
©Silberschatz, Korth and Sudarshan18.1Database System Concepts - 6th Edition

Introduction

 Parallel machines are becoming quite common and
affordable

 Commodity machines are cheap

 Multiple processors on a chip

 Databases are growing increasingly large

 Large-scale parallel database systems increasingly used
for:

 processing time-consuming decision-support queries

 providing high throughput for transaction processing

©Silberschatz, Korth and Sudarshan18.2Database System Concepts - 6th Edition

Architectures

Shared-Disk
N1

N3 N4

N2

NAS

Lots of disks

N1

D1

N2

D2

N3

D3

N4

D4

Shared Nothing

©Silberschatz, Korth and Sudarshan18.3Database System Concepts - 6th Edition

On a chip

core1

core2 core4

core3

L2

cache
L2

cache

L3 cache

RAM

©Silberschatz, Korth and Sudarshan18.4Database System Concepts - 6th Edition

Parallelism in Databases

 Data partitioned across multiple disks parallel I/O.

 Individual relational operations (e.g., sort, join, aggregation) can be

executed in parallel

 data can be partitioned and each processor can work

independently on its own partition.

 queries are expressed in high level language

(SQL, translated to relational algebra)

 makes parallelization easier.

 Queries can be run in parallel with each other.

 Concurrency control takes care of conflicts.

 Thus, databases naturally lend themselves to parallelism.

©Silberschatz, Korth and Sudarshan18.5Database System Concepts - 6th Edition

Partitioning

 Reduce the time to retrieve relations from disk by partitioning

the relations on multiple disks.

 Horizontal partitioning – tuples of a relation are divided among

many disks such that each tuple resides on one disk.

 Partitioning techniques (number of disks = n):

Round-robin:

Send the I th tuple inserted in the relation to disk i mod n.

Hash partitioning:

 Choose one or more attributes as the partitioning

attribute(s).

 Choose hash function h with range 0…n - 1

 Let i denote result of hash function h applied to the

partitioning attribute value of a tuple. Send tuple to disk i.

©Silberschatz, Korth and Sudarshan18.6Database System Concepts - 6th Edition

Partitioning (Cont.)

 Range partitioning:

 Choose an attribute as the partitioning attribute.

 A partitioning vector [vo, v1, ..., vn-2] is chosen.

 Let v be the partitioning attribute value of a tuple.

Tuples such that v vi+1 go to disk I + 1.

Tuples with v < v0 go to disk 0 and

Tuples with v vn-2 go to disk n-1.

e.g., with a partitioning vector [5,11], a tuple with partitioning

attribute value of 2 will go to disk 0, a tuple with value 8 will

go to disk 1, while a tuple with value 20 will go to disk2.

©Silberschatz, Korth and Sudarshan18.7Database System Concepts - 6th Edition

Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following

types of data access:

1. Scanning the entire relation.

2. Locating a tuple associatively – point queries.

 e.g., r.A = 25.

3. Locating all tuples such that the value of a given attribute

lies within a specified range – range queries.

 e.g., 10 r.A < 25.

©Silberschatz, Korth and Sudarshan18.8Database System Concepts - 6th Edition

Comparison of Partitioning Techniques (Cont.)

Round robin:

 Advantages

 Best suited for sequential scan of entire relation on each

query.

 All disks have almost an equal number of tuples; retrieval

work is thus well balanced between disks.

 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks

©Silberschatz, Korth and Sudarshan18.9Database System Concepts - 6th Edition

Hash partitioning:

 Good for scanning a relation.

 Assuming hash function is good, and partitioning attributes

form a key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for

answering other queries.

 Index on partitioning attribute can be local to disk, making

lookup and update more efficient

 No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques (Cont.)

©Silberschatz, Korth and Sudarshan18.10Database System Concepts - 6th Edition

Comparison of Partitioning Techniques (Cont.)

Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk needs to

be accessed.

 For range queries on partitioning attribute, one to a few disks may need

to be accessed

 Remaining disks are available for other queries.

 Good if result tuples are from one to a few blocks.

 If many blocks are to be fetched, they are still fetched from one to a

few disks, and potential parallelism in disk access is wasted

 Example of execution skew.

©Silberschatz, Korth and Sudarshan18.11Database System Concepts - 6th Edition

Handling of Skew

 The distribution of tuples to disks may be skewed — that is,

some disks have many tuples, while others may have fewer

tuples.

 Attribute-value skew can lead to Partition skew

With range-partitioning, badly chosen partition vector

may assign too many tuples to some partitions and too

few to others.

Less likely with hash-partitioning if a good hash-function

is chosen.

©Silberschatz, Korth and Sudarshan18.12Database System Concepts - 6th Edition

Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning

attribute forms a key of the relation):

 Sort the relation on the partitioning attribute.

