enter the dual mode. Since ND’s copy
of the database is potentially stale, when a transaction TDi accesses

a page Pi, similar to the original design, ND synchronizes with NS

to transfer ownership. ND sends the sequence number associated
with its version of Pi to determine if it has the latest version of Pi;
Pi is transferred only if ND’s version is stale. Furthermore, in the
finish mode, NS only needs to send a small number of pages that
were not replicated to ND due to a lag in replication. Replication
can therefore considerably improve the performance of Zephyr.

5.2 Sharded Tenants
Our initial description assumes that a tenant is small and is served

from a single node, i.e. a single partition tenant. However, Zephyr
can also handle a large tenant that is sharded across multiple nodes,
primarily due to the fact that NS completes the execution of all
transactions that were active when migration was initiated. Let
DM consist of partitions DM1, . . . ,DMp and assume that we are
migrating DMi from NS to ND . Transactions accessing only DMi

are handled similar to the case of a single partition tenant. Let Ti

be a multi-partition transaction where DMi is a participant. If Ti

was active at the start of migration, then NS is the node that exe-
cutes Ti, and DMi will transition to finish mode only when all such
Ti’s have completed. On the other hand, if Ti started after DMi

had transitioned to the dual mode, then ND is the node executing
Ti. At any given node, Ti is executed in the same way as in a small
single partition tenant.

5.3 Data Sharing in Dual Mode
In Dual Mode, both NS and ND are executing update trans-

actions on DM . This design is reminiscent of data sharing sys-
tems [7], the difference being that our design does not use a shared
lock manager. However, our design can be augmented to use a
shared lock manager to support a larger set of operations during
migration, including arbitrary updates and minimizing transaction
aborts at NS .

In the modified design, we replace the concept of page ownership
with page level locking, allowing the locks to be shared when both
NS and ND are reading a page. Every node in the system has a Lo-

cal Lock Manager (LLM) and a Global Lock Manager (GLM).
The LLM is responsible for the local locking of pages while the
GLM is responsible for arbitrating locks for remote pages. In all
migration modes except dual mode, locks are local and hence ser-
viced by the LLM. However, in the dual mode, NS and ND must
synchronize through the GLMs. The only change needed is in the
page ownership transfer, with the rest of the algorithm remains un-
changed. Note that scalability limitations of a shared lock manager
is not significant in our case since any instance of the lock manager
is shared only between two nodes. We now describe how this ex-
tended design can remove some limitations of the original design.
Details have been omitted due to space constraints.

In the original design of Zephyr, when a transaction TDi requests
access for a page Pi, ND transfers ownership from NS . Therefore,
future accesses to Pi (even reads) must fail to ensure serializable
isolation. In this extended design, if ND only needs a shared lock
on Pi to service reads, then NS can also continue processing reads
from TSk+1, . . . , TSl that access Pi. Furthermore, even if ND had
acquired an exclusive lock, NS can request a lock to ND’s GLM for
the desired lock on Pi. This allows processing transactions at NS

that access a migrated page; the request to migrate the page back to
NS might be blocked in case it is locked at ND . The trade-off asso-
ciated with this flexibility is the cost of additional synchronization
between NS and ND to arbitrate shared locks, and the higher net-
work overhead arising from the need to potentially copy Pi multi-
ple times, while in the initial design, Pi was migrated exactly once.
The original design made the index structure at both NS and ND



immutable during migration and did not allow insertions or dele-
tions that required a change in the index structure. The shared lock
manager in the modified design circumvents this limitation by shar-
ing locks at the index level as well, such that normal index traversal
will use shared intention locks while an update to the index will ac-
quire an exclusive lock on the index nodes being updated.

Zephyr, adapted to the data sharing architecture, allows more
flexibility by allowing arbitrary updates and minimizing transac-
tions or operations aborted due to migration. The implication on
the correctness is straightforward. Since page ownership can be
transferred back to NS , Lemma 3 does not hold any longer. How-
ever, Theorem 5 still holds since page level locking is done in a two
phase manner using the shared lock managers, which ensures that a
cycle in the conflict graph is impossible. The detailed proof is omit-
ted for space limitations. Similarly, the proof for Lemma 1 has to be
augmented with the case for index changes. However, since index
changes will need the transaction inserting an item (T2 in Lemma 1)
to acquire an exclusive on the index page being modified, it will be
blocked by the predicate lock acquired by the transaction with the
predicate (T1 in Lemma 1) on the index pages. Therefore, transac-
tional correctness is still satisfied in the modified design; the other
correctness arguments remain unchanged.

