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1. INTRODUCTION

Database replication has been traditionally used as a basic mechanism to
increase the availability (by allowing fail-over configurations) and the
performance (by eliminating the need to access remote sites) of distributed
databases. In spite of the large number of existing protocols which provide
data consistency and fault-tolerance [Bernstein et al. 1987], few of these
ideas have ever been used in commercial products. There is a strong belief
among database designers that most existing solutions are not feasible due
to their complexity, poor performance and lack of scalability. As a result,
current products adopt a very pragmatic approach: copies are not kept
consistent, updates are often centralized, and solving inconsistencies is left
to the user [Stacey 1994]. To bridge the gap between replication theory and
practice, it is necessary to find a compromise between the correctness and
fault-tolerance of research solutions and the efficiency of commercial sys-
tems. What is needed is a practical solution that guarantees consistency,
provides clear correctness criteria and reasonable fault-tolerance, avoids
bottlenecks, and has good performance. In this paper, we propose such a
solution based on a combination of ideas from group communication and
concurrency control.

Communication is a key issue in distributed computing, since efficiency
can only be achieved when the communication overhead is small. There-
fore, unlike previous replication protocols, our solution is tightly integrated
with the underlying communication system. Following initial work in this
area [Agrawal et al. 1997; Alonso 1997; Pedone et al. 1997; Kemme and
Alonso 1998; Stanoi et al. 1998; Holliday et al. 1999], we exploit the
semantics of group communication [Hadzilacos and Toueg 1993] in order to
minimize the overhead. Group communication systems, such as Isis [Bir-
man et al. 1991], Transis [Dolev and Malki 1996], Totem [Moser et al. 1996]
or Horus [van Renesse et al. 1996], provide group maintenance, reliable
message exchange, and message ordering primitives between a group of
nodes. Their fault-tolerance and consistency services will be used to per-
form some of the tasks of the database, thereby avoiding some of the
performance limitations of current replication protocols.

A second important point is correctness. It is well known that serializ-
ability provides the highest correctness level but is too restrictive in
practice. To address this problem, our protocols implement different levels
of isolation as implemented by commercial systems [Berenson et al. 1995].
The protocols also provide different levels of fault-tolerance to allow differ-
ent failure behaviors at different costs. Our correctness criteria provide a
high degree of flexibility, guaranteeing correctness when needed and allow-
ing the relaxation of correctness when performance is the main issue.
However, our approach always guarantees data consistency.

The basic mechanism behind our protocols is to first perform a transac-
tion locally, deferring and batching writes to remote copies until transac-
tion commit time. At commit time all updates (the write set) are sent to all
copies using a total order multicast which guarantees that all nodes receive
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Table I. Classification of Replication Mechanisms
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Oracle Synchr.Repl.

all write sets in exactly the same order. Upon reception, each site (includ-
ing the local site) performs a conflict test checking for read/write conflicts.
Only transactions passing this test can commit. Conflicting write opera-
tions are executed in arrival order, thereby serializing conflicting transac-
tions. As a result, no explicit 2-phase-commit protocol is needed and no
deadlock can occur.

The work presented in this paper makes several contributions. First, it
proposes a family of replication protocols combining several ideas: the use
of group communication, the use of different levels of isolation to enhance
performance, and the incorporation of communication semantics to opti-
mize fault-tolerance. Second, the problem of implementing replication
efficiently is explored in detail by means of a simulation study. We believe
that our approach solves many of the problems related to database replica-
tion [Gray et al. 1996]. On the one hand, our protocols maintain data
consistency, replication transparency and fault-tolerance. On the other
hand, they can be easily integrated in current systems, provide flexibility,
reasonable performance and the same transactional semantics found in
centralized systems.

The paper is organized as follows: Section 2 provides an overview of
existing replication solutions. Section 3 presents the basic ideas of our
solution. Section 4 describes the system model. Section 5 presents a family
of protocols providing different levels of isolation and Section 6 redefines
the algorithms to provide different levels of fault-tolerance. The properties
of the algorithms are formally proven in Appendix A and B. Section 7
provides an overview of the simulation system. Section 8 describes the
conducted experiments and their results. Section 9 concludes the paper.

2. DATABASE REPLICATION: AN OVERVIEW

In databases, replica control mechanisms ensure data consistency between
the copies. Gray et al. [1996] categorize these mechanisms according to
when updates are propagated and which copies can be updated (Table I).
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Update propagation can be done within or outside the transaction bound-
aries. In the first case, replication is eager, otherwise it is lazy. Eager
replication allows the detection of conflicts before the transaction commits.
This approach provides data consistency in a straightforward way, but the
resulting communication overhead increases response times significantly.
To keep response times short, lazy replication delays the propagation of
changes until after the end of the transaction, implementing update
propagation as a background process. However, since copies are allowed to
diverge, inconsistencies might occur.

In terms of which copy to update, there are two possibilities: centralizing
updates (primary copy) or a distributed approach (update everywhere).
Using a primary copy approach, all updates are first performed at a
primary copy and then propagated to the secondary copies. This avoids
concurrent updates to different copies and simplifies concurrency control,
but it also introduces a potential bottleneck and a single point of failure.
Update everywhere allows any copy to be updated requiring the updates to
the different copies to be coordinated.

2.1 Eager Replication

Early research in replication addressed eager replication since it provides
strong consistency and a high degree of fault-tolerance. The conventional
correctness criterion for eager replication is 1-copy-serializability (1CSR)
[Bernstein et al. 1987]: despite the existence of multiple copies, an object
appears as one logical copy (called I-copy-equivalence) and the execution of
concurrent transactions is coordinated so that it is equivalent to a serial
execution over the logical copy (serializability).

Table I classifies some of the better known eager protocols [Bernstein et
al. 1987; Ceri et al. 1991]. Early solutions used eager primary copy
approaches [Alsberg and Day 1976; Stonebraker 1979]. Later algorithms
followed an update everywhere approach based on quorums, e.g. read-one/
write-all (ROWA) [Bernstein et al. 1987] or read-one/write-all-available
(ROWAA). Significant efforts have been devoted to optimizing quorum sizes
[Gifford 1979; Maekawa 1985; El Abbadi and Toueg 1989; Cheung et al.
1990; Agrawal and E1 Abbadi 1990]. More recently, epidemic protocols have
been proposed [Agrawal et al. 1997] in which communication mechanisms
providing causality are augmented to ensure serializability.

2.2 Lazy Replication

Despite the elegance of eager replication, only the most straightforward
solutions have been included in commercial systems. Users are often
warned to use eager replication only when full synchronization is required
[Oracle 1997]. In practice, commercial databases favor lazy propagation
models. Many different approaches exist (Table I), which are mostly based
on primary copy and often highly specialized to either “On Line Transac-
tion Processing” (OLTP) or “On Line Analytical Processing” (OLAP) [Stacey
1994; Goldring 1994]. For example, Sybase Replication Server has a primary
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copy approach where updates are propagated to the other copies immedi-
ately after the commit of the transaction. This push strategy is an effort to
minimize the time that the copies are inconsistent. IBM Data Propagator is
geared towards OLAP architectures. It adopts a pull strategy in which
updates are propagated only at the client request. This implies that a client
will not see its own updates unless it requests them from the central copy.
Oracle Symmetric Replication [Oracle 1997] supports both push and pull
strategies, as well as eager and lazy replication. Eager replication is
implemented through stored procedures activated by triggers. Oracle’s lazy
replication schemes allow both for primary copy and update everywhere
replication. In the latter case however, when transactions perform conflict-
ing operations, the non-trivial problem of reconciliation arises.

In addition to commercial products, considerable work has been done to
develop lazy replication strategies. A wide range of approaches has been
proposed using weak consistency models [Pu and Leff 1991; Krishnakumar
and Bernstein 1991; Chen and Pu 1992], economic paradigms [Sidell et al.
1996] or epidemic strategies [Agrawal et al. 1997]. There are also many
solutions outside the database domain, e.g., distributed file systems, repli-
cation on the web [Rabinovich et al. 1996], or document replication [Alonso
et al. 1997].

More recently, efforts have been made to develop lazy solutions guaran-
teeing serializability [Chundi et al. 1996; Pacitti et al. 1999; Breitbart et al.
1999]. All of them are based on primary copy approaches. The basic idea is
to restrict the placement of primary and secondary copies and to control the
order in which updates are applied to the secondary copies. These ap-
proaches are able to provide fast response time (no message exchange
during the execution of a transaction) and guarantee serializability. How-
ever, both the set of possible configurations and transaction executions are
severely restricted.

Another recent approach combines eager and lazy replication techniques
[Breitbart and Korth 1997; Anderson et al. 1998]. The system is eager in
the sense that communication takes place within the boundaries of the
transaction to determine the serialization order. This is either done by
using a distributed locking scheme (before each access a lock for the
primary copy must be acquired) or by building a global serialization graph
to detect and avoid non-serializable executions. The system is also lazy
since the execution of a transaction takes place at one site and propagation
of updates to the remote copies is only done after the commit. A 2-phase-
commit is not necessary since the mechanisms guarantee that the updates
of committed transactions will be applied at all sites. This solution is
primary copy based and does not allow transactions to update primary
copies residing on different sites.

3. MINIMIZING THE OVERHEAD OF REPLICATION PROTOCOLS

In view of these ideas, the question to ask is whether it is possible to
combine the correctness properties of eager update everywhere with the
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performance advantages of lazy replication. This is the goal of the protocols
we propose and for this purpose we use a number of techniques:

Reducing the Message Overhead. To separate the problem of global
serializability and replica control, most conventional protocols treat each
operation in a transaction individually. This leads to a significant number
of messages per transaction — an approach that cannot scale beyond a few
nodes. To minimize the message overhead, we bundle update operations
into a single message as it is done in optimistic schemes and in lazy
replication. We do this by postponing all writes to replicated data until the
end of the transaction. Furthermore, assuming that most applications have
significantly more read than write operations, we use a ROWAA solution.
With this, read operations are performed locally and no information about
read operations needs to be exchanged.

Eliminating Deadlocks. [Gray et al. 1996] have shown that in some
configurations the probability of deadlock is directly proportional to n?, n
being the number of replicas. A way to avoid deadlocks is to pre-order
transactions; we do this by using group communication [Hadzilacos and
Toueg 1993]. With group communication it is possible to ensure that all
messages are received in the same total order at all sites. If all operations
of a transaction are sent in a single message and transactions arrive at all
sites in the same order, it suffices to grant the locks in the order the
transactions arrive to be able to guarantee that all sites perform the same
updates and in exactly the same order, and to avoid any kind of deadlock.
Note that the total order on the delivery of transactions does not imply a
serial execution. Non-conflicting operations can be executed in parallel.
Even if serial execution were to be necessary, it has been recently sug-
gested that if enough CPU is available, it pays off to execute transactions
serially, skipping concurrency control entirely [Shasha 1997; Whitney et al.
1997].

Optimizations Using Different Levels of Isolation. Serializability
[Eswaran et al. 1976] is often too restrictive and commercial databases use
alternative correctness criteria that allow lower levels of isolation [ANSI
X3.135-1992 1992; Gray and Reuter 1993; Berenson et al. 1995]. The
different levels are a trade-off between correctness and performance in an
attempt to maximize the degree of concurrency by reducing the conflict
profile of transactions. They significantly improve performance but allow
inconsistencies. They are somehow comparable to lazy solutions but they
have the advantage of being more understandable and well accepted among
database practitioners. These relaxed correctness requirements are even
more relevant in a distributed environment where the longer transaction
execution times lead to higher conflict rates.

Optimizations Using Different Levels of Fault-Tolerance. Most
traditional protocols introduce a considerable amount of additional over-
head during normal processing in order to provide fault-tolerance. As it is
done with different levels of isolation, full correctness can be weakened to
provide faster solutions. In the context of this paper, the reliability of
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Fig. 1. (a) Node architecture and (b) communication model.

message delivery will determine the overall correctness. While complex
message exchange mechanisms guarantee the atomicity of transactions
beyond failures, faster communication protocols only provide a best effort
approach. This trade-off is very similar to that found in the 1-safe and
2-safe configurations typically found in back-up systems [Gray and Reuter
1993; Alonso et al. 1996].