 Let n denote the number of partitions to be constructed.

 Construct the partition vector by scanning the relation in sorted

order as follows.

 After every 1/nth of the relation has been read, the value of

the partitioning attribute of the next tuple is added to the

partition vector.

 Imbalances can result if duplicates are present in partitioning

attributes.

 Alternative technique based on histograms used in practice

©Silberschatz, Korth and Sudarshan18.13Database System Concepts - 6th Edition

Handling Skew using Histograms

 Balanced partitioning vector can be constructed from histogram in a

relatively straightforward fashion

 Assume uniform distribution within each range of the histogram

 Histogram can be constructed by scanning relation, or sampling (blocks

containing) tuples of the relation

©Silberschatz, Korth and Sudarshan18.14Database System Concepts - 6th Edition

Handling Skew Using

Virtual Processor Partitioning

 Skew in range partitioning can be handled elegantly using virtual

processor partitioning:

 create a large number of partitions (say 10 to 20 times the number

of processors)

 Assign virtual processors to partitions either in round-robin fashion

or based on estimated cost of processing each virtual partition

 Basic idea:

 If any normal partition would have been skewed, it is very likely

the skew is spread over a number of virtual partitions

 Skewed virtual partitions get spread across a number of

processors, so work gets distributed evenly!

©Silberschatz, Korth and Sudarshan18.15Database System Concepts - 6th Edition

Interquery Parallelism

 Queries/transactions execute in parallel with one another.

 Increases transaction throughput; used primarily to scale up a

transaction processing system to support a larger number of

transactions per second.

 Easiest form of parallelism to support, particularly in a shared-memory

parallel database, because even sequential database systems

support concurrent processing.

 More complicated to implement on shared-disk or shared-nothing

architectures

 Locking and logging must be coordinated by passing messages

between processors.

 Data in a local buffer may have been updated at another

processor.

 Cache-coherency has to be maintained — reads and writes of

data in buffer must find latest version of data.

©Silberschatz, Korth and Sudarshan18.16Database System Concepts - 6th Edition

Cache Coherency Protocol

 Example of a simple cache coherency protocol for shared disk

systems:

 Before reading/writing to a page, the page must be locked in

shared/exclusive mode.

 On locking a page, the page must be read from disk

 Before unlocking a page, the page must be written to disk if it

was modified.

 More complex protocols with fewer disk reads/writes exist.

 Cache coherency protocols for shared-nothing systems are similar.

Each database page is assigned a home processor. Requests to

fetch the page or write it to disk are sent to the home processor.

©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 6th Edition

Intraquery Parallelism

 Execution of a single query in parallel on multiple processors/disks;

important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism:

 Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.

 Interoperation Parallelism – execute the different operations in

a query expression in parallel. (e.g., pipelining)

the first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more

than the number of operations in a query.

BUT THERE IS A POTENTIAL COST IN COORDINATION.

©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 6th Edition

Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:

 read-only queries

 shared-nothing architecture

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is

associated with processor Pi.

 If a processor has multiple disks they can simply simulate a single disk

Di.

 Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.

 Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.

 However, some optimizations may be possible.

©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 6th Edition

Parallel Sort

Range-Partitioning Sort

 Choose processors P0, ..., Pm, where m n -1 to do sorting.

 Create range-partition vector with m entries, on the sorting attributes

1. Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di.

 This step requires I/O and communication overhead.

2. Each processor Pi sorts its partition of the relation locally.

 Each processor executes same operation (sort) in parallel with

other processors, without any interaction with the others (data

parallelism).

3. Final merge operation is trivial: range-partitioning ensures that, the

key values in processor Pi are all less than the key values in Pj

for I < j

©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 6th Edition

Parallel Sort (Cont.)

Parallel External Sort-Merge

 Assume the relation has already been partitioned among disks D0, ...,

Dn-1 (in whatever manner).

 Each processor Pi locally sorts the data on disk Di.

 The sorted runs on each processor are then merged to get the final

sorted output.

 Parallelize the merging of sorted runs as follows:

1. The sorted partitions at each processor Pi are range-partitioned

across the processors P0, ..., Pm-1.

2. Each processor Pi performs a merge on the streams as they are

received, to get a single sorted run.

3. The sorted runs on processors P0,..., Pm-1 are concatenated to get

the final result.

©Silberschatz, Korth and Sudarshan18.21Database System Concepts - 6th Edition

Parallel Join

 The join operation requires pairs of tuples to be tested to see if they

satisfy the join condition, and if they do, the pair is added to the join

output.

 Parallel join algorithms attempt to split the pairs to be tested over

several processors. Each processor then computes part of the join

locally.

 In a final step, the results from each processor can be collected

together to produce the final result.