In summary, all these optimizations provide interesting trade-
offs between minimizing the service disruption resulting from mi-
gration and the additional migration overhead manifested as higher
network traffic and increased synchronization between NS and ND .
A detailed analysis and evaluation is left for future work.

6. IMPLEMENTATION DETAILS
Our prototype implementation of Zephyr extends an open source

OLTP database H2 [18]. H2 is a lightweight relational database
with a small footprint built entirely in Java supporting both em-
bedded and server mode operation. Though primarily designed for
embedded operation, one of the major applications of H2 is as a
replacement of commercial RDBMS servers for development and
testing. It supports a standard SQL/JDBC API, serializable and re-
peatable reads isolation levels [2], tree indices, and a relational data
model with foreign keys and referential integrity constraints.

H2’s architecture resembles the shared process multitenancy model
where an H2 instance can have multiple independent databases
with different schemas. Each database maintains its independent
database cache, transaction manager, transaction log, and recovery
manager. In H2, a database is stored as a file on disk which is in-
ternally organized as a collection of fixed size database pages. The
first four pages store the database’s metadata. The data definitions
and user authentication information is stored as a metadata table
(called INFORMATION_SCHEMA) which is part of the database. Every
table in H2 is organized as a tree index. If a table is defined with a
primary key which is of type integer or real number, then the pri-
mary key index stores data for the table. In case the primary key has
other types (such as varchar) or if the primary key was not specified
at table creation, the table’s data are stored in a tree index whose
key is auto-generated by the system. A table can have multiple in-
dices which are maintained separate from the primary key index.
The fourth page in the database file stores a pointer to the root of
the INFORMATION_SCHEMA table, which in turn stores pointers to the
other user tables. H2 supports classic multi-step transactions with
serializable and read committed isolation level.

We use SQL Router4, an open source package, to implement
the query router. It is a JDBC wrapper that transparently migrates
JDBC connections from NS to ND . This SQL router runs a server

4
http://www.continuent.com/community/tungsten-sql-router

listener that is notified when DM ’s location changes. When migra-
tion is initiated, NS spawns a migration thread T . In init mode, T
transfers the database metadata pages, the entire INFORMATION_SCHEMA
table of H2, and the internal nodes of the indices. Conceptually, this
wireframe can be constructed by traversing the index trees to deter-
mine the internal index nodes. This however might incur a large
number of random disk accesses for infrequently accessed parts of
the index, which can considerably increase the migration overhead.
We therefore use an optimization in the implementation where T
sequentially scans through the database file and transfers only the
internal nodes of the indices. When processing a database index
page, it synchronizes with any concurrent transactions and obtains
the latest version from the cache, if needed. Since the index struc-
ture is frozen during migration, this scan uses shared locking, al-
lowing other update transactions to proceed. T notifies ND of the
number of pages skipped, which is used to update page ownership
information at ND .

In the dual mode, ND pulls pages from NS on-demand while
NS continues transaction execution. Before a page is migrated, NS

obtains an exclusive lock on the page, updates the ownership map-
ping, and then sends it to ND . This ensures that the page is migrated
only if it is not locked by any concurrent transaction. In the finish

mode, NS pushes all remaining pages that were not migrated in the
dual mode, while serving any page fetch request from ND; pages
transferred twice as a result of both the push from NS and pull from
ND are detected at ND and duplicate pages are rejected. Since NS

does not execute any transactions in finish mode, this push does not
require any synchronization at NS .

7. EXPERIMENTAL EVALUATION
We now present a thorough experimental evaluation of Zephyr

for live database migration using our prototype implementation.
We compare Zephyr with the off-the-shelf stop and copy tech-
nique that stops the database at NS , flushes all changes, copies over
the persistent image, and restarts the database at ND . Our evalu-
ation uses two server nodes that run the database instances and a
separate set of client machines that generate load on the database.
Each server node has a 2.40GHz Intel Core 2 Quad processor, 8 GB
RAM, a 7200 RPM SATA hard drive with 32MB Cache, and runs
a 64-bit Ubuntu Server Edition with Java 1.6. The nodes are con-
nected via a gigabit switch. Workload is generated from a different
set of client machines. Since migration only involves NS and ND ,
our evaluation focusses only on these two nodes and is oblivious
of other nodes. We measure the migration cost as the number of
failed operations, the amount of data transferred during migration,
and the impact on transaction latency during and after migration.