4. MODEL

In this section we present a formal model of a distributed database. A
distributed database consists of a number of nodes, N;, (0 < i = n), also
called sites. Each node maintains a set of objects which can be accessed by
executing transactions. We assume a fully replicated system. Nodes com-
municate with each other by exchanging messages. Figure 1(a) shows the
main components of a node [Bernstein et al. 1987; Gray and Reuter 1993].

4.1 Communication Model

Communication takes place using the multicast primitives provided by a
group communication system [Birman et al. 1991; Chandra and Toueg
1991; Moser et al. 1996; Dolev and Malki 1996; van Renesse et al. 1996].
The primitives manage the message exchange between groups of nodes
providing message ordering and fault-tolerance. For the moment, we as-
sume that a group is static and consists of a fixed number of nodes that
never fail. In Section 6 we enhance the model and the protocol semantics to
account for failures and recovery of sites.

Figure 1(b) depicts the layered configuration we use. At each site, the
database system sends messages by passing them to the communication
module which, in turn, forwards them to all sites including the sending
site. We say that a node N multicasts or sends a message to all group
members. The communication module on each node N physically receives
the message from the network and delivers it to the local database system.
Upon delivery, the local database receives the message. In the following
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sections, we use the terms “a message is delivered at/to node N” and “node
N receives a message” interchangeably to refer to the reception of a
message by the database. In general, the delivery of the same message at
the different nodes does not take place at the same time: at one site a
message might already be delivered while at another node the communica-
tion module has not yet received the message from the network.

Group communication systems usually provide a delivery guarantee, i.e.,
a message is eventually delivered at all sites, even when some failure
occurs (e.g., message loss). Another important feature is message ordering.
The concept of ordering is motivated by the fact that different messages
might depend on each other. For instance, if a node multicasts two
messages, the content of the second message might depend on the content
of the first, and hence, all nodes should receive the messages in the order
they were sent (FIFO). Causality [Lamport 1978] extends the FIFO order-
ing. Formally, we define the causal precedence of messages as the reflexive
and transitive closure of: m causally precedes m’ if a node N receives m
before it sends m' or if a node N sends m before sending m’. FIFO and
causal orders do not impose any delivery order on messages that are not
causally related. Thus, different nodes might receive unrelated messages in
different orders. A total order prevents this by ensuring that all messages
at all nodes are delivered in the same serial order. To summarize, group
communication systems provide different delivery orders:

—Basic service: A message is delivered whenever it is physically received
from the network. Each node receives the messages in arbitrary order.

—FIFO service: Messages sent by a given node are delivered at all nodes in
the order they were sent.

—Causal order service: If a message m causally precedes a message m’,
then m is delivered before m’ at all nodes.

—Total order service: Messages are delivered in the same total order at all
sites, i.e., if any two nodes N and N’ receive some messages m and m’,
then either both receive m before m’ or both receive m' before m.

There exist many different algorithms to implement these delivery or-
ders. For instance, Totem [Moser et al. 1996] uses a token to implement
total order. Another well known approach has been implemented in Isis
[Birman et al. 1991], where a master site determines the sequence numbers
and multicasts them regularly to the other sites. The exact number of
physical messages per multicast and the delay between sending and
receiving a multicast message strongly depend on the ordering algorithm
and whether broadcast or point-to-point communication is used.

4.2 Transaction Model

Users interact with the database by submitting transactions to one node
[Bernstein et al. 1987]. Transactions execute atomically, i.e., a transaction
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T, either commits, (c;), or aborts, (a;), its results at all participating sites. A
transaction T'; is a partial order, <,, of read r;(X) and write w;(X)
operations on logical objects X. When a transaction reads or writes a logical
object more than once during its execution, the operations are indexed
accordingly (e.g. if a transaction reads an object twice, the two operations
are labeled r;;(X) and r;3(X) respectively.). Since we use ROWAA, each
logical read operation r;(X) is translated to a physical read r;(X;) on the
copy of the local node N;. A write operation w;(X) is translated to physical
writes w;(X;), ..., w;(X,) on all (available) copies. Operations conflict if
they are from different transactions, access the same copy and at least one
of them is a write. A history H is a partial order, <y, of the physical
operations of a set of transactions T such that VT, € T: if 0;(X) <,
0i(Y), 0 € {r, w}, then Yo,(X;), 0,(Y;) € H : 0,(X;) <y o0,(Y;). Further-
more, all conflicting operations contained in H must be ordered. In order to
guarantee correct executions, transactions with conflicting operations must
be isolated from each other. For this purpose, different levels of isolation
are used [Gray et al. 1976; Gray and Reuter 1993]. The highest isolation
level, conflict serializability, requires a history to be conflict-equivalent to a
serial history. Lower levels of isolation are less restrictive but allow
inconsistencies. The inconsistencies that might occur are defined in terms
of several phenomena. The ANSI SQL standard specifies four degrees of
isolation [ANSI X3.135-1992 1992]. However, recent work has shown that
many protocols implemented in commercial systems and proposed in the
literature do not match the ANSI isolation levels [Berenson et al. 1995;
Adya 1999; Adya et al. 2000]. In the following, we adopt the notation of
[Berenson et al. 1995] and describe the phenomena of interest for this
paper as:

P1. Dirty read: w.(X;)... ry(X;)... (c;ora;) or a;. Ty reads an uncom-
mitted version of X. The most severe problem of dirty reads is
cascading aborts. If T, aborts the write operation, w;(X;) will be
undone. Hence, T, must also be aborted since it has read an invalid
version.

P2. Lost update: ri(X;)... wy(X,)... wi(X))...c;. T; might write X
upon the result of its read operation but not considering the new
version of X created by T'5. T'y’s update is lost.

P3. Nonrepeatable read: r11(X;). .. we(X;). .. cq. .. r12(X;). T reads two
different values of X.

P4. Read skew: rl(Xi). .. wZ(Xi). .. LUQ(YJ’). .. Co. .. rl(Yj). If there ex-
ists a constraint between X and Y, T'; might read versions of X and Y
that do not fulfill this constraint.
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P5. Write skew: ri(X;). .. ry(Y)). .. wi(Y))... wy. .. (X;). If there exists
a constraint between X and Y it might be violated by the two writes.

4.3 Concurrency Control Model

In most systems, locking protocols [Bernstein et al. 1987; Gray and Reuter
1993] are used to implement the different isolation levels. Since write locks
are usually not released until commit time for recovery purposes (to avoid
P1), the only possibility to reduce the conflict profile of a transaction is to
release read locks as early as possible or to not get read locks at all.
Accordingly, the different protocols proposed here are based on the follow-
ing criteria.

Serializability implemented via strict 2-phase-locking [Bernstein et al.
1987] avoids all phenomena described above. All locks are held until the
end of transaction (called long locks).

Cursor stability avoids long delays of writers due to conflicts with read
operations [Gray and Reuter 1993; Berenson et al. 1995; Adya et al. 2000]
and is widely implemented in commercial systems. If transactions scan the
database and perform complex read operations, long read locks can delay
write operations considerably. In order to avoid such behavior, commercial
systems often release read locks immediately at the end of the read
operation (short read locks). This, however, allows inconsistencies to occur.
To avoid the most severe of these inconsistencies, lost update (P2), the
systems keep long read locks on objects that the transaction wants to
update later. For instance, SQL cursors keep a lock on the object that is
currently referred to by the cursor. The lock is usually held until the cursor
moves on or it is closed. If the object is updated, however, the lock is
transformed into a write lock that is kept until EOT (end of the transac-
tion) [Berenson et al. 1995]. As another example, the reading SQL SE-
LECT-statement can be called with a “FOR UPDATE” clause, and read
locks will not be released after the operation but kept until EOT. Hence, if
the transaction later submits an update operation on the same object, no
other transaction can write the object in between. We call these mecha-
nisms cursor stability in analogy to the discussion in Berenson et al. [1995].
Note that write locks are still long, avoiding P1. Lost updates (P2) can be
avoided by using cursors or the “FOR UPDATE” clause. Cases P3 to P5
might occur.

Snapshot isolation is a way to eliminate read locks completely [Berenson
et al. 1995]. Transactions read consistent snapshots from the log instead of
from the current database. The updates of a transaction are integrated into
the snapshot. Snapshot isolation uses object versions to provide individual
snapshots. Each object version is labeled with the transaction that created
the version. A transaction 7" reads the version of an object X labeled with
the latest transaction that updated X and committed before T started. This
version is reconstructed applying undo to the actual version of X until the
requested version is generated. Before a transaction writes an object X, it
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performs a version check. If X was updated after T started, T' will be
aborted. This feature is called first committer wins. Snapshot isolation
avoids P1 to P4, but allows P5. Snapshot isolation has been provided by
Oracle since version 7.3 [Oracle 1995]. Note that snapshot isolation avoids
all inconsistencies described in the ANSI SQL standard although formally
it does not provide serializable histories.

Hybrid protocol combines 2-phase-locking and snapshot isolation by
requiring that update transactions acquire long read and write locks.
Read-only transactions use a snapshot of the database. This protocol,
unlike cursor stability and snapshot isolation, provides full serializability
but requires update transactions to be distinguished from queries.

4.4 Replica Control Model

In what follows, we use a variation of the read-one/write-all-available
approach. All the updates of a transaction are grouped in a single message,
and the total order of the communication system is used to order the
transactions.

The execution of a transaction can be summarized as follows. A transac-
tion 7'; can be submitted to any node N in the system. T is local at N and
N is the owner of T;. For all other nodes, T'; is a remote transaction. All
read operations of 7T'; are performed on the local replicas of N. The write
operations are deferred until all read operations have been executed and
bundled into a single write set message WS,. If the updates are necessary
for consecutive read operations, they can be performed on private copies.
When the transaction wants to commit, the write set is sent to all available
nodes (including the local node) using the total order. This total order is
used to determine the serialization order whenever transactions conflict.
Upon receiving the write sets, each transaction manager performs a test
checking for read/write conflicts and takes appropriate actions. Further-
more, it orders conflicting write operations according to the total order
determined by the communication system. This is done by requesting write
locks for all write operations in a write set WS, in an atomic step before the
next write set is processed. The processing of lock requests in the order of
message delivery guarantees that conflicting write operations are ordered
in the same way at all sites. A transaction will only start the execution of
an operation on an object after all previous conflicting operations have been
executed. Note that only the process of requesting locks is serialized but
not the execution of the transactions. As long as operations of successive
transactions do not conflict, their execution may interleave.

All the proposed protocols serialize write/write conflicts according to the
total order. The total order we use includes causality, in order to account
for situations that arise when failures occur. The differences between the
protocols arise from how they check for read/write conflicts and how they
handle them. An important characteristic of all these new protocols is that
the total order together with a careful treatment of read operations make a
2-phase-commit protocol unnecessary.
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4.5 Comparison with Related Work

The model we use differs significantly from quorum-based protocols where
individual messages are sent for each single update and transaction
ordering is provided by distributed 2-phase-locking. It is also quite differ-
ent from the epidemic approach proposed in Agrawal et al. [1997]. Whereas
we simply use the total order in a modular way, Agrawal et al. [1997]
enhance the causal order of the communication system to ensure serializ-
ability. As a result, their approach needs a 2-phase-commit and requires
reads to be made visible at all sites.

The combination of eager and lazy replication proposed in Breitbart and
Korth [1997] and Anderson et al. [1998] has certain similarities with our
solution. In both approaches, transactions are first executed locally at a
single site but communication takes place before the transaction commits
in order to determine the serialization order. In both cases, the local site
can commit a transaction before the other sites have applied the updates.
In our approach, the local site can commit the transaction once the position
in the total order is determined and relies on the fact that the remote sites
will use the same total order as serialization order; in Breitbart and Korth
[1997] and Anderson et al. [1998] updates are sent only after the commit.
Neither approach needs a 2-phase-commit. However, there are also some
significant differences. Breitbart and Korth [1997] and Anderson et al.
[1998] send “serialization messages” and use distributed locking or a global
serialization graph to determine the serialization order. Updates are sent
in a separate message. We use the delivery order of the write set messages
to determine the serialization order. Unlike our approach, two of the
mechanisms proposed by Breitbart and Korth [1997] and Anderson et al.
[1998] exchange serialization messages for each operation. The third algo-
rithm is more similar to ours in that it first executes the transaction locally
and only checks at commit time whether the global execution is serializable.

