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1 Introduction 

Parallel database systems combine data management 
and parallel processing techniques to provide high- 
performance, high-availability and scalability for data- 
intensive applications [10, 35]. By exploiting parallel 
computers, they provide performance at a cheaper price 
than traditional mainframe solutions. Further, they are 
the solution of choice for high transaction throughput in 
OLTP systems as well as low response times in decision- 
support systems. Finally, parallel databases are the only 
viable solution for very large databases. 

SQL, the standard language for programming database 
access, is a high-level, set-oriented, declarative language. 
This permits SQL compilers to automatically infer and 
exploit parallelism. Users do not have to learn a new lan- 
guage and application code does not need to be rewritten 
to benefit from parallel execution. This is to be contrasted 
to the use of lower-level languages in scientific comput- 
ing which often requires re-writing application code to 
take advantage of parallel machines. 

A key to the success of parallel database systems, 
particularly in decision-support applications, is parallel 
query optimization. Given a SQL query, parallel query 
optimization has the goal of finding a parallel plan that 
delivers the query result in minimal time. While consid- 
erable progress has been made, several problems remain 
open. Further, solutions to the optimization problem 
are sensitive to the query language expressive power, 
the underlying execution mechanisms, the machine ar- 
chitecture, and variations in the cost metric being min- 
imized. New applications, demands for higher perfor- 
mance from existing applications, innovations in query 
execution mechanisms and machine architectures are 
changing some of the underlying assumptions thereby 
offering new challenges. 

Parallel query optimization offers challenges beyond 
those addressed by past research in fields such as 
distributed databases [30] or classical scheduling the- 
ory [18]. While distributed and parallel databases are 
fundamentally similar, research in distributed query op- 
timization was done in the early 1980s, a time at which 
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communication over a network was prohibitively expen- 
sive and computer equipment was not cheap enough to 
be thrown at parallel processing. Most work [27] focused 
on minimizing work (total resource consumption) rather 
than response time. Response time was considered [2] 
only for execution spaces that allowed independent par- 
allelism but did not allow pipelined or partitioned paral- 
lelism. The latter two forms of parallelism have also not 
been addressed in classical scheduling theory. 

In this paper, we describe some open issues in par- 
allel query optimization and propose some directions of 
research. We first provide a brief overview of parallel 
architectures (Section 2), and of parallel query execu- 
tion (Section 3) and optimization (Section 4). Section 5 
introduces the new issues and Section 6 concludes. 

2 Parallel Machine Architectures 

Parallel system architectures range between two ex- 
tremes, shared-memory and shared-nothing (see Fig- 
ure 1). There are interesting intermediate architectures 
such as shared-disk which we omit for brevity. 

In shared-memory systems all processors may access 
all memory modules and all disks. Examples are HP 
T500, Bull's Escala, SGI Challenge, Cray CS6400 as well 
as mainframes such as IBM3090 and Cray YMP. Exam- 
ples of shared-memory parallel database systems include 
research prototypes such as XPRS [25], DBS3 [4] and 
Volcano [ 16], as well as commercial products such as In- 
formix 7.2 Online Dynamic Server [26], Oracle 7.3/Par- 
allel Query Option [29] and IBM DB2/MVS [28]. 

In shared-nothing systems, each processor has ex- 
clusive access to its main memory and a subset of the 
disks. Tandem Himalaya, IBM SP2 [i] as well as clusters 
of workstations connected by commodity interconnects 
such as ATM are examples of shared-nothing machines. 
Examples of shared-nothing parallel database systems 
include commercial products such as Tandem NonStop- 
SQL [34, 12], IBM DB2 Parallel Edition [3], ATI" GIS 
Teradata as well as research prototypes such as Bubba [5] 
and Gamma [11]. 

The main advantage of shared-memory is simplicity. 
Since meta-information (directory) and control informa- 
tion (e.g., lock table) is shared by all processors, writing 
database software is not very different than for single- 
processor computers. However, balancing processor and 
disk loads presents a problem. As compared to shared- 
nothing, load balancing problems are simpler since any 
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Shared-Memory Machine 
Shared-Nothing Machine 

Figure 1: Shared-Memory and Shared-Nothing Architectures 
processor may access any disk, jobs may be pre-empted 
cheaply and communication costs are low. 

Sharing memory among processors leads to three 
problems: limited scalability, high cost and low avail- 
ability. As the number of processors increase, conflicting 
accesses to the shared-memory rapidly degrade perfor- 
mance. Retaining performance requires special-purpose 
and costly design of the bus and memory. Therefore, scal- 
ability is limited to tens of processors. The architecture 
hurts availability since the memory space is shared by all 
processors. A memory fault may affect most processors. 