7.1 Benchmark Description
We use the Yahoo! cloud serving benchmark (YCSB) [9] in our

evaluation. YCSB emulates a synthetic workload generator that
can be parameterized to vary the read/write ratio, access distribu-
tions, etc. Since the underlying database layer is multitenant, we
run one benchmark instance for each tenant database. YCSB was
originally designed to evaluate Key-Value stores, and hence primar-
ily designed for single key operations or scans. We augmented
this workload model and added multi-step transactions, where each
transaction consists of multiple operations, the number of opera-
tions in a transaction (called transaction size) is another workload
parameter. The number of read operations in a transaction is an-
other parameter and so is the access distribution to select the rows
accessed by a transaction. These parameters allow us to evaluate
the behavior of the migration cost for different workloads and ac-
cess patterns. We use the cost measures discussed in Section 2.3.

http://www.continuent.com/community/tungsten-sql-router
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Figure 5: Impact of the distribution of reads, updates, and inserts on migration cost; default configurations used for rest of the

parameters. We also vary the different insert ratios – 5% inserts correspond to a fixed percentage of inserts, while 1/4 inserts

correspond to a distribution where a fourth of the write operations are inserts. The benchmark executes 60,000 operations.

The workload emulates multiple user sessions where a user con-
nects to a tenant’s database, executes hundred transactions and then
disconnects. A workload consists of sixty such sessions, i.e. a total
of 6, 000 transactions. The default configurations use transactions
with ten operations, 80% being read operations, 15% update opera-
tions and 5% new rows inserted. Each tenant’s database consists of
a single table with an integer primary key and ten columns of type
varchar. Keys accessed by a transaction are chosen from a Zip-
fian distribution over a database with 100, 000 rows (∼ 250 MB
on disk); the Zipfian co-efficient is set to 1.0. The workload gen-
erator is multi-threaded with target throughput of 50 transactions
per second (TPS). The default database page size is set to 16 KB
and the cache size is set to 32 MB. These default configurations
are representative of medium sized tenants [25, 26]. We vary these
parameters, one at a time, to analyze their impact on migration cost.

7.2 Migration Cost
Our first experiment analyzes the impact on migration cost when

varying the percentage read operations in a transaction. Figure 5(a)
plots the number of failed operations during migration; clients con-
tinue issuing operations on the tenant even during migration. A
client thread sequentially issues the operations of a transaction. All
operations are well-formed, and any error reported by the database
server after an operation has been issued account for a failed opera-
tion. As is evident from Figure 5(a), the number of failed operations
in Zephyr is one to two orders of magnitude lesser when compared
to stop and copy. Two reasons contribute to more failed operations
in stop and copy: (i) abortion of all transactions active at the start
of migration, and (ii) abortion of all new transactions that access
the tenant when it is unavailable during migration. Zephyr does not
incur any unavailability; operations fail only when they result in a
change to the index structure during migration.

Figure 5(b) plots the number of failed operations when using
Zephyr for workloads with different insert ratios. Zephyr results
in only few tens of failed operations when the workload does not
have a high percentage of inserts, even for cases with a high update
proportion. As the workload becomes predominantly read-only, the
probability of an operation resulting in a change in the index struc-
ture decreases. This results in a decrease in the number of failed
operations in Zephyr. Stop and copy also results in fewer failed
operations for higher values of read percentages, the reason being
the smaller unavailability window resulting from fewer updates that
need to be flushed before migration.

Figure 5(c) plots the average transaction latency as observed by
a client during normal operation (i.e. when no migration is per-
formed) and that with a migration occurring midway; the two bars
correspond to the two migration techniques used. We report latency

averaged over all the 6, 000 transactions that constitute the work-
load. We only report latency of committed transactions; aborted
transactions are ignored. When compared to normal operation, the
increased latency in stop and copy results from the cost of warm-
ing up the cache at ND and the cost of clients re-establishing the
database connections after migration. In addition to the aforemen-
tioned costs, Zephyr fetches pages from NS on-demand during mi-
gration; the page can be fetched from NS’s cache or from its disk.
This results in additional latency overhead in Zephyr when com-
pared to stop and copy.