5. DATABASE REPLICATION PROTOCOLS

With the previous ideas, the different protocols we propose are as follows
(failures are discussed in Section 6).

5.1 Replication with Serializability (SER)

We construct a 1-copy-serializable protocol by using a replicated version of
strict 2-phase-locking [Agrawal et al. 1997; Kemme and Alonso 1998].
Whenever a write set is received, a conflict test checks for read/write
conflicts between local transactions and the received write set. If the write
set intersects with the read set of a concurrent local transaction, the
reading transaction is aborted. The protocol is shown in Figure 2 and can
be best explained through the example of Figure 3. (Note that we refer to
the copies of objects associated with N simply as X and omit the index.)
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The lock manager of each node N controls and coordinates the operation requests of a
transaction T; in the following manner:

(1)
(2)
3)

Local Reading Phase: Acquire local read lock for each read operation r;(X'). Defer write
requests w; (X ) until end of reading phase.
Send Phase: If T; is read-only, then commit. Else bundle all writes in W S; and multicast
it (total order service).
Lock Phase: Upon delivery of W S;, request all locks for W S; in an atomic step:
(a) For each operation w;(X) in WS;:
1. If there is no lock on X, grant the lock.
ii.  If there is a write lock on X or all read locks on X are from transactions that
have already processed their lock phase, then enqueue the lock request.
iti.  If there is a granted read lock r;(X) and the write set WS; of T; has not yet
been delivered, abort T; and grant w;(X). If WS; has already been sent, then
multicast abort message a; (basic service).
(b) If T; is a local transaction, multicast commit message ¢; (basic service).
Write Phase: Whenever a write lock is granted perform the corresponding operation.
Termination Phase:
(a) Upon delivery of a commit message c;: Whenever all operations have been executed
commit T; and release all locks.
(b) Upon delivery of an abort message a;: Undo all operations already executed and
release all locks.

Fig. 2. Replication protocol guaranteeing serializability (SER).

N1:X,Y N2:X,Y
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BOT(T1) - — BOT(T2)
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a2=abort T2 T |

cl=commit TL -

Time

Fig. 3. Example execution with the SER protocol.

The vertical lines in Figure 3 show a run at the two nodes N; and N.,.
Both nodes have stored copies of objects X and Y. T; reads X and then
writes Y. Ty reads Y and then writes X. Both transactions are submitted at
around the same time and start the local reads setting the corresponding
read locks (Reading Phase 1 in Figure 2). After the reading phase, both
transactions multicast independently their write sets WS; and WS, (Send
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Phase 2). The communication system orders WS, before WS,. We first look
at node N;. When WS, is delivered, the lock manager first requests all
locks for WS, in an atomic step (Lock Phase 3). Since no conflicting locks
are active, the write lock on Y is granted (3.a.i). Thereafter, the system will
not abort the transaction. This is denoted with the ¢ attached to the lock
entries of T';. The commit message c; is multicast without any ordering
requirement (3.b) and then the operation is executed (Write Phase 4). T,
can commit on N; once c¢; is delivered and all operations have been
performed (Termination Phase 5.a). When WS, is delivered, the lock
manager processes the lock phase of WS,. The lock for X must wait (3.a.ii).
However, it is assured that it only must wait a finite time since 7'; has
already successfully received all necessary locks and can therefore commit
and release the locks (note that the lock phase ends when the lock is
included in the queue). We now have a look at node N,. The lock manager
also first requests all locks for WS, (Lock Phase 3). When requesting the
lock for w,(Y) the lock manager encounters a read lock of T, (conflict test).
Since T, is still in send phase (WS, has not yet been delivered) T, is
aborted and the lock is granted to T'; (3.a.iii). If Ty were not aborted but
instead w,(Y) waited for T, to finish, we would observe a write skew
phenomenon (on N; there is r{(X) <y wy(X); on N, there is ry(Y) <y
w(Y)). This results in a nonserializable execution that is not locally seen
by any node. To avoid this problem, N, aborts its local transaction T'5. Since
WS, was already multicast, N, sends an abort message a, (no ordering
required). When the lock manager of N, now receives WS,, it simply
ignores it. Once a lock manager receives the decision (commit/abort)
message for T'; / T, it can terminate the transaction accordingly (Termina-
tion Phase 5.a, 5.b).

The protocol is deadlock free, 1-copy-serializable, and guarantees trans-
action atomicity; that is, if a node commits/aborts a local update transac-
tion T then all nodes commit/abort 7. The proof of correctness of this
protocol can be found in Appendix A.

In this protocol, the execution of a transaction T'; requires two messages:
one to multicast the write set (using the total order) and another with the
decision to abort or commit (using the simple order). The second message is
necessary since only the owner of T'; knows about the read operations of T;
and, therefore, about a possible abort of 7';. Once the owner of T; has
processed the lock phase for WS;, T; will commit as soon as the commit
message arrives. Due to the actions initiated during the lock phase, it is
guaranteed that remote nodes can obey the commit/abort decision of the
owner of a transaction. When granting waiting locks, write locks should be
given preference over read locks to avoid unnecessary aborts.

Several mechanisms could be used to avoid aborting the reading transac-
tion. One possibility is to abort the writer instead of the reader. However,
this would require a 2-phase-commit protocol since a writer could be
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(1) Local Reading Phase: Acquire local read lock for each read operation r;(X). In case of
short locks (i.e., T; will not update X later on), release the lock after the execution of
the operation, otherwise keep it. Defer write requests w;(X) until end of reading phase.

(3.a.ii) If there is write lock on X or all read locks on X are either short or from transactions
that have already processed their lock phase, then enqueue the lock request.

Fig. 4. Protocol changes: cursor stability (CS).

aborted anywhere in the system. This is exactly what our approach tries to
avoid by enabling each site to independently decide on the outcome of its
local transactions. A second option would be to use traditional 2-phase-
locking, that is, the write operation has to wait until the reading transac-
tion terminates. This approach creates deadlocks and is therefore not
desirable. The third alternative is that each node informs the other nodes
about local read operations so that each site can check individually whether
read/write conflicts lead to nonserializable executions. The only way to do
this efficiently would be to send information about the read set together
with the write set. This information, however, is rather complex since it
must not only contain the identifiers of all read objects but also which
transactions had written the versions that were read. As a result, perfor-
mance would be seriously affected.

To summarize, aborting readers is expensive but it provides 1-copy-
serializability, avoids distributed deadlocks, keeps reads local, and avoids
having to use 2-phase-commit. However, it might be worth not aborting
read operations. The next two protocols explore this approach.

5.2 Replication with Cursor Stability (CS)

The weak point of the SER protocol is that it aborts read operations when
they conflict with writes. The protocol may even lead to starvation of
reading transactions if they are continuously aborted. A simple and widely
used solution to this problem is cursor stability; this allows the early
release of read locks. In this way, read operations will not be affected too
much by writes, although the resulting execution may not be serializable.

The algorithm described in the previous section can be extended in a
straightforward way to include short read locks. Figure 4 shows the steps
that need to be changed. The reading phase (1) now requires short read
locks to be released immediately after the object is read, Hence, the
modified step (3.a.ii) of the lock phase shows that the protocol does not
need to abort upon read/write conflicts with short read locks since it is
guaranteed that the write operation only waits a finite time for the lock.
Upon read/write conflicts with long read locks aborts are still necessary.
Note that when granting waiting locks, short read locks need not be
delayed when write sets arrive but can be granted in the order they are
requested since they do not lead to an abort. How far the protocol can really
avoid aborts depends on the relation between short and long read locks;
this is strongly application dependent. Like the SER protocol, the CS
protocol requires two messages: the write set sent via a total order
multicast and the decision message using a simple multicast.
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The CS protocol fulfills the atomicity requirement of a transaction in the
same way as the SER protocol does. It does not provide serializability but
avoids P1 and P2. P3 through P5 may occur. The proof can be found in
Appendix A.

5.3 Replication with Snapshot Isolation (SI)

Although cursor stability solves the abort problem of SER, it generates
inconsistencies. The problem is that read/write conflicts are difficult to
handle since they are only visible at one site and not in the entire system.
Snapshot isolation effectively separates read and write operations thereby
avoiding read/write conflicts entirely. This has the advantage of allowing
queries (read-only transactions) to be performed without interfering with
updates. In fact, since queries do not need to be aware of replication at all,
the replication protocol based on snapshot isolation is only concerned with
transactions performing updates.

In order to enforce the “first committer wins” rule, as well as to give
appropriate snapshots to the readers, object versions must be labeled with
transactions and transactions must be tagged with BOT (beginning of
transaction) and EOT timestamps. The BOT timestamp determines which
snapshot to access and does not need to be unique. The EOT timestamp
indicates which transaction made which changes (created which object
versions), and hence, must be unique. Oracle [Bridge et al. 1997] times-
tamps transactions using a counter of committed transactions. In a distrib-
uted environment, the difficulty is that the timestamps must be consistent
at all sites. To achieve this, we use the sequence numbers of WS messages.
Since write sets are delivered in the same order at all sites the sequence
number of a write set is easy to determine, unique, and identical across the
system. Therefore, we set the EOT timestamp T'S;(EOT) of transaction T;
to be the sequence number of its write set WS,;. The BOT timestamp
TS, (BOT) is set to the highest sequence number of a message WS, so that
transaction 7'; and all transactions whose WS have lower sequence num-
bers than WS; have terminated. It is possible for transactions with higher
sequence numbers to have committed but their changes will not be visible
until all preceding transactions (with a lower message sequence number)
have terminated.

Figure 5 describes the algorithm for replication with snapshot isolation.
We assume the amount of work to be done for version reconstruction in the
reading phase (1) is small. Either this version is still available (Oracle, for
instance, maintains several versions of an object [Bridge et al. 1997]) or it
can be reconstructed by using a copy of the current version and applying
undo until the requested version is generated. Oracle provides special
rollback segments in main memory to provide efficient undo [Bridge et al.
1997] and we assume a similar mechanism is available. The lock phase
includes a version check (3). If w;(X) € WS,, and X was updated by
another transaction since T; started, T; will be aborted. We assume the
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The transaction manager of each node N coordinates the operation requests of the transac-
tions as follows:

(1) Local Reading Phase: For each read operationr;(X), reconstruct the version of X labeled
with T; where T; is the transaction with the highest T'S;(EOT) so that TS;(EOT) <
TS;(BOT).

(2) Send Phase: If T; is read-only, then commit. Else bundle all writes in W S; and multicast
it (total order service). The WS; message also contains the TS;(BOT) timestamp.

(3) Lock and Version Check Phase: Upon delivery of W S;, perform in an atomic step:

For each operation w;(X) in WS;:

(a) If there is no write lock on X and the current version of X is labeled with T;. Then,
if TS;(EOT) > TS;(BOT), stop checking locks and abort T;. Otherwise grant the
lock.

(b) If there is a write lock on X or a write lock is waiting. Then let T; be the last
transaction to modify X before T;: if TS;(EOT) > TS;(BOT), then stop checking
locks and abort T;. Otherwise enqueue the lock request.

(4) Write Phase: Whenever a write lock is granted, perform the corresponding operation.

(5) Commit Phase: Whenever all operations have been executed, commit T; and release all
locks.

Fig. 5. Replication protocol based on snapshot isolation (SI).

version check to be a fast operation (the check occurs only for those objects
that are updated by the transaction). In addition, to reduce the overhead in
case of frequent aborts, a node can do a preliminary check on each local
transaction 7T'; before it sends WS,. If there already exists a write conflict
with another transaction, T'; can be aborted and restarted locally. However,
the check must be repeated upon reception of WS; on each node.