Shared-nothing architectures solve scalability and 
availability problems by reducing interference between 
processors. Taqdem and Teradata have demonstrated 
commercial installations with hundreds of processors. 
As remarked earlier, laad balancing is harder in shared- 
nothing systems Shared-memory systems can offer the 
best price-performance when the numbers of processors 
is small. This has led to hybrid architectures which con- 
sist of a shared-nothing system in which each node is a 
shared-memory multi-processor. Examples are Encore 
93 and ATT GIS P90 [7]. 

3 Parallel Query Execution 

A procedural plan for a SQL query is conventionally rep- 
resented as an annotated query tree. Such trees encode 
procedural choices such as the order in which operators 
are evaluated and the method for computing each opera- 
tor. Each tree node represents one (or several) relational 
eperators. Annotations on the node represent the details 
of how it is to be executed. For example a join node 
may be annotated as being executed as a hash-join and a 
base relation may be annotated as being accessed by an 
index-scan. The EXPLAIN statement of most SQL systems 
allows such trees to be viewed by a user. 

The work in computing a query may be partitioned 
using three forms of parallelism: independent, pipelined 
and partitioned. Two operators neither of which uses data 
produced by the other may simultaneously run on dis- 

tinct processors. This is termed independent parallelism. 
Since operators produce and consume sets of tuples, the 
tuples output by a producer can sometimes be fed to a 
consumer as they get produced. Such concurrency is 
termed pipelining and, when the producer and consumer 
use distinct processors, is termed pipelined parallelism. 
Intra-operator parallelism based on partitioning of data is 
termed partitioned parallelism. 

There are intrinsic limits on the benefit from parallel 
execution due to constraints on available parallelism and 
due to the overheads of parallel execution. 

Available parallelism is constrained by several fac- 
tors. Inter-operator parallelism is constrained by timing 
constraints between operators. For example, a hash join 
works by first building a hash table on one operand and 
then, probing the hash table for matches using tuples of 
the second operand. Since the hash table must be fully 
built before being probed, there is aprecedence constraint 
in the computation. As another example, an operator that 
scans a table may pipe its output to the operator that build 
a hash table. Such concurrency eliminates the need to 
buffer intermediate results. It, however, places a parallel 
constraint in the computation. In many machine archi- 
tectures, data on a specific disk may only be accessed by 
the processor that controls the disk. Thus data placement 
constraints limit both inter and intra-operator parallelism 
by localizing scan operations to specific processors. For 
example, if an Employee table is stored partitioned by 
department, a selection query that retrieves employees 
from a single department has no available parallelism. 

Using parallel execution requires starting and initial- 
izing processes. These processes may then communicate 
substantial amounts of data. These startup and commu- 
nication overheads increase total work. The increase 
is significant and may offset the advantages of parallel 
execution in some cases [ 12]. 

Example 3.1 Figure 2 shows a query tree and the corre- 
sponding operator tree. Thin edges are pipelining edges 
that represent parallel constraints. Thick edges are block- 
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ing edges that represent precedence constraints. A sim- 
ple hash join is broken into B u i l d  and P r o b e  opera- 
tors. Since a hash table must be fully built before it can 
be probed, the edge from Bu'i.ld to P r o b e  is block- 
ing. A sort-merge join sorts both inputs and then merges 
the sorted streams. The merging is implemented by the 
Me r ge  operator. In this example, we assume the right 
input of sort-merge to be pre-sorted. The ol~erator tree 
shows the sort required for the left input broken into two 
operators FormRuns and MergeRuns. Since the merg- 
ing of runs can start only after run formation, the edge 
from FormRuns  to MergeRuns  is blocking. 

The operator tree exposes the available parallelism 
and timing constraints among operators. Partitioned par- 
allelism may be used for any operator. Pipelined par- 
allelism may be used between two operators connected 
by a pipelining edge. Two subtrees with no (transitive) 
timing constraints between them may run independently 
(eg: subtrees rooted at FormRuns and B u i l d ) .  [] 

4 Parallel Query Optimization 

The optimization problems in the context of parallel ma- 
chines can be understood with respect to the two-phase 
view [24, 21] shown in Figure 3. The breakup into phases 
provides a way of conquering problem complexity similar 
to the use of phases in programming language compila- 
tion. It eases both the understanding of the problems as 
well as the development of solutions. 

The first phase, JOQR (for Join Ordering and Query 
Rewrite), produces an annotated query tree that fixes 
aspects such as the order of joins and the strategy for 
computing each join. The second phase, parallelization, 
converts the annotated query tree into a parallel plan. 
The JOQR phase includes problems similar to conven- 
tional query optimization. Parallelization does not have 
a counterpart in conventional optimization. 

Critical aspects of parallel execution that interact with 
the decisions of the first phase can be incorporated into 
the models and algorithms used for JOQR. For exam- 
ple, expensive repartitioning of data is needed if one 
or both operands of a join are not partitioned on the 
join attribute. Such repartitioning may be avoided by 
changing the choice of the join predicate or the order of 
joins [23, 21, 20]. We remark that some two-phase ap- 
proaches reuse a conventional optimizei for the JOQR 
phase [24]. 