©Silberschatz, Korth and Sudarshan18.22Database System Concepts - 6th Edition

Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input

relations across the processors, and compute the join locally at each

processor.

 Let r and s be the input relations, and we want to compute r r.A=s.B s.

1. r and s each are partitioned locally into n partitions, denoted r0, r1, ...,

rn-1 and s0, s1, ..., sn-1.

 r and s must be partitioned on their join attributes r.A and s.B),

using the same range-partitioning vector or hash function.

 Can use either range partitioning or hash partitioning.

2. Partitions ri and si are sent to processor Pi,

3. Each processor Pi locally computes ri ri.A=si.B si.

 Any of the standard join methods can be used.

©Silberschatz, Korth and Sudarshan18.23Database System Concepts - 6th Edition

Partitioned Join (Cont.)

©Silberschatz, Korth and Sudarshan18.24Database System Concepts - 6th Edition

Other Relational Operations

Selection (r)

 If is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single

processor.

 If is of the form l <= ai <= u (i.e., is a range selection) and the

relation has been range-partitioned on ai

 Selection is performed at each processor whose partition overlaps

with the specified range of values.

 In all other cases: the selection is performed in parallel at all the

processors.

©Silberschatz, Korth and Sudarshan18.25Database System Concepts - 6th Edition

Other Relational Operations (Cont.)

 Duplicate elimination

 Perform by using either of the parallel sort techniques

 eliminate duplicates as soon as they are found during sorting.

 Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each

processor.

 Projection

 Projection without duplicate elimination can be performed as

tuples are read in from disk in parallel.

 If duplicate elimination is required, any of the above duplicate

elimination techniques can be used.

©Silberschatz, Korth and Sudarshan18.26Database System Concepts - 6th Edition

Grouping/Aggregation

 Partition the relation on the grouping attributes

 Compute the aggregate values locally at each processor.

 Can reduce cost of transferring tuples during partitioning by partly

computing aggregate values before partitioning.

 Consider the sum aggregation operation:

 Perform aggregation operation at each processor Pi on those

tuples stored on disk Di

 results in tuples with partial sums at each processor.

 Result of the local aggregation is partitioned on the grouping

attributes, and the aggregation performed again at each processor

Pi to get the final result.

 Fewer tuples need to be sent to other processors during partitioning.

©Silberschatz, Korth and Sudarshan18.27Database System Concepts - 6th Edition

Interoperator Parallelism

 Pipelined parallelism

 Consider a join of four relations

 r1 r2 r3 r4

 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of

temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1 r3

 And P3 be assigned the computation of temp2 r4

 Each of these operations can execute in parallel, sending result

tuples it computes to the next operation even as it is computing

further results

 Provided a pipelineable join evaluation algorithm (e.g., indexed

nested loops join) is used

©Silberschatz, Korth and Sudarshan18.28Database System Concepts - 6th Edition

Factors Limiting Utility of Pipeline

Parallelism

 Pipeline parallelism is useful since it avoids writing intermediate

results to disk

 Useful with small number of processors, but does not scale up well

with more processors. One reason is that pipeline chains do not

attain sufficient length.

 Cannot pipeline operators which do not produce output until all

inputs have been accessed (e.g., aggregate and sort)

 Little speedup is obtained for the frequent cases of skew in which

one operator's execution cost is much higher than the others.

©Silberschatz, Korth and Sudarshan18.29Database System Concepts - 6th Edition

Independent Parallelism

 Independent parallelism

 Consider a join of four relations

r1 r2 r3 r4

 Let P1 be assigned the computation of
temp1 = r1 r2

 And P2 be assigned the computation of temp2 = r3 r4

 And P3 be assigned the computation of temp1 temp2

 P1 and P2 can work independently in parallel

 P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining
independent parallelism and pipelined parallelism

 Does not provide a high degree of parallelism

 useful with a lower degree of parallelism.

 less useful in a highly parallel system.

©Silberschatz, Korth and Sudarshan18.30Database System Concepts - 6th Edition

Query Optimization

 Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

 Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:

 How to parallelize each operation and how many processors to
use for it.

 What operations to pipeline, what operations to execute
independently in parallel, and what operations to execute
sequentially, one after the other.

 Determining the amount of resources to allocate for each operation is
a problem.

 e.g., allocating more processors than optimal can result in high
communication overhead.

 Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources

©Silberschatz, Korth and Sudarshan18.31Database System Concepts - 6th Edition

Query Optimization (Cont.)

 The number of parallel evaluation plans from which to choose from is much
larger than the number of sequential evaluation plans.

 Therefore heuristics are needed while optimization

 Two alternative heuristics for choosing parallel plans:

 No pipelining and inter-operation pipelining; just parallelize every
operation across all processors.

 Finding best plan is now much easier --- use standard optimization
technique, but with new cost model

 First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.