With this algorithm, each node can decide locally, without having to
communicate with other nodes, whether a transaction will be committed or
aborted at all nodes. No extra decision message is necessary since conflicts
only exist between write operations. The write set is the only message to be
multicast.

Note that while serializability aborts readers when a conflicting write
arrives, snapshot isolation aborts all but one concurrent writer accessing
the same item. We can therefore surmise that, regarding the abort rate, the
advantages of one or the other algorithm will depend on the ratio between
read and write operations. However, snapshot isolation has some other
advantages compared to serializability or cursor stability. It only requires a
single multicast message to be sent and has the property that read
operations do not interfere with write operations.

The SI protocol guarantees the atomicity of transactions. However, it
does not provide serializability. It avoids P1 through P4, but P5 might
occur. The proof can be found in Appendix A.

5.4 Hybrid Protocol

Snapshot isolation provides queries with a consistent view of the database.
However, update transactions are not serializable. Moreover, if objects are
updated frequently the aborts of concurrent writes might significantly
affect performance. Long transactions also suffer under the first committer
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wins strategy. To avoid such cases, a hybrid approach could use the
protocol for full serializability for update transactions and snapshot isola-
tion for queries. This combination provides full serializability. However, to
be able to decide which protocol must be applied, transactions must be
declared read-only or update in advance. In addition, both approaches must
be implemented simultaneously leading to more administrative overhead.
Both update transactions and objects must receive timestamps to be able to
reconstruct snapshots for the read-only transactions. In addition, the lock
manager must be able to handle the read locks of the update transactions.
This overhead might be justified, since a replicated database makes sense
only for read-intensive applications.

6. FAULT-TOLERANCE

Group communication and databases follow different approaches to fault-
tolerance. Their solutions must be modified to make them fit together
[Guerraoui and Schiper 1995]. Following accepted practice in databases, we
not only look at solutions that provide full correctness and consistency, but
also propose best effort approaches which may lead to inconsistencies in
case of failures but provide better performance. As with the different
isolation levels, this is a pragmatic solution based on a typical trade-off
between introducing a few inconsistencies in case of failures and being able
to process most transactions as quickly as possible.

In our context, we assume a crash failure model [Neiger and Toueg 1988].
A node runs correctly until it fails. From then on, it does not take any
additional processing steps until it recovers. The system is asynchronous
(i.e., different sites may run at different rates) and the delay of messages is
unknown, possibly varying from one message to the next.

6.1 Failure Handling in Group Communication Systems

Group communication systems handle failures by providing group mainte-
nance services and different degrees of reliability. Node failures (and
communication failures) lead to the exclusion of the unreachable nodes and
are mainly detected using timeout protocols [Chandra and Toueg 1991]. We
assume that only a primary partition may continue to work while the other
partitions stop working and, hence, behave like failed nodes. The applica-
tion is provided with a virtual synchronous view of failure events in the
system [Birman et al. 1991].

To do so, the communication module of each site maintains a view V; of
the current members of the group and each message is sent with respect to
this view. Whenever the group communication system observes the failure
of one or more of the members, it runs a coordination protocol called the
view change protocol. This protocol guarantees that the communication
system will deliver exactly the same messages at all nonfailed members.
Only then is the new view that excludes the failed nodes installed and the
application informed via a so-called view change message. Hence, the
application programs on the different sites perceive process failures at the
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same virtual time. Note that, since we do not allow partitions, all nodes of
view V; change to the same consecutive view V;,; unless they fail.

Using virtual synchronous communication, the database system at each
node N generates a sequence of communication events. An event is either
sending a message m, receiving a message m (this is also denoted message
m is delivered at N), or receiving a view change notification consisting of a
new view V. Without loss of generality we assume the first and last events
to be view changes. A run R; of the database system at node N, N € V,, is
the sequence of communication events at N starting with view V; and
ending either with consecutive view V;,; (we then say N is V;-available) or
the failure of N (we then say N fails during V; or that N is faulty in V).
Virtual synchrony provides the following guarantees.

(1) View synchrony: if a message m sent by node N in view V; is delivered
at node N’, then N’ receives m during R;.

(2) Liveness: if a message m is sent by node N in view V; and N is
V;-available, then m is delivered at all V;-available nodes.

(3) Reliability: Two degrees of reliability are provided: let m be a message
sent by node N in view V.
(a) Reliable delivery: if m is delivered at node N’ and N’ is V;-available,
then m is delivered at all V;-available nodes.
(b) Uniform reliable delivery: if m is delivered at any node N’ (i.e., N’
either is V;-available or fails during V;), then m is delivered at all
V;-available nodes.

Uniform reliability and (simple) reliability differ in the messages that
might be delivered at failed nodes. With uniform reliable delivery, a node N
receives the same messages as all other nodes until it fails [Schiper and
Sandoz 1993]. In this case the set of messages delivered at a failed node N
is a subset of the messages delivered at the surviving nodes (in the case of
total order, it is a prefix). With reliable delivery failed nodes might receive
(and process) messages that no other node receives. In any case, the
ordering of messages must be correct—within a single run R; and across
view changes.

The view change protocol must be able to exchange messages to guaran-
tee their delivery at all nonfaulty sites. To do so, the communication
module of each node keeps messages until they are stable, that is, until
each other node in the group has acknowledged their reception from the
network. In a simple view change protocol, each remaining node would
send all unstable messages to all nonfailed nodes (called flush).

The degree of reliability has a big impact on the message delay during
normal processing. Uniform reliable delivery cannot deliver a message to
the application until it is stable, hence, delaying the message for an
additional message round. This is similar to a 2-phase-commit, although it
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does not involve a voting process. Using reliable delivery, a message can be
delivered as soon as all preceding messages have been delivered. For
example, a simple multicast message can be delivered immediately after its
reception from the network since it is not ordered with respect to any other
message.

Numerous view change protocols have been proposed that always work
with specific implementations of the causal and total order services and
provide different degrees of reliability [Birman et al. 1991; Schiper and
Sandoz 1993; Moser et al. 1994; Friedman and van Renesse 1995b]. Since
the view change might introduce a significant overhead, these systems only
work when failures occur at a lower rate than messages exchange. Inter-
failure intervals in the range of minutes or hours are, however, acceptable.

6.2 Failure Handling in Database Systems

Databases deal with failures based on the notion of atomicity and consis-
tency.

Atomicity implies that a transaction must either commit or abort at all
nodes. Therefore, after the detection of a failure, the remaining nodes have
to agree on what to do with pending transactions. This usually requires
executing a termination protocol among the remaining nodes before pro-
cessing can be resumed [Bernstein et al. 1987]. The termination protocol
has to guarantee that, for each transaction the failed node might have
committed/aborted, the remaining available nodes decide on the same
outcome. This approach is very similar to the view change protocol in
distributed systems. Whereas replicated database systems decide on the
outcome of pending transactions, group communication systems decide on
the delivery of pending messages. Hence, comparing typical protocols in
both areas [Bernstein et al. 1987; Friedman and van Renesse 1995b], we
believe the overhead to be similar. A significant difference is that database
systems decide negatively: abort everything that does not need to be
committed, while group communication systems behave positively: deliver
as many messages as possible. In what follows, we look at how the view
change protocol can assume the tasks of the termination protocol.

The replicated database is consistent if all replicas of an object residing
on nonfaulty nodes converge to the same value. This is achieved in part by
the atomicity of transactions: all sites commit the updates of exactly the
same transactions (unless they fail). In the next sections we show that all
proposed algorithms guarantee transaction atomicity on all nonfaulty
nodes. Furthermore, using the total order, all these updates are applied in
the same order at all sites. Hence, consistency among non-faulty nodes is
provided.

In what follows we combine the protocols presented in Section 5, with
both uniform reliable and reliable message delivery. For each of the
possible combinations we discuss what needs to be done when failures
occur and which atomicity guarantees can be provided. Appendix A con-
tains the detailed theorems and proofs. In the following we look at the run

ACM Transactions on Database Systems, Vol. 25, No. 3, September 2000.



Eager Database Replication Protocols . 353

R, at each node N, that is, from installing view V; until installing V; ; or
the failure of N. The extension to an entire execution is straightforward.

6.3 Snapshot Isolation (SI)

For nodes that do not fail, there is no difference between reliable and
uniform reliable delivery using SI. For both types of delivery, when a node
N is in view V; and receives view change message V., it simply continues
processing transactions unless the group change is due to a network
partition that would disallow the current group of N to continue processing
transactions. Let T be the set of transactions whose write sets have been
sent in view V.

THEOREM 1. The SI protocol, either with reliable or uniform reliable

delivery, guarantees atomicity of all transactions in T on all V;-available
nodes.

Proor. (Proof Sketch) Both reliable and uniform reliable delivery
(Guarantee 3) together with the total order of WS messages and the view
synchrony (1) guarantee that the database modules of V;-available nodes
receive exactly the same prefix of WS messages before receiving view
change V, ;. Furthermore, liveness (2) guarantees that write sets of
V.-available nodes will always be delivered. Thus, within this group of
available nodes (excluding failed nodes), we have the same delivery charac-
teristics as we have in a system without failures. Hence we can rely on the
atomicity guarantee of the SI protocol in the failure-free case. [

Uniform reliable and reliable delivery for SI differ in the set of transac-
tions committed at failed nodes and, consequently, in what must be done
when nodes recover.

With uniform reliable message delivery a node failing during V; delivers a
prefix of the sequence of messages delivered by a V;-available node. Thus,
the behavior of an available node and a failed node is the same until the
failure occurs and the failed node simply stops. From here, it is easy to see
that atomicity of all transactions is guaranteed on all nodes, including
failed nodes (see Theorem 9 in Appendix B).

If reliable message delivery is used, a failed node might commit a
transaction that the available nodes do not commit. This can happen since
a failed site might have delivered a write set before failing but none of the
other sites deliver this write set. For instance, with the Totem [Moser et al.
1996] protocol, a node with the token could send the write set of a
transaction, commit it locally, and then fail. If the message is lost, no other
site will see this transaction. Note that this scenario cannot occur with
uniform reliable delivery since the database will not commit the transac-
tion until it has been received at all sites. As a result, when performing
recovery, such spurious transactions must be reconciled.
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6.4 Serializability (SER), Cursor Stability (CS), or Hybrid

Similar to SI, for the SER, CS, and Hybrid protocols there is no difference
on available nodes between reliable and uniform reliable delivery. Unlike
SI, however, only the owner of a transaction can decide on the outcome of
the transaction. Therefore, a failed node can leave in-doubt transactions in
the system.

Definition 1. Let N be a node failing during view V; and T a transaction
invoked at node N whose write set WS has been sent before or in V;. T is
in-doubt in V; if the V;-available nodes receive WS, but not the correspond-
ing decision message (commit/abort) before installing view V.

From here we can derive the set of transactions for which the outcome is
determined before view V,,.;. Let 7; be the set of transactions which are
in-doubt in V;. T, is the set of transactions that have been invoked at a
V,-available node and both write set and decision message (commit/abort)
have been sent before or in view V. Finally, T; is the set of transactions
that have been invoked at a node failing during V; and both write set and
decision message have been received by the V;-available nodes before N
fails. Let 7 = 7; U T, U Ts.

THEOREM 2. The SER, CS, and Hybrid protocols, either with reliable or
with uniform reliable delivery, guarantee transaction atomicity of all trans-
actions in T on all V;-available nodes.