Figure 5(d) shows the percentage of database pages pulled dur-
ing the dual mode of Zephyr. Since the dual mode runs for a very
short period, only a small fraction of pages are pulled on demand.

In our experiments, stop and copy took 3 to 8 seconds to mi-
grate a tenant. Since all transactions in the workload have at least
one update operation, when using stop and copy, all transactions is-
sued during migration are aborted. On the other hand, even though
Zephyr requires about 10 to 18 seconds to migrate the tenant, there
is no downtime. As a result, the tenants observe few failed op-
erations. Zephyr also incurs minimal messaging overhead beyond
that needed to migrate the persistent database image. Every page
transferred is preceded with its unique identifier; a pull request in
the dual mode requires one round trip of messaging to fetch the
page from NS . Stop and copy only requires the persistent image of
the database to be migrated and does not incur any additional data
transfer/messaging overhead.
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(b) Load

Figure 6: Impact of varying the transaction size and load on

number of failed transactions. We also report the slope of an

approximate linear fit of the points in a series.

We now evaluate the impact of transaction sizes and load (see
Figure 6). Varying the transaction size implies varying the number
of operations in a transaction. Since the load is kept constant at 50
TPS, a higher number of operations per transaction implies more
operations issued per unit time. Varying the load implies varying
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(a) Database size
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(b) Database page size

Figure 7: Impact of the database page size and database size on

number of failed operations.

the number of transactions issued. Therefore, higher load also im-
plies more operations issued per unit time. Moreover, since the
percentage of updates is kept constant, more operations result in
more updates. For stop and copy, more updates result in more data
to be flushed before migration. This results in a longer unavailabil-
ity window which in turn results in more operations failing. On the
other hand, for Zephyr, more updates imply a higher probability of
changes to the index structure during migration, resulting in more
failed operations. However, the rate of increase in failed operations
is lower in Zephyr when compared to stop and copy. This is evident
from the slope of an approximate linear fit of the data points in Fig-
ure 6; the linear fit for Zephyr has a considerably smaller slope than
that for stop and copy. This shows that Zephyr is more robust to the
use for a variety of workloads. The effect on transaction latency is
similar and hence is omitted. We also varied the cache size allo-
cated to the tenants, however, the impact of cache size on service
interruption was not significant. Even though a large cache size
will result in potentially more changes to be flushed to the disk, the
Zipfian access distribution coupled with a high percentage of read
operations result in very few changed objects in the cache.

Figure 7(a) plots the impact of the database size on failed opera-
tions. In this experiment, we increase the database size up to 500K
rows in the database (about 1.3 GB). As the database size increases,
more time is needed to copy the database’s persistent image, result-
ing in a longer unavailability window for stop and copy. On the
other hand, for Zephyr, a larger database implies a longer finish
mode. However, since Zephyr does not result in any unavailabil-
ity, the database size has almost no impact on the number of failed
operations. This is again evident from the slope of the linear fit of
the data points; the slope is considerably higher for stop and copy,
while that of Zephyr is negligible. Therefore, Zephyr is more ro-
bust for larger databases when compared to stop and copy.

Figure 7(b) shows an interesting interplay of the database page
size on the number of operations failing. As the database page size
increases, the number of failed operations decreases considerably
for Zephyr, while that of stop and copy remains almost un-affected.
When the page size is small, each page could fit only a few rows.
For instance, in our setting, each row is close to a kilobyte, and a
2K page is already full with two rows. As a result, a majority of
inserts result in structural changes to the index, which result in a lot
of these inserts failing during migration. If we consider the exper-
iment with 2K page size, more than 95% of the failed operations
were inserts. However, as the page size increases, the leaf pages
have more unused capacity. Therefore, only a few inserts result in
a change to the index structure. Since stop and copy is oblivious
of the page size and transfers the raw bytes of the database file, its
performance is almost unchanged as a result of a change in the page
size. However, when the page size is increased beyond the block

size of the underlying filesystem, reading a page from the disk be-
comes more expensive resulting in an increase in the transaction
latency when the page size is larger than the file system block size.

In summary, Zephyr results in minimal service interruption. In a
cloud platform, high availability is extremely critical for customer
satisfaction, thus making Zephyr more attractive. In spite of Zephyr
not allowing changes to the index structure during migration, it re-
sulted in very few operations failing. A significant failure rate was
observed only with a high row size to page size ratio. Zephyr is
therefore more robust to variances in read-write ratios, database
sizes, and transaction sizes when compared to stop and copy, thus
making it suitable for a variety of workloads and applications.