 Can explore pipelined parallelism as an option

 Choosing a good physical organization (partitioning technique) is important
to speed up queries.

©Silberschatz, Korth and Sudarshan18.32Database System Concepts - 6th Edition

Design of Parallel Systems

Some issues in the design of parallel systems:

 Parallel loading of data from external sources is needed in order to

handle large volumes of incoming data.

 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel

system.

 Operation (perhaps with degraded performance) should be

possible in spite of failure.

 Redundancy achieved by storing extra copy of every data item at

another processor.

©Silberschatz, Korth and Sudarshan18.33Database System Concepts - 6th Edition

Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be

supported.

 For example, index construction on terabyte databases can take

hours or days even on a parallel system.

 Need to allow other processing (insertions/deletions/updates)

to be performed on relation even as index is being constructed.

 Basic idea: index construction tracks changes and “catches up”
on changes at the end.

 Also need support for on-line repartitioning and schema changes

(executed concurrently with other processing).

©Silberschatz, Korth and Sudarshan18.34Database System Concepts - 6th Edition

34

Distributed Transactions

 Transaction may access data at several sites.

 Each site has a local transaction manager responsible for:

 Maintaining a log for recovery purposes

 Participating in coordinating the concurrent execution of the

transactions executing at that site.

 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.

 Distributing subtransactions at appropriate sites for execution.

 Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all

sites or aborted at all sites.

©Silberschatz, Korth and Sudarshan18.35Database System Concepts - 6th Edition

35

Transaction System Architecture

©Silberschatz, Korth and Sudarshan18.36Database System Concepts - 6th Edition

36

System Failure Modes

 Failures unique to distributed systems:

 Failure of a site.

 Loss of messages

 Handled by network transmission control protocols such as
TCP-IP

 Failure of a communication link

 Handled by network protocols, by routing messages via
alternative links

 Network partition

 A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them

– Note: a subsystem may consist of a single node

 Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan18.37Database System Concepts - 6th Edition

37

Commit Protocols

 Commit protocols are used to ensure atomicity across sites

 a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.

 not acceptable to have a transaction committed at one site and

aborted at another

 The two-phase commit (2 PC) protocol is widely used

 The three-phase commit (3 PC) protocol is more complicated and

more expensive, but avoids some drawbacks of two-phase commit

protocol.

©Silberschatz, Korth and Sudarshan18.38Database System Concepts - 6th Edition

38

Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do

not cause any other harm, such as sending incorrect messages to

other sites.

 Execution of the protocol is initiated by the coordinator after the last

step of the transaction has been reached.

 The protocol involves all the local sites at which the transaction

executed

 Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

©Silberschatz, Korth and Sudarshan18.39Database System Concepts - 6th Edition

39

Phase 1: Obtaining a Decision

 Coordinator asks all participants to prepare to commit transaction Ti.

 Ci adds the records <prepare T> to the log and forces log to

stable storage

 sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at site determines if it

can commit the transaction

 if not, add a record <no T> to the log and send abort T message

to Ci

 if the transaction can be committed, then:

 force all records for T to stable storage

 add the record <ready T> to the log

 send ready T message to Ci

©Silberschatz, Korth and Sudarshan18.40Database System Concepts - 6th Edition

40

Phase 2: Recording the Decision

 T can be committed if Ci received a ready T message from all the

participating sites: otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the

log and forces record onto stable storage. Once the record reaches

stable storage it is irrevocable (even if failures occur)

 Coordinator sends a message to each participant informing it of the

decision (commit or abort)

 Participants take appropriate action locally.

©Silberschatz, Korth and Sudarshan18.41Database System Concepts - 6th Edition

41

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

 Log contain <commit T> record: site executes redo (T)

 Log contains <abort T> record: site executes undo (T)

 Log contains <ready T> record: site must consult Ci to determine the

fate of T.

 If T committed, redo (T)

 If T aborted, undo (T)

 The log contains no control records concerning T implies that Sk failed

before responding to the prepare T message from Ci

 since the failure of Sk precludes the sending of such a

response C1 must abort T

 Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan18.42Database System Concepts - 6th Edition

42

Handling of Failures- Coordinator Failure

 If coordinator fails while the commit protocol for T is executing then

participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must

be committed.

2. If an active site contains an <abort T> record in its log, then T must

be aborted.

3. If some active participating site does not contain a <ready T> record

in its log, then the failed coordinator Ci cannot have decided to

commit T. Can therefore abort T.

4. If none of the above cases holds, then all active sites must have a

<ready T> record in their logs, but no additional control records (such

as <abort T> of <commit T>). In this case active sites must wait for

Ci to recover, to find decision.

 Blocking problem : active sites may have to wait for failed coordinator to

recover.