Proor. (Proof Sketch). For both reliable and uniform reliable delivery,
all sites available during V; receive exactly the same messages (and the
write sets in the same order) before installing view change V;,;. Hence,
they all have exactly the same set of in-doubt transactions and the same set
of transactions for which they have received both the write set and the
decision message. If they decide on the same outcome for in-doubt transac-
tions, they have the same behavior as a system without failures. Hence, we
apply the atomicity property of the SER/CS/Hybrid protocol to guarantee
transaction atomicity on all available nodes and with it database
consistency. [

Note that there are two types of transactions that are not in 7. The first
type is transactions of available nodes where the decision message was not
sent in V;. For this group, the decision will simply be made in the next
view. The second group is the transactions invoked at a node failing during
V., where the write set was sent but not received at any available site. In
the following we refer to this group as G. These are the transactions that
will be handled differently depending on whether reliable or uniform
reliable delivery is used. As with SI, the reliability of message delivery has
an impact on the set of transactions committed at failed nodes and hence,
determines whether transaction atomicity is also guaranteed on failed
nodes.

ACM Transactions on Database Systems, Vol. 25, No. 3, September 2000.



Eager Database Replication Protocols . 355

If both the write set and the commit message are uniform reliable,
transaction atomicity is guaranteed in the entire system (including failed
nodes). Upon reception of the view change, all available nodes will have the
same in-doubt transactions which are safe to abort. These transactions are
either active or aborted on the node that failed but never committed, since
uniform delivery guarantees that all or no node receives the commit.
Furthermore, transactions from G (that are not visible at available nodes)
cannot be committed at failed nodes, since this is only possible when both
write set and commit message are delivered. The requirement of uniform
reliability does not apply to abort messages; that is, they can be sent with
the reliable service, since the default decision for in-doubt cases is to abort.
For more details, see Theorem 10 in Appendix B. We call this approach
nonblocking since all available nodes decide consistently in a nonblocking
way about all pending transactions and the new view can correctly continue
processing.

Some of the overhead of uniform delivery can be avoided by risking not
being able to reach a decision about in-doubt transactions. This is the case
if the write set WS, is sent using uniform reliable delivery, but both commit
and abort messages are sent using reliable delivery. After the database
module receives a view change excluding node N, it will decide to block all
the in-doubt transactions of N and then continue processing transactions.
A transaction that is in-doubt at the available nodes can be active,
committed, or aborted at the failed node. Hence, to achieve transaction
atomicity on all nodes, in-doubt transactions must be blocked. For all other
transactions, transaction atomicity can be guaranteed with the same
arguments as before. A more detailed description is given in Theorem 11 in
Appendix B. This scenario is similar to the blocking behavior of the
2-phase-commit protocol. Note that blocking does not imply that the nodes
will be completely unable to process transactions. Transactions that do not
conflict with the blocked transactions can be executed as usual. Only
transactions that conflict with the blocked transactions must wait. In
practice, it might be reasonable to abort these transactions but recovery
needs to consider transactions committed at failed nodes and aborted
elsewhere.

A last possibility sends all messages using reliable delivery. In this case a
node could commit a transaction from group G locally before it is seen by
any other node. Consequently, failed nodes may have committed transac-
tions that are nonexisting at the other sites and must be reconciled upon
recovery. Hence, transaction atomicity cannot be guaranteed on all nodes.
However, atomicity and consistency are preserved within the available
nodes. As in the previous case, in-doubt transactions can be blocked or
aborted.

6.5 Recovery

Upon recovery, the database at the recovering node must be identical to the
databases in the rest of the system before the node can start executing

ACM Transactions on Database Systems, Vol. 25, No. 3, September 2000.



356 . B. Kemme and G. Alonso

transactions. This is also true when a completely new node is added. A
recovering node needs to perform a standard undo/redo recovery [Bernstein
et al. 1987] and must contact a peer node to obtain the current state of the
database. To do this, there exist two possibilities: the peer node can either
send an entire copy of the database or it can send the part of its log that
contains the transactions executed after the recovering node failed. Which
option is best depends on the size of the database and the number of
transactions executed during the down-time of the recovering node.

The advantage of the view change protocol is that it provides checkpoints
that can be used to determine what a recovering node needs to do. First,
there is a last view change V; being seen by a node before it failed (i.e., it
failed during V; ;). Second, when a failed node rejoins the system a new
view change V; is triggered. From then on the recovering node receives all
new transactions. Thus, the recovering node can restore the state of the
database at the time of view change V; and replay the log of the peer node
that includes all transactions received after V; and before V;. From here on
it can execute all transactions received in the new V; and start its own
transactions.

Care has to be taken when the system only uses reliable message
delivery. In this case, alluded to before, failed nodes might have committed
transactions that have not been seen by other nodes. These updates must
be either reconciled or undone in the recovering node.

7. SIMULATION MODEL

The performance of the proposed protocols has been evaluated using
similar techniques to those used in other studies of concurrency control
[Agrawal et al. 1987; Livny and Carey 1989; Gupta et al. 1997]. The
simulation parameters are summarized in Table II.

The database is modeled as a collection of DBSize objects where each of
the NumSite sites stores copies of all objects. Each site consists of Num-
CPU processors and NumDisks data disks. All disks and processors have
their own request queues; these are processed in FCFS order. The Object-
AccessTime and DiskAccessTime parameters capture the time needed to
perform an operation on an object and to fetch an object from the disk. The
BufferHitRatio indicates the percentage of operations on data residing in
main memory.

Communication overhead is modeled by several parameters. Each physi-
cal message transfer has an overhead of SendMsgTime CPU time at the
sending site and RcvMsgTime CPU time at the receiving site. The times
may differ for different message sizes. Furthermore, we assume a time
overhead of BasicNetworkDelay (for delays taking place at the IP level and
lower). Network utilization is calculated by the size of the message and the
bandwidth of the network NetBW. MsgLossRate is the percentage of physi-
cal messages that are lost. This means each physical message encounters a
delay of SendMsgTime + BasicNetworkDelay + NetworkUtilizationTime +
RevMsgTime.
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Table II. Simulation Model Parameters

General NumSite Number of sites in the system
DBSize Number of objects of the database
Database NumCPU Number of processors per site
NumDisks Number of disks per site
ObjectAccessTime CPU object processing time
DiskAccessTime Disk access time
BufferHitRatio % of object accesses that do not need disk access
Communication SendMsgTime CPU overhead to send message
RcuMsgTime CPU overhead to receive message
BasicNetworkDelay  Basic delay for IP level and lower
NetBW Network Bandwidth
MsgLossRate Message Loss Rate
Transaction Type TransSize Number of op. of a transaction
WriteAccessPerc % of write op. of the transaction type
RWDepPerc % of read op. on objects that will be written later
TransTypePerc % of the workload that belongs to this type
Timeout Timeout for the distributed 2PL algorithm
Concurrency InterArrival Average time between the arrival of two

transactions at one node

We assume a broadcast medium where a message to a group of sites only
requires a single physical message. Still, a logical multicast message might
involve more than one physical message (handling message loss, total
order, etc.). Message loss is detected by a combination of acknowledgments
and negative acknowledgments similar to the TCP/IP protocol. Upon re-
ceiving a multicast from the network, an acknowledgment is multicast.
When a gap in the sequence numbers of messages is detected, a negative
acknowledgment is sent to the sender which then resends the message via
a point-to-point message. For the basic service (no order), a single multicast
is sent. Using reliable delivery, a message is delivered as soon as it is
received from the network. Using uniform reliable delivery a message is
delivered once all acknowledgments have been received. The total order
uses the Totem algorithm and our implementation follows the description
in Moser et al. [1996]: a token is passed through the system and only the
token owner may send messages. Acknowledgments are piggybacked on the
token. In the case of reliable multicast, a message is delivered immediately
after all preceding messages have been delivered. Uniform reliable message
delivery also waits until all nodes have acknowledged the reception of the
message. We model point-to-point communication similar to TCP/IP. Note
that we also implement reliable communication for point-to-point commu-
nication; that is, message loss is always detected in the communication
system and lost messages are resent.

We distinguish between different transaction types where each type is
determined by a number of parameters. Each transaction performs Trans-
Size operations. We distinguish between read and write operations. Write-
AccessPerc is the percentage of write operations of a transaction. RWDepPerc
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(ReadWriteDependency) determines the percentage of read operations on
objects that will be written later. These require read locks that are kept
until the end of the transaction even when using cursor stability. If
WriteAccessPerc is zero, the transaction type describes read-only transac-
tions that can be performed locally. TransTypePerc gives the percentage of
the workload that belongs to this transaction type. The objects accessed by
a transaction are chosen randomly from the database.

Transaction execution and concurrency control are modeled according to
the algorithms described in the previous sections. When a transaction is
initiated, it is assigned to one node. All read operations are performed
sequentially at that node. At the end of the transaction, the write set is
sent to all nodes. For comparison purposes, we have also implemented a
traditional distributed locking protocol using ROWAA with strict 2-phase-
locking (2PL). In this case, each read operation is executed locally and each
write operation is multicast to all sites using the simple reliable multicast.
At the remote sites, whenever the lock for the operation is acquired, an
acknowledgment is sent back (note that this is an optimization to the
standard protocol where the acknowledgment is not sent before the entire
operation is executed). When the local site has received all acknowledg-
ments and executed the operation the next operation can start. Whenever a
deadlock is detected at a site, a negative acknowledgment is sent back to
the local node which, in turn, will multicast an abort message to the remote
nodes. When all operations are successfully executed the local site sends a
commit message to the remote sites.

To deal with the deadlock behavior of 2PL, we have implemented two
versions of distributed deadlock detection. As a first possibility, distributed
deadlocks are detected via timeout as is usually done in commercial
systems. The parameter Timeout sets the timeout interval. As a second
possibility, we have implemented a global deadlock detection mechanism.
Whenever a node requests a lock and the lock must wait, the detection
algorithm is run. In our simulation, this algorithm is “ideal” in the sense
that no message delay or CPU overhead is associated with it.

Each operation sometimes includes a disk I/O to read the object from the
disk and a subsequent period of CPU usage for processing the object access.
A transaction that is aborted is restarted immediately and makes the same
data accesses as its original incarnation. We use an open queueing model.
At each node, transactions are started according to an exponential arrival
distribution with a mean determined by InterArrival. The InterArrival
parameter determines the throughput (transactions per second) in the
system (e.g., small arrival times lead to high throughput).

8. EXPERIMENTS AND RESULTS

We have conducted an extensive set of simulation experiments analyzing
the behavior of the protocols and systems with respect to the settings of
various parameters. We present a comprehensive summary of the most
important results showing the general behavior and most relevant differences
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Table III. Baseline Parameter Settings and Transaction Types (see proof for heading

placement)

DBSize 10000

NumCPU 2

NumDisks 10

ObjectAccessTime 0.2 ms

DiskAccessTime 20 ms

BufferHitRatio 80%

NetBW 100Mb/s

MsgLossRate 2%

Short Long Read-only

TransSize 10 30 30
WriteAccessPerc 40% 40% 0%
ReadWritePerc 30% 30% 0%
Timeout 1000 ms -- --

between the protocols. Some of the parameters are fixed for all experiments
discussed since their variation led only to changes in absolute but not in
relative behavior of the protocols. Their baseline settings are shown in
Table III.

The database consists of 10,000 objects. The number of processors per
site is two: one for transaction processing and one for communication. We
use a dedicated processor for communication in order to differentiate
between transaction processing and communication overhead. The number
of disks is 10. CPU time per operation is 0.2 ms and disk access takes 20
ms. The buffer hit ratio is fixed at 80% and the network has a bandwidth of
100Mb/s. Note that bandwidth was never a limiting factor in our experi-
ments. This matches results from previous studies [Friedman and van
Renesse 1995a; Moser et al. 1996]. Furthermore, we assume a 2% message
loss rate for all of our experiments.

We use three different transaction types. Two of these are update
transactions: short transactions, consisting of 10 operations, and long
transactions, consisting of 30 operations. Both types have an update rate of
40% and a read/write dependency of 30%. Short transactions represent a
workload with low data contention (conflict rate), whereas long transac-
tions show higher data contention. The third transaction type is a read-only
transaction with 30 operations. The timeout interval for the distributed
2PL algorithm is 1000 ms for short update transactions. For long update
and read-only transactions the global deadlock detection mechanism is
used. In the following experiments we set the interarrival times of transac-
tions according to the transaction type. This is done in such a way that the
pure overhead of executing operations (CPU/disk) at each single site is
about the same for all experiments and within reasonable boundaries (we
did not want the transaction processing CPU/disk to be the bottleneck
resource). For instance, since read-only transactions are only executed
locally while the write operations of update transactions are executed
everywhere, a system can achieve a higher throughput with read-only
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transactions. Hence, in Experiment 2, we set the interarrival times of a
mixed read-only/update workload (80 ms) smaller than for the long update
transactions (120 ms) in Experiment 1.