Following the design of conventional optimizers (such 
as in Starburst [19]) JOQR may be broken into two steps. 
The first rewrites queries based on heuristics while the 
second uses a cost-model to fix the order of operations 
and selects methods for computing each operator (for 
example join and access methods). 

Parallelization may also be broken i , to two steps. The 
first extracts parallelism by macro-expar~ding the anno- 

tated query tree to an operator tree. The operator tree 
identifies the pieces of code (operators) that should be 
considered to be atomic by the scheduler as well as the 
timing constraints between operators. The second step 
schedules the operator tree on the parallel machine. The 
goal of a scheduler is to allocate machine resources so 
as to exploit the available parallelism while respecting 
timing and data placement constraints. 

The two phases pose optimization problems at dif- 
ferent levels of abstraction. An optimization problem is 
modeled by specifying an execution space that defines the 
space of choices and a cost model that assigns a cost to 
each execution. Given such a model, search algorithms 
that minimize cost may be devised. 

Models employed for the two phases are usually quite 
different due to the nature of the problems. JOQR fo- 
cuses on algebraic transformations and selection of strate- 
gies for each high-level operator. The model therefore 
abstracts away facets such as allocation of machine re- 
sources. The cost metric is either work (i.e. total re- 
source consumption) or a very rough guess of response 
time. The parallelization phase, on the other hand, takes 
a fixed procedural plan and focuses on allocating ma- 
chine resources. The model includes a detailed view of 
machine resources and the cost metric is response time. 

It is clearly not essential for optimization algorithms to 
be developed using a strict two-phase view. For example 
JOQR may generate a set of plans or the two phases may 
be integrated. 

5 Some Open I s sues  

We now discuss several open issues in parallel query 
optimization. Many of these issues apply generally to 
query optimization but parallelism makes them harder. 

5.1 Heterogeneous Machines 

A standard assumption in most research is to consider all 
nodes of a parallel machine to be identical. However, it is 
desirable for database software to work in heterogeneous 
environments. 

One often touted advantage of parallel machines is 
the ability to incrementally add components (processors, 
disks). By the time a user needs more computing power, 
newer and faster components are likely to be available. 

Another scenario for heterogeneity is the existence of 
a large number of diverse machines in most office envi- 
ronments. The machines differ in processor speed, the 
amount of memory, and the speed and number of at- 
tached disks. Many of these machines are under-utilized, 
especially at night. Commodity interconnects such as 
Myrinet, FDDI or an ATM switch may be used to turn 
idle machine cycles into a useful parallel machine. 

Distributed information systems may also be enabled 
by the ubiquity of WANs such as the Internet. At one 
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Figure 3: Parallel Query Optimization: A Two-phase View 
end of the spectrum, when there is strong central con- 
trol, these problems may be modeled by considering the 
system to be a heterogeneous parallel system. At the 
other end, decentralized resources management poses ex- 
tremely challenging problems [33]. Further, these new 
environments may require new optimization objectives 
such as minimizing monetary cost to the end-user given 
response time constraints, or minimizing response time 
given a fixed budget. 

ordering is sensitive to estimates of intermediate result 
sizes. It is well known that such estimates may have 
large errors and better information may be available at 
execution time. 

5.3 Space-Time Tradeoffs 

5.2 Dynamic/Pre-emptive Optimization 

The machine resources available for executing a query 
may change while the query is in execution. For example, 
another query may complete and release resources. This 
motivates the need for dynamic revision [6] of scheduling 
decisions. 

We observe that the additional freedom to revise 
scheduling decisions gave two advantages in classical 
scheduling problems such as multi-processor schedul- 
ing. Firstly, pre-emptive schedule are better than non- 
preemptive schedules. Secondly, the algorithmic prob- 
lems get simplified. 

It can be costly to pre-empt a query that uses a large 
number of resources on a parallel machine. Any pre- 
emptive scheme must account for the trade-off between 
the cost and benefit of pre-emption. 

Optimization decisions other than scheduling may also 
benefit from revision at execution time [31, 17]. Join 

Exploiting parallelism poses a host of scheduling prob- 
lems that may be characterized along two dimensions: the 
machine model and the task model. The machine model 
represents resources such as processors, disks, memory 
and the network. The task model consists of operator tree 
and the degrees of freedom that the scheduler is allowed 
(i.e. the use of partitioned, pipelined and independent 
parallelism). 