8. RELATED WORK
Multitenant database systems have been used for many years

in large enterprises. Traditionally, multitenancy in the database
layer has been in the form of the shared table model with major
proponents including Force.com [25], Google AppEngine [1] etc.
A detailed analysis of the different models, associated trade-offs,
and representative designs was presented in Section 2.1. Key-Value

stores, such as Bigtable, PNUTS, Dynamo etc., have also been used
for multitenant application deployment. They provide a unified
namespace over a cluster of machines and multiple tenants store
their databases in this shared namespace. The data store however
manages data placement and co-location of tenants. Hence this
sharing cannot be directly mapped to any of the common multi-
tenancy models. On the other hand, a large number of database
systems have been designed and proposed for the cloud [6, 10, 22],
but the focus for most of them have been to scale-out using the
cloud infrastructure.

Elasticity is a crucial factor to the success of a system in the
cloud, and live migration is important for lightweight elasticity.
The history of live migration can be traced back to more than two
decades and relates to migration of live processes [27]. These pro-
cess migration techniques have been extended in the context of vir-
tual machine (VM) migration, and a number of techniques have
been proposed for Live VM migration [8,20], which is now a stan-
dard feature supported by most VMs. These techniques use a com-
bination of stop-and-copy, pull, and push phases to migrate mem-
ory pages and process states, but rely on a shared persistent storage
abstraction between the source and the destination. Bradford et
al. [5] propose a technique to consistently migrate a VM image and
persistent local state across a WAN. The authors use a technique
based on disk checkpointing followed by checkpoint migration and
copying over the differential changes. Our technique differs from
the VM migration techniques in that we use the semantics of the
DBMS such as database pages, locking during transaction execu-
tion, and proven database and distributed systems recovery proto-
cols to migrate a live database while guaranteeing correctness in
the presence of arbitrary failures.

Recently, techniques for live migration in the database layer have
also been proposed. Most of these techniques draw inspiration from
VM migration techniques and use database operation semantics.
Das et al. [13] propose a technique, called Iterative Copy (IC), for
a shared storage database architecture. Since the storage is shared,
the authors focus on copying the cache during migration such that
the destination starts with a hot cache. Our technique, on the other
hand, focuses on the shared nothing architecture and involves trans-
fer of the entire persistent image of the database. Our goal, there-
fore, is to minimize service interruption. In another closely related
work, Curino et al. [10] also identify the need for live migration in
a shared nothing database architecture. Our technique is similar in
spirit to that of Curino et al. where they suggest starting execution



of transactions at the destination and the destination fetching pages
on demand.

Lomet [21] proposes the use of replicated and partitioned in-
dices for scaling out a database. Zephyr uses a similar concept
where the index wireframe is replicated at the source and the des-
tination nodes while page ownership is partitioned between them.
However, Zephyr maintains the same structure of the index at both
nodes while [21] allows the indices to have different structures
while propagating updates asynchronously.

9. CONCLUSION
Live migration is an important feature to enable elasticity as a

first class feature in multitenant databases for cloud platforms. We
presented Zephyr, a technique to efficiently migrate a tenant’s live
database in a shared nothing architecture. Our technique uses a
combination of on-demand pull and asynchronous push to migrate
a tenant with minimal service interruption. Using light weight syn-
chronization, we minimize the number of failed operations during
migration, while also reducing the amount of data transferred dur-
ing migration. We also provided a detailed analysis of the guaran-
tees provided and proved the safety and liveness of Zephyr. Our
technique relies on generic structures such as lock managers, stan-
dard B+ tree indices, and minimal changes to write ahead logging,
thus making it suitable to be used in a variety of standard database
engines with minimal changes to the existing code base. Our im-
plementation in a standard lightweight open source RDBMS im-
plementation shows that Zephyr allows lightweight migration of a
live tenant database with minimal service interruption, thus allow-
ing migration to be effectively used for elastic load balancing.

In the future, we plan to augment this technique with the con-
trol logic that determines which tenant to migrate and where to
migrate. This control logic along with the ability to migrate live
tenants, together form the basis for autonomous elasticity in multi-
tenant databases for cloud platforms.
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