The main performance metric is the average response time, that is, the
average time a transaction takes from its start until completion. These
average response times are with 95% confidence within a 5% interval of the
shown results. The response time of a transaction consists of the execution
time (CPU + 1/0), waiting time, and the communication delay. In addition,
abort rates of each protocol are also evaluated to provide a more complete
picture of the results. In the performance figures and the discussions, the
following abbreviations are used: SER for serializability, CS for cursor
stability, SI for snapshot isolation, and HYB for the hybrid protocol.
Furthermore, NBL indicates the nonblocking protocols where all messages
(write set WS and decision message c/a) are uniform reliable. BL indicates
the blocking protocols where WS is uniform reliable, c/a are reliable (does
not exist for SI), and RB refers to the reconciliation-based versions where
all messages are only reliable.

In all the following figures the order of the labels corresponds to the
order of the curves with the label of the highest curve always on top,
followed by the label of the second highest curve, and so on.

8.1 Experiment 1. Communication Overhead Versus. Concurrency Control

The protocols differ in the number of messages and their delay. Whereas
the SI protocol uses a single totally ordered message multicast per transac-
tion, the SER/CS/Hybrid protocols send one message using the total order
service and one message using the simple order multicast per transaction.
The protocols using uniform reliable message delivery suffer from a higher
message delay than the protocols using reliable message delay. In addition,
the protocols use different concurrency control mechanisms providing dif-
ferent conflict profiles (SER aborts readers, SI aborts writers, and CS
avoids aborts).

In the first experiment we want to analyze the interplay between these
aspects. To do so we vary the communication parameters to model both
efficient communication with small message delays and little overhead
(typical for group communication systems working in LANs) and slow
communication with long delays and high overhead (as in WANSs). Using
this, we want to analyze the sensitivity of the protocols to the communica-
tion overhead. By looking at two different workloads (short and long
transactions) we are able to judge which optimization is more effective:
reducing message overhead or reducing conflict rates.

Communication is determined by the parameters BasicNetworkDelay,
SendMsgTime, and RcvMsgTime. Table IV depicts their settings in ms for
this experiment varying them from little to high overhead. Furthermore,
we have set the overhead of point-to-point messages to half of the overhead
of a multicast message assuming that there is less flow control involved
with point-to-point messages. Measurements on real networks using between
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Table IV. Communication Settings in ms

Test Run I II III v A\ VI VII VIII IX

BasicNetworkDelay 0.01 0.05 0.1 0.2 0.4 0.5 06 0.8 1.0
SendMsgTime Small Msg. 0.005 0.025 0.05 0.1 0.2 025 03 04 05
SendMsgTime Medium Msg. 0.01  0.05 0.1 0.2 0.4 0.5 0.6 0.8 1.0
SendMsgTime Large Msg. 0.02 0.1 0.2 0.4 0.8 1.0 1.2 16 20

RevMsgTime Small Msg. 0.01 0.05 0.1 0.2 0.4 0.5 0.6 08 1.0
RevMsgTime Medium Msg.  0.02 0.1 0.2 0.4 0.8 1.0 1.2 16 20
RcevMsgTime Large Msg. 0.04 0.2 0.4 0.8 1.6 2.0 24 32 4.0

6 and 10 nodes show results that are equivalent to ours when we set the
parameters to the values of test run IV (resulting in 1 ms for a simple
reliable multicast and around 7 ms for reliable total order). In the perfor-
mance figures of this experiment we depict the different test runs by using
the corresponding setting of the parameter BasicNetworkDelay.

Short Transactions. Figure 6(a) shows the average response times, and
Figure 6(b) the abort rates for short transactions for an interarrival time of
50 ms per node (i.e., around 200 short transactions per second in the
system). At such a workload transaction processing requires few resources
and data contention is small. Hence, the message overhead has a greater
impact on the overall response time (Figure 6 (a)). With a low communica-
tion delay, the response time corresponds to the execution time of the
transaction. With an increasing communication overhead, the response
time of the different protocols increases depending on the number and
complexity of the message exchanges. The communication processors are
becoming more and more utilized and are nearly saturated at high commu-
nication costs. Hence, when communication is costly and the delay long, the
RB protocols show best performance (SI outperforming SER and CS since it
needs only one multicast message). A little worse is NBL-SI. It performs
even better than BL-SER and BL-CS due to the reduced number of
messages. Of the suggested protocols, NBL-SER and NBL-CS have the
worst behavior since they wait to deliver both the write set and the decision
message until all nodes have sent acknowledgments.

2PL has a performance similar to the other protocols when communica-
tion is fast. However, when communication is more expensive, 2PL de-
grades very quickly due to the enormous amount of messages. This satu-
rates the communication processor.

The abort rates (Figure 6(b)) are generally low for all protocols. The fact
that abort rates increase as the communication delay increases is explained
by the number of transactions in the system. Slow communication delays
transactions and causes them to spend more time in the system. As more
transactions coexist, the probability of conflicts increases, and with it, the
abort rate. Therefore, the RB protocols have a lower abort rate than the
NBL and BL versions since they shorten the time from BOT to the delivery
of the write set, thereby reducing the conflict profile of the transaction.
Generally, since the experiment has a skew towards write operations, CS
has the lowest abort rates. SER and SI have similar abort rates with fast
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Fig. 6. Experiment 1. (a) response time, and (b) abort rate of short transactions.

communication, but as the communication delay increases the behavior of
NBL-SER and BL-SER degrades. This is due to the abort of readers upon
arrival of a write transaction which is later also aborted. Aborting the
readers was unnecessary, but, as the communication delay increases, the
likelihood of such cases increases. SI does not have this problem since the
decision on abort or commit can be done independently at each node and a
transaction only acquires locks when it is able to commit. Note also, that
the NBL and BL versions of SER (and also the NBL and BL versions of CS)
behave similarly. The reason is that, in these protocols, a transaction can
only be aborted when it is in its reading phase or when it waits for its write
set to be delivered. These phases are the same in both the NBL and BL
versions of the protocols.

With low communication costs, 2PL has lower abort rates than SER and
SI, since SER and SI sometimes abort readers/writers unnecessarily.
However, the abort rates of 2PL quickly degrade when response times
become too long due to resource saturation.

Long Transactions. Figure 7(a) shows the average response times, and
(7b) the abort rates for long transactions for interarrival times of 120 ms
(i.e., around 80 long transactions per second in the system). Long transac-
tions have higher data contention than short transactions. However, the
total number of messages is smaller since less transactions start per time
interval. Although the reliability of message delivery is still the dominant
factor for high communication costs, the concurrency control method be-
comes a more important factor in terms of response time (Figure 7(a)).
Looking at the RB protocols, CS outperforms SI and SER due to its low
conflict rate. The advantage of SI sending only one message is not the
predominant factor, since communication is less saturated and the message
delay itself does not have a large direct impact on the response time of long
transactions. Furthermore, the BL and NBL versions of CS are better than
NBL-SI, NBL-SER, and BL-SER. The last two protocols do not perform well
for slow communication due to the high conflict rate.
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Fig. 7. Experiment 1: Response time (a) and Abort rate (b) of long transactions.

Looking at the abort rates (Figure 7(b)), CS clearly outperforms all other
protocols due to its low conflict rate. Furthermore, there is no degradation
when communication becomes slow. NBL-SER, BL-SER, and NBL-SI, how-
ever, degrade when communication takes longer and here even the RB
versions of SER and SI have rather high abort rates. However, these abort
rates do not have a large impact on the response time since they usually
happen in an early phase of the transaction. Nevertheless, they might
cause a problem if the system cannot restart aborted transactions automat-
ically but instead only returns a “transaction failed” notification to the
user. If this is the case, CS might be the preferable choice.

The response time of 2PL degrades very quickly. Even with fast commu-
nication, it behaves significantly worse than the other protocols. The delay
created by acquiring locks on all sites increases the conflict rate extremely.
Especially problematic are the waiting periods once a transaction has to
wait for a lock. All the protocols proposed in this article avoid this problem:
CS and SI mostly avoid read/write conflicts and SER aborts and restarts
readers in a very early phase of transaction execution. Note, however, that
as long as no degradation takes place, the abort rates of 2PL are better
than those of SER and SI. However, choosing the right timeout interval for
deadlocks is very difficult and we choose to implement a no-cost deadlock
detection mechanism (which is unrealistic in a real system) in order to
figure out the “true” abort rate.

Analysis. For the proposed protocols the general behavior can be sum-
marized as follows. In “ideal” environments, the behavior of the protocols is
very much the same in all cases and serializability and uniform reliable
message delivery can be used to provide full consistency and correctness.
However, as soon as conflict rates or network delay increase, both serializ-
ability and uniform reliable message delivery might be bad choices: they
result in increasing abort rates and longer response times. The results
show which strategy to follow depending on the characteristics of the
system. Thus, if the communication system is slow, performance can only
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Fig. 8. Experiment 2. Response time of (a) update and (b) read-only transactions.

be maintained by choosing protocols with low message overhead such as
snapshot isolation or reconciliation-based protocols. Similarly, if data con-
tention is high, lower levels of isolation are the only alternative in order to
achieve small abort rates.

Generally, 2PL shows worse performance than any of the proposed
algorithms. It is very sensitive to the capacity and performance of the
communication system, it is not able to handle high conflict rates, and it
degrades very fast when conditions worsen.

8.2 Experiment 2. Read-Only Transactions

In practice, replication pays off when the majority of the transactions are
queries that can be executed locally without any communication costs. We
have analyzed the behavior of the protocols using a mixed workload
consisting of long update and read-only transactions. The percentage
TransTypePerc of both transaction types varies between 10 and 90%. Since
we want to investigate pure resource and data contention and not the
impact of the communication overhead, the communication costs are set to
be low (see values of test run III in Table IV) and we only show the results
for the RB protocols. We also analyze the hybrid protocol using SER for
updating transactions and a snapshot for read-only transactions.

Figure 8(a) shows the response time for the update transactions and
read-only transactions as a function of the percentage of read-only transac-
tions in the workload for an interarrival time of 80 ms (i.e., around 125
transactions per second in the system). The response times for both
transaction types decrease when the percentage of read-only transactions
increases due to less resource contention (fewer replicated write operations,
more local read operations) and less data contention (shorter lock waiting
times, lower abort rates). The differences in the protocols directly reflect
the different abort rates for writers and readers of the different protocols.
For update transactions (Figure 8(a)) CS behaves better than the others for
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low read-only rates since data contention is rather high and CS has fewer
aborts than the others. SER, HYB, and SI behave similarly having very
similar abort rates. 2PL does not admit low read-only rates. For read-only
rates smaller than 50% the system degrades both for update and read-only
transactions. In both cases, the response times of update transactions are
longer than with the other protocols due to the additional message ex-
change and longer waiting times.

For read-only transactions (Figure 8(b)) SER has worse response times
than the other protocols. SER is the only protocol that aborts readers (even
2PL has very low abort rates for read-only transactions). If many update
transactions are in the system, SER has very high abort rates and hence
high response times. However, the abort rate, and with it the response
times, decrease very quickly with an increasing number of read-only
transactions. Here, response times start to be comparable with the results
of the other protocols.

Analysis. This experiment clearly shows that read-only transactions
need special treatment to avoid unnecessary aborts. The rather simple SER
approach, where potential deadlocks are resolved by aborting transactions,
results in an unacceptable high abort rate for read-only transactions (40%
in the case of 40% read-only transactions). Therefore, the hybrid protocol
seems a good alternative. Since readers are never aborted, read-only
transactions yield good performance and do not require excessive resources.
For updating transactions, the hybrid protocol provides serializability,
unlike SI or CS. However, transactions must be declared read-only in
advance to allow this special treatment. Although CS has the best perfor-
mance results, it does not provide repeatable reads; this may be problem-
atic in certain applications.