One challenge is to incorporate space-time tradeoffs 
in the task model. It is well known that additional mem- 
ory can be exploited to reduce the I/O and CPU cost of 
operations such as sorting. In a parallel machine, more 
memory is obtained by spreading computation over a 
larger number of processors - thus I/O and CPU can be 
traded for memory and communication. It is challenging 
to devise models and algorithms that minimize response 
time subject to limits on maximum memory usage while 
taking this trade-off into account. 
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5.4 Extended/Non-Relational Data Models 

Most research on parallel query optimization is in the 
context of the relational model. All parallel database 
products are relational. The penetration of database tech- 
nology into new domains such as technical and scientific 
applications is extending DBMS functionality with ob- 
ject and rule capabilities. Examples of new functionality 
(as in SQL3 and ODMG standards) are sequence or graph 
data structures, path expressions, foreign functions (writ- 
ten in programming languages), and passive and active 
rules. Procedural extensions to database systems incor- 
porate control features such as sequencing, conditionals 
and loops. 

One challenge is to determine how the models and al- 
gorithms developed for parallel query optimization need 
to change for these extended data models. The FAD 
language of Bubba and the Flora language of the IDEA 
system [ 13] have operators that express various forms of 
parallelism over an object data model. The SVP model 
[32] allows sets, sequences and parallelism to be captured 
in a unified framework formalizing divide-and-conquer 
mappings. These languages are possible formal founda- 
tions for further research in parallel database languages 
and parallel query optimization. 

5.5 Evaluation of Algorithms 

Two important aspects of evaluating an algorithm are the 
quality of the plans and the running time of the algorithm. 
Standard benchmarks such as TPC-D provide a measure 
of overall system performance. They do not measure time 
spent on optimization and cannot isolate the quality of the 
optimizer from the quality of other system components. 
Further, they are not designed to stress test parallel query 
optimizers. Thus, one challenge is to develop standard 
criteria for evaluating optimization algorithms. 

We believe it is important to measure the quality of 
plans by comparison with the optimal plan. One met- 
ric for the quality of plans is the performance ratio [ 15] 
which is the ratio of the cost of the produced plan to the 
cost of the optimal plan. This measure has several advan- 
tages. Firstly, the fact that it is a relative measure, allows 
the quality of plans generated to be measured independent 
of the quality of other system components. Secondly, it 
provides a measure of potential benefits from algorithmic 
advances. Lastly, both the average performance ratio as 
well as the worst-case performance ratio are of interest. 
Further, the ratio may be measured either experimentally 
or by analysis. It is worth noting that performance ratio 
can be computed without incurring the prohibitive effort 
of actually finding the optimal plan. Using an easy to 
compute lower bound on the optimal cost yields a pes- 
simistic estimate of the performance ratio. 

The second aspect of evaluating an algorithm is its 
running time. Since there is a tradeoff between the time 

spent in optimizing a query versus executing it, the eval- 
uation criteria depend 'on the number of times the query 
will be executed. Two important cases are canned and 
interactive queries. A canned query is executed many 
times and an interactive query exactly once. Optimiza- 
tion time is not a major concern for canned queries. The 
tradeoff is thus important for interactive queries. Ideas 
such as approximation schemes in which better plans are 
obtained by expending more effort may be useful. 

5.6 Cost Models 

It is desirable to let users decide whether the cost of run- 
ning a query is worth the benefit from the query result. 
This requires the ability to accurately predict query ex- 
ecution time. While this is a challenging problem even 
for sequential machines, factors such as data skew [36, 9] 
pose additional challenges for parallel machines. More 
work is needed to develop and validate accurate cost 
models. 

Database systems are increasingly deployed in inter- 
active systems where it is important to minimize the time 
to produce the first few tup!es of the query result rather 
than the time to complete the query. This new optimiza- 
tion objective poses fresh challenges. 

Two-phase optimization is useful to leverage the dif- 
ficult problems but creates two cost models, each at a 
different level of abstraction. Unifying or ensuring the 
consistency of the two cost models is interesting. Valida- 
tion of cost models is also hard as existing benchmarks 
do not deal with skew and parallelism. This is the more 
general problem of beuchmarking parallel query optimiz- 
ers. 

Since accurate cost estimation is hard, the comple- 
mcntary approach of developing optimization techniques 
that compensate for the lack of knowledge by delaying 
decisions to runtimc is a useful direction. 

6 Conclusions 

Parallel query optimization is a key technology that has 
already contributed to the success of parallel database 
systems. New requirements from applications, demands 
for higher performance from existing applications, in- 
novations in query execution mechanisms and machine 
architectures are changing some of the underlying as- 
sumptions thereby offering new challenges. 

In this paper, we have briefly introduced what we con- 
sider the major issues to be addressed: heterogeneous 
architectures, dynamic/pre-emptive optimization, space- 
time tradeoffs, new language features, evaluation of op- 
timization algorithms, and accuracy of the cost model. 
Although all these issues can be addressed individually. 
they are not independent. To make substantial progress, it 
is important to build paaailel query optimizers and stress 
them against real data and appl!cations. 
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