This experiment again shows that the applicability of 2PL is restricted to
low conflict, low workload configurations and that it degrades very quickly
if the conditions are not optimal.

8.3 Experiment 3. Scalability

The ability to scale up the system depends on the number of update
operations in the system since they are executed on all sites. To analyze
this factor we run an experiment with a workload of 20% short update
transactions and 80% read-only transactions with an interarrival time of
40 ms per node. The scalability is limited with such a workload. Since all
update operations are executed on all sites, increasing the number of nodes
in the system results in an increasing number of write operations. This
leads in the end to resource (CPU, disk) saturation. In our configuration
using the proposed algorithms, this resource saturation starts at 60 nodes.
Further increase in the number of nodes leads to performance degradation.
This degradation is due only to the enormous amount of transaction
processing power needed to perform the write operations at all nodes. 2PL,
on the other hand, scales up only to 20 due to data contention.

In a second experiment we choose a decreasing update rate in order to
analyze other factors affecting scalability. For example, the number of sites
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Fig. 9. Experiment 3: Response time of (a) update and (b) read only transactions for different
number of nodes.

plays an important role since it influences the number of messages involved
and, above all, the calculations involved in determining the total order.
Again, the workload is a combination of short update and long read-only
transactions. The interarrival time of update transactions is kept constant
(4 ms) for the entire system, that is, at a 10-node system the interarrival
time is 40 ms per node, whereas in a 100-nodesystem the rate is 400 ms per
node (representing 250 transactions per second in the system). The inter-
arrival time of read-only transactions is always 100 ms per node (i.e., 10
read-only transactions per second per node). The workload represents an
application where a formerly centralized OLTP database is used in a
distributed manner (that means the same amount of write accesses is
distributed over more nodes) and the analytical access (read operations)
increases with the number of nodes. The communication parameters were
set to the values of test run IV in Table V. We skipped the SER protocols
since we saw in the previous experiment that SER aborts read-only
transactions too often.

Figure 9(a) shows the response time for update transactions and Figure
9(b) shows the response times of read-only transactions as the number of
sites in the system increases from 5 to 100.

For update transactions (Figure 9(a)) the 5-node system behaves slightly
worse than the 10-node system due to the higher load (each node executes
the read operations of an update transaction each 20 ms while in the
10-node system each node executes the reads of an update transaction only
each 40 ms). For 10 nodes and higher we can observe a very similar
behavior to that observed when increasing communication overhead (see
Figure 6). The response time for all protocols increases with the number of
nodes due to the increased message delay (determining the total order and
uniform reliable message delay takes significantly more time when the
number of nodes increases). The RB protocols behave better than their
fault-tolerant counterparts and if complex communication protocols are
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used (RB and NBL), concurrency control methods with less conflict rate
(CS) or fewer messages (SI) show better results. Compared to the results in
Figure 6, only SI behaves a little bit worse; that is, sending only one
message does not have an impact since the communication processor is not
overloaded. 2PL already has worse behavior than the other protocols for a
small number of nodes. The problem is that each write operation has to
wait for all the nodes to respond and with each additional node the
probability increases that a write operation has to wait for one of the sites
for a read-only transaction to release its locks.

The response time for read-only transactions (Figure 9b)) is similar for
all evaluated protocols. Since none of the protocols considered in this
experiment aborts read-only transactions, they are barely influenced by the
behavior of update transactions. Only NBL-CS gets slightly worse when the
number of sites increases since CS acquires read locks for read-only
transactions and has to wait for update transactions to release their write
locks. When communication takes longer, the NBL version keeps write
locks longer than the BL and RB versions. Write locks are kept until all
write operations have been performed and the commit message has been
delivered. Since BL and RB send the commit message only with reliable
delivery the message is delivered as soon as it is physically received. With
NBL, however, the commit message is only delivered when all acknowledg-
ments have been received. Hence, when the number of sites in the system
increases it takes longer to receive all acknowledgments and, therefore,
NBL blocks waiting read locks longer than BL or RB. Note that neither the
HYB nor the SI protocol acquires read locks and hence they have the same
results for read-only transactions for both NBL and RB versions. For 2PL,
even for 20 nodes the response time of read-only transactions is worse
compared to the other protocols since read-only transactions have to wait
long for update transactions to release their locks. From 40 nodes on, the
response time increases due to the degrading response times of update
transactions.

Analysis. The proposed algorithms scale up fairly well, providing good
performance across a wide range of configurations. The main factor to
consider is the communication delay (which, of course, increases with the
number of sites in the system). Thus, our protocols scale well as long as the
communication system scales well; that is, it provides short message delays
although the number of nodes increases.

9. CONCLUSION

In this article, we have provided a comprehensive solution to eager update
everywhere database replication. By exploiting advanced communication
semantics we optimize message exchange, support the ordering of transac-
tions, and avoid the problem of distributed deadlocks, thereby addressing
many of the concerns of database designers. A flexible choice of different
levels of isolation and fault-tolerance allows the handling of data conten-
tion and the achievement of high performance even in the case of a slow
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network. The architecture described above and the implementation details
provided show the applicability and feasibility of the approach.

We have also presented a quantitative performance analysis of the
different methods under various system and workload configurations. Us-
ing a detailed simulation model of a replicated database system, we
evaluated the response times of the approaches and gave an analysis of
their behavior. Summarized, our experiments demonstrate several points.

—Efficient communication plays a major role in replicated transaction
processing. Severe performance problems can only be avoided by reduc-
ing the message overhead. Our technique minimizes the number of
messages per transaction. For snapshot isolation, we were able to reduce
the message overhead to one message per transaction. Another way to
reduce the communication costs is to reduce the message latency. Our
reconciliation-based protocols use communication protocols with low mes-
sage delay. They guarantee consistency, but allow the user to see
incorrect data in the rare cases of node failures. These protocols perform
significantly better than full fault-tolerant protocols when the communi-
cation is slow.

—With our protocols, the message overhead is constant and does not
increase with the transaction size.

—Long message delays increase the response times of the transactions.
This leads to more concurrent transactions in the system, and hence, to
higher data contention. This problem is more severe for long than for
short transactions. It can be overcome by using concurrency control
protocols with lower isolation levels, for example, cursor stability.

—High update rates can become a severe problem in a replicated system
due to their extensive resource requirements. To alleviate the problem,
conflict rates can be reduced by using cursor stability or snapshot
isolation.

—The hybrid protocol proposed is an elegant solution avoiding the need to
abort queries when serializability is enforced. Transactions updating the
database are executed using the normal protocol while queries are
executed using snapshot isolation.

—Our protocols show good results even when the number of nodes in the
system is high. The main factor is communication delay. As long as
message delay is reasonably short our protocols show very good scalabil-
ity.

—A comparison with a standard distributed 2PL protocol shows that the
proposed protocols are much more stable and allow for a much broader
range of workloads and configurations. They all avoid the fast and abrupt
degradation experienced with 2PL/ROWA.

We believe eager update everywhere replication is feasible for a wide
spectrum of applications and configurations. A fault-tolerant, fully serializable
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protocol can be used under certain conditions: fast communication, low
system load, low conflict rates, and the percentage of read-only transac-
tions reasonably high. If the system configuration is not ideal, as will
happen in most cases, the optimizations in terms of lower levels of isolation
and fault-tolerance help to maintain reasonable performance while still
guaranteeing replica consistency and replication transparency.

As part of future endeavors, we are working on the implementation of
these algorithms in a database management system to test their perfor-
mance in a real environment. We have also explored a more sophisticated
and tighter integration of the group communication primitives with trans-
actional execution [Kemme et al. 1999]. Initial results indicate we can hide
most of the communication overhead behind the transaction by using an
optimistic approach that allows a transaction to execute before its total
order is known. If the total order does not alter the existing serialization
order, the transaction can commit. If the final total order violates the
serialization order, the transaction is aborted and rescheduled in its proper
position in the total order. This technique will allow the increase of the
feasibility range of the protocols in terms of acceptable communication
delays.

Finally, we are also working on versions of the protocols that deal with
partial replication. Using partial replication, objects need not be replicated
on all sites and can even exist only locally on one site. As long as all
transactions accessing replicated data (whether partially or fully repli-
cated) are globally ordered by the total order, and concurrency control
enforces some known criterion such as order preserving serializability
[Beeri et al. 1989], our protocols can be enhanced in a rather straightfor-
ward way to support partial replication.

APPENDIX

A. PROOFS OF THE PROTOCOLS

This appendix contains the proofs of the protocols presented in Section 5.
For each protocol, we prove that transaction atomicity is guaranteed in the
failure-free case. That is, a transaction is committed or aborted at all sites
when no node failures or network partitions occur. Furthermore, we show
that SER indeed provides serializability, while CS and SI guarantee the
levels of isolation described in Section 4.2.

A.1 Serializability (SER)

Before we prove the atomicity and serializability characteristics of SER, we
show that SER is deadlock free.

LEMMA 1. The SER protocol is deadlock free.

Proor. We show that each lock of a transaction T; will eventually be
granted. To do so, we analyze the behavior of the protocol in all conflict
situations. We have to distinguish the following situations.
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—T; has a read lock r;(X); WS, has not yet been processed (i.e., T'; is still in
its reading or send phase). Now T'; requests w;(X). Then T is aborted
and T receives the lock. (Step 3.a.iii of the protocol in Figure 2).

—T; has a read lock r;(X) or a write lock w;(X), WS, has already been
processed, and T'; requests w;(X). T; waits for T; to finish (Step 3.a.ii of
the protocol). We denote this T, — T;. Now assume there is a deadlock;
that is, there is a sequence of transactions so that T, - T, - T; —

. —> T; — T,. T, cannot wait for a write lock w;(Y) of T; to be released
since all write locks of T'; are requested in one atomic step together with
w;(X). But if T, waits for a read lock r;(Y) to be released then the
conflicting operation of 7', must be a write operation. This, however,
means that WS, was processed before WS; and therefore at the time of
processing WS, T; would have been aborted according to Step 3.a.iii of

the protocol. Therefore, such a cycle cannot exist, and 7 will finally
receive the lock.

—T; has a write lock w;(X) and T, requests a read lock r;(X). The two
previous points show that once the write set WS, has been processed, T
will eventually receive all needed locks and therefore be able to termi-
nate and release the locks. Then r;(X) can be granted. [J

In proving that SER is deadlock free, we have not used the total order
property but several specific facts of the algorithm.

—Read/write conflicts cannot cause deadlocks since the reading transaction
gets aborted or will not acquire any more locks until it commits.

—Write/write conflicts cannot cause deadlocks since all write locks of a
transaction are acquired in one step.

—A write/read conflict alone cannot cause a deadlock.

THEOREM 3. In a failure-free environment, the SER protocol guarantees
the atomicity of a transaction.

Proor. We have to show that if a node N commits/aborts a local update
transaction 7' then all nodes commit/abort 7'. In the protocol, the owner N
of T' always decides on commit/abort. We have to show that the remote
nodes are able to obey this decision. An abort decision can easily be obeyed,
since remote nodes do not terminate a transaction until they receive the
decision message from N. The decision to commit can be obeyed since it
follows from the lack of deadlocks that all nodes will eventually be able to
grant all write locks for 7' and execute the operations. [J

THEOREM 4. SER is 1-copy-serializable.

Proor. Based on Bernstein et al. [1987], we show that each replicated
data history H has an acyclic replicated data serialization graph
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RDSG(H). A serialization graph SG(H) has a node for each committed
transaction and an edge T; — T if H orders operation o, before conflicting
operation o;. RDSG(H) extends SG(H) by adding enough edges such that
the graph orders transactions with conflicting operations on the same
logical object. Let SG(H) be the serialization graph of a history H
produced by the SER protocol. It is easy to see that SG(H) itself is a
RDSG(H). SER always performs write operations on all copies (ROWA).
Hence, whenever two operations (read or write) conflict on the same logical
object they conflict on at least one physical object, and with this, create an
edge in SG(H). To prove that SG(H ) is acyclic, we use the fact that all
write sets are totally ordered; that is, if WS; < WS, at one site, then WS,
< WS, at all sites. We show that if T; — T, in SG(H ), then WS, < WS,.
Therefore, SG(H) cannot have any cycles but has dependencies only in
accordance with the total order provided by the communication system. An
edge T; — T, in SG(H) exists due to three different kinds of conflicting
operations (on the same copy): (r;, w;), (w;, w;), or (w;, r;).

—(r;, w;): WS; must have been delivered before WS;, otherwise T; would
have been aborted according to Step 3.a.iii of the protocol in Figure 2 and
would not be in SG(H).

—(w;, w;): This is only possible when WS; < WS;, since write locks are
acquired according to the total order in which write sets are delivered
(Step 3, especially 3.a.ii of the protocol).

—(w;, r;): T; can only read from T; when T, has committed, hence after
WS, has been delivered. Since all read operations of 7; must be per-
formed before WS, is sent according to Step 2 of the protocol, WS; was
sent and delivered after WS,;. O

To extend this proof to read-only transactions, we use dummy write sets
that we assume to be delivered at the same logical time the last read lock is
granted. With this we can use the same argument as for update transac-
tions.

A.2 Cursor Stability (CS)

THEOREM 5. The CS protocol is deadlock free and, in case of a failure-free
environment, it guarantees the atomicity of a transaction.

Proor. The proofs are identical to the proofs of the SER protocol. [

THEOREM 6. CS provides 1-copy-equivalence and regarding the level of
isolation, it avoids the phenomena P1 and P2, but P3 through P5 may
oceur.

Proor. CS does not provide serializability, hence we cannot apply the
combined 1-copy-serializability proof using a replicated data serialization
graph. 1-copy-equivalence itself means that the multiple copies of an object
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appear as one logical object. This is true for several reasons. First, we use a
read-only/write-all approach; that is, transactions perform their updates on
all copies. Second, transaction atomicity guarantees that all sites commit
the updates of exactly the same transactions. Third, using the total order
guarantees that all these updates are executed in the same order at all
sites. Hence, all copies of an object have the same value if we look at them
at the same logical time. (For example, let T; and T'; be two transactions
updating object X, WS, is delivered directly before WS;, and we look at
each node at the time the lock for the copy of X is granted to T';. At that
time each copy of X has the value that was written by T';.) The phenomena
P1 and P2 are avoided for the following reasons.

P1. Dirty read: w(X;). .. ry(X;). .. (c; or a;) is not possible since updates
become visible only after commit of a transaction. Read operations,
whether obtaining short or long locks, must wait for write locks to be
released at EOT to receive a committed version of the data.

P2. Lost update: r{(X;). .. wo(X;)... w1(X;)... cy is not possible since
T, should obtain a long read lock if it wants to write X (according to
Step 1 in Figure 4). Therefore, it will be aborted when WS, is
processed.

All the other phenomena are possible due to the short read locks. [

A.3 Snapshot Isolation (SI)

THEOREM 7. In a failure-free environment, SI guarantees the atomicity of
a transaction.

Proor. With ST the local node N only sends the write set WSS, and all
nodes decide on their own on the outcome of the transaction. To show the
atomicity of a transaction we have to show that all nodes make the same
decision. This is done by induction on the sequence of write sets that arrive
(this sequence is the same at all nodes). Hence, we use the total order to
prove the atomicity of transactions. Assume an initial transaction 7', with
TS (EOT) = 0. All objects are labeled with T;. Now assume WS, is the
first write set to be delivered. The BOT(T;) must be 0. Therefore all nodes
will decide on commit and perform all operations. Now assume n — 1 write
sets have been already delivered and all nodes have always behaved the
same, that is, have committed and aborted exactly the same transactions.
Therefore, on all nodes there was the same series of committed transac-
tions that updated exactly the same objects in the same order. Since these
transactions have the same EOT timestamps at all nodes, the versions of
the objects are exactly the same at all nodes when all these transactions
have terminated. Hence, when WS, is the nth write set to be delivered,
Vnodes, Vw;(X) € WS, the version check in Step 3 of Figure 5 will have
the same outcome. Although at the time WS, is processed not all of the
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preceding transactions might have committed, the check is always against
the last version. This version might already exist if all preceding transac-
tions that updated this object have already committed and there is no
granted lock on the object (Step 3.a of the protocol), or the version will be
created by the transaction that is the last still active preceding one to
update the object (3.b of the protocol). [

THEOREM 8. SI provides 1-copy-equivalence and avoids phenomena P1 to
P4, but P5 may occur.

PrOOF. 1-copy-equivalence is guaranteed for the same reasons as it is
guaranteed for the CS protocol. Phenomena P1 through P4 are avoided for
the following reasons.

P1. Dirty read: w.(X;). .. ro(X;)... (c; or a;) or a; is not possible since
updates become visible only after commit of a transaction. In our
algorithm, T'S,(BOT') is lower than T'S;(EOT) and therefore T, will

not read from 7'; (Step 1 of the protocol).

P2. Lost update: ri(X))...wyX,)... w(X,)...c; is not possible.
TS,(EOT) is bigger than T'S;(BOT) but smaller than T'S;(EOT).

Therefore, in the moment in which w,(X;) is requested T'; will be
aborted (Step 3 of the protocol).

P3. Nonrepeatable read: r1(X;). .. wo(X;). .. cs. .. ri3(X;) is not possi-
ble. TS{(BOT) is lower than T'Sy(EOT) and therefore T'; will not
read from T, at its second read but reconstruct the older version (Step
1 of the protocol).

P4. Read skew:r(X;)... wy(X)). .. wy(Y)). .. cq. .. ri(Y;) is not possible
since a transaction only reads data versions created before the trans-
action started (Step 1 of the protocol).

P5. Write skew: ri(X;). .. ro(Y)). .. w,(Y)). .. wy(X,) is possible since the
two write operations do not conflict and read/write conflicts are not
considered. [

B. PROOFS OF FAULT-TOLERANCE BEHAVIOR

In Section 6 we showed that transaction atomicity and with it data
consistency is guaranteed on all available sites. Furthermore, we infor-
mally discussed that using uniform reliable delivery atomicity is guaran-
teed in the entire system, that is, both on faulty and nonfaulty nodes. This
means that the set of transactions committed (resp., aborted) at a failed
node is a subset of transactions committed (resp., aborted) at available
nodes. In this appendix, we provide more exhaustive proofs. To do so, we
look at a node N that fails during view V; and at the different states a
transaction 7T'; on node N might be in when N fails. For each case we show
that N does not contradict the decision that is made by the V;-available (or
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short: available) nodes. This means that when N has committed/aborted T';
the available nodes do the same. When T'; was still active on N then the
other sites only committed the transaction when this decision was correct
(the failed node would have been able to commit it too, if it had not failed).
Otherwise they abort it.

THEOREM 9. The SI protocol using uniform reliable message delivery
guarantees the atomicity of all transactions on all sites.

Proor. Consider a transaction 7T'; at a failed node N.

(1) T; is in its reading phase (T is local). In this case none of the other
nodes knows of T';. The transaction has no effect on N or on any other
node. Hence, T; can be considered aborted on all sites.

(2) T, is in its send phase (T is local and WS, has been sent in view V; but
not yet received). Reliable multicast (and hence uniform reliable multi-
cast) guarantees that all available nodes or none of them will receive
Ts write set. In the latter case, uniform reliable multicast guarantees
that no other node N’ failing during V; has received WS,. Hence, if it is
not delivered at any site the transaction is considered aborted. Other-
wise, all available sites have received the same sequence of messages
up to WS, and hence decide on the same outcome of T'; (according to
Theorem 7 in Appendix A).

(3) T,, remote or local, is in its lock or write phase. This means that WS,
has already been delivered at N before or during view V,. Hence,
according to the uniform reliable delivery, WS; will be delivered at all
available sites (note that reliable delivery does not provide this guaran-
tee). Again, on all these sites (including N) the same sequence of
messages is received before WS, is received and the version check will
have the same results (see Theorem 7). Hence, all can decide on the
same outcome (although N will not complete T'; before it fails).

(4) Finally, a transaction T, local or remote, was committed/aborted on N
when N crashed. This means WS, is delivered on N and due to the
uniform reliable message delivery, all available sites will receive WS,.
Hence, the same holds as in the previous case.

This together with Theorem 1 of Section 6 provides the atomicity of all
transactions on all sites. [

THEOREM 10. The SER, CS, and HYBRID protocols using uniform

reliable message delivery for both the WS and commit messages, and
aborting all in-doubt messages after a view change guarantee the atomicity
of all transactions on all sites.

Proor. Consider a transaction T'; at a failed node N.
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T; is in its reading phase. As with SI, this transaction is considered
aborted.

T, is in its send phase. T} is still active at N and N has not yet decided
whether to commit or abort T;. Since N is the only one who can decide
to commit since only N knows about the read locks (this is different
from the SI protocol), the others are only allowed to decide on abort.
According to the semantics of the reliable/uniform reliable multicast,
all or none of the available nodes will deliver T',’s write set. If it is not
delivered at any site the transaction is considered aborted. If it is
delivered, it is an in-doubt transaction at all sites (/N has not yet sent a
decision message) and all sites will abort it. Hence, all make the correct
decision.

T, is a local transaction of N, the write set of T'; was delivered at N, but
N has not yet sent the decision message. Again, this requires that the
transaction be aborted at the other sites. Since WS; was sent with
uniform reliable message delivery, it will be delivered at all sites.

However, after the crash of N it is an in-doubt transaction and all sites
will abort it.

T; has processed its lock phase and submitted the commit message to
the communication module. However, N fails before any other node
physically receives the commit message. In this situation, all available
sites have delivered WS, but none of them delivers ¢;. T'; is an in-doubt
transaction and will be aborted. We have to show that T; was still
active when N failed. This is the case since the database module of N
waits to commit until the communication module delivers the commit
message (Step 5 of the SER/CS/Hybrid protocols). However, due to the
uniform reliable delivery of the commit message, the communication
module only delivers it when it is guaranteed that all sites will deliver
the message. Since this is not the case the transaction is still pending
at N when N fails.

T'; has processed its lock phase and submitted the abort message to the
communication module. Since the abort message is only sent with
reliable delivery, the communication module delivers the message back
to the database module immediately and does not wait until it is
guaranteed that the other nodes will deliver the message. Hence, N has
either aborted T; or T; was still active at the time of the failure.
However, the other nodes will abort N in any case. Either all deliver

the abort message and then abort or T'; is an in-doubt transaction and is
aborted.

T, being local or remote, was committed at N before N failed. This can
only happen when both write set and commit message were delivered.
However, the messages are only delivered when it is guaranteed that
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they will be delivered at all available sites. Hence, T); is not an in-doubt
transaction at the available sites and will commit. Furthermore, the
uniform reliable delivery of the write set excludes the scenario where
all nodes of the remaining group deliver the commit message but not
the write set.

We have shown that a failed node aborts/commits exactly the same
transactions as the available nodes until it fails. After the node failure all
available nodes have the same in-doubt transactions which they can safely
abort. This together with Theorem 2 of Section 6 guarantees the atomicity
of all transactions on all sites. [

THEOREM 11. The SER, CS, and HYBRID protocols using uniform
reliable message delivery for the WS messages, and blocking all in-doubt
messages after a view change, have the same properties as the nonblocking
versions.

ProOF. The proof is the same as for the previous theorem except the
case that forces blocking in-doubt transactions. This is Case 4 when T'; has
processed its lock phase and submitted the decision message to the commu-
nication module but N fails before any other node physically receives the
decision message. Since both commit and abort are only sent with reliable
delivery, the database does not wait until it is guaranteed that the other
nodes will receive the message. Hence, T'; can be still active, committed, or
aborted at the time of N’s failure. To guarantee T;’s atomicity all available
sites must block it. [
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