
REPLICATION

Nelson Onyibe and Genevieve Patterson

CS227

Monday March 5, 2012

A NEW APPROACH TO DEVELOPING

AND IMPLEMENTING EAGER

DATABASE REPLICATION PROTOCOLS

BETTINA KEMME AND GUSTAVO ALONSO

GOALS OF THIS PAPER

 Presents alternative to centralized approaches

 These eliminate some advantages of replication

 Authors approach uses group communication primitives and relaxes

isolation guarantees

 Authors present a form of compromise between Eager and Lazy

replicaiton

COMPROMISE

 Desirable behaviors:

 Correctness (ideal solution: eager replication)

 Fault-tolerance (ideal solution: lazy replication)

 Authors wanted

 More flexible than ensuring serializability

 But with high correctness

 Proposed solution

 Different levels of isolation of grouped, concurrently executed reads/writes

 Claim: their approach maintains data consistency

OUTLINE OF THE AUTHORS’

PROTOCOL

 Basic steps in the authors’ alternative implementation of eager

replication

 Perform transaction locally

 Batch write operations

 At transaction commit time deploy write sets to copies using TO multicast

 This is similar to the ‘push strategy’ for lazy replication + ensured serial write

operations

 At reception time copies (and local site) check for conflicts

 Because of TO multicast, conflict transactions are serialized

 No need for 2-phase-commit

 Major Contributions: use of group communication, different levels

of isolation, optimized fault-tolerance by use of TO broadcast

EXISTING TECHNOLOGY
(AT TIME OF PUBLICATION)

 Where to update?

 Primary Copy – simplifies concurrency

but creates bottleneck

 Update Everywhere – copies must be

coordinated

 When to update?

 Eager – detect conflict before

propagation, ensures consistency

 Lazy – propagate changes after commit,

ensures maximum performance

EXISTING TECHNOLOGY
(AT TIME OF PUBLICATION) CONT’D

 Timeline of replication solutions:

 Primary copy, eager replication

 Update everywhere

 Quorums (example of isolation)

 Epidemic protocols

 Lazy replication

 Favored commercially

 Push strategy – updates propagated directly after transaction commit

 Pull strategy – update occurs only on client request

 Both strategies can be used with primary copy or update everywhere

 Trade Off: update everywhere + lazy replication = reconciliation complexity

 How should the best solution be selected based on the demands

of the database? (not clearly discussed)

COMBINING EAGER AND LAZY

TECHNIQUES

 The authors reference a previous system that used

 Distributed locking

 Global serialization graphs

 Propagation after commit

 to combine advantages of Eager and Lazy protocols

 This previous attempt at combination used a primary copy

implementation, and was scalability-limited

IMPROVING EAGER REPLICATION

 Authors combine correctness of eager with performance of lazy

by using these techniques

 Reducing Message Overhead

 Bundle operations (i.e. ‘write sets’) as in optimistic schemes

 Eliminating Deadlocks

 Pre-order transactions – total-order broadcast

 Optimizations Using Different Levels of Isolation

 The more levels of isolation of operations, the closer this system gets to eager

replication

 More understandable by developers

 Optimizations Using Different Levels of Fault-Tolerance

 Correctness proportional to network reliability

COMPARISON OF DATABASE

REPLICATION TECHNIQUE BASED

ON TOTAL ORDER BROADCAST

MATTHIAS WIESMANN AND ANDRE SCHIPER

INTRO
 Techniques based on group communication typically rely on a

primitive called TOTAL ORDER BROADCAST

 Ensures that messages are delivered reliably and in the same order on all

replicas

 Carried out

 Eagerly

 Within the boundaries of a transaction

 Replicas are identical all the time

 Conflicts detection before commit

 Increased response time

 Lazily

 Delayed updates

 Conflicts could creep in

 There may exist inconsistencies among replicas

MODEL
 Server , S = {S1, S2, …, Sn}

 Each server Si contains a full database, D

 One-copy serializability (All copies of D are kept synchronized at all times)

 Server Si hosts a local transaction manager

 The local transaction manager ensures ACID properties of local transactions

 The local transaction manager TMi executes transactions that updates
Database, Di

 Client , C = {C1, C2, …, Cm}

 The server that a client Ci contacts to execute a transaction, t is a delegate
server for t

 In primary copy replication, only one server can act as a delegate server

 Database Replication Model

REPLICATION TECHNIQUES

Group Communication Based Replication

 Active Replication

 Certification Based Replication

 Weak Voting Replication

Non Group Communication Based Replication (Just for

Comparisons)

 Lazy Replication

 Primary Copy Replication

ACTIVE REPLICATION

 Client, C contacts server, Sd to execute transaction, t

 Server, Sd puts transaction, t into a messages, m

 Server, Sd broadcasts m atomically to all servers

 On receiving m, server, Sr serializes t

 Server, Sr processes t

 If any server, Si aborts, all servers abort

 Del

egate server, Sd

Any server, Si Active replication scheme

CERTIFICATION BASED REPLICATION

 Client, C sends a transaction, t to server, Sd

 Sd executes t but delays write operations

 When commit time is reached, the delayed write set in t is put into

a Message, m and broadcasted to all servers using total order

 Upon delivering m, each server, Si executes a deterministic

certification phase that decides if t can be committed or not

Any Server Si

Delegate Server,

Sd

WEAK VOTING REPLICATION
 Client, C sends a transaction, t to server, Sd

 Sd executes t but delays write operations

 When commit time is reached, the delayed write set in t is put into a Message, m

and broadcasted to all servers using total order

 Upon delivering m, the delegate server, Sd determines if the transaction, t can be

committed or not

 Based on the determination, Sd sends a second broadcast with Abort or commit

decision

 Delegate Server, Sd
Any Server, Si

PRIMARY COPY REPLICATION
 All transactions from any Client, c are sent to one server, Sp

 No other server accepts transactions from any client

 All other servers serve as backups

 The serialization order and abort or commit decisions are made by Sp

 The transaction is processed at Sp and updates are sent to all other

servers using a reliable broadcast

 Primary copy replication scheme

Primary Server, Sp
Backup Server, !Sp

 LAZY REPLICATION (FOR COMPARISONS ONLY)

 A Client, C sends a transaction, t to a server, Sd

 Sd executes t and send updates are broadcasted to others

servers

All other servers

Delegate Server, Sd

Lazy Replication Scheme

EXPERIMENTS

EXPERIMENTS CONT’D

EXPERIMENTS - SCALABILITY

ZOOKEEPER: WAIT-FREE

COORDINATION FOR INTERNET-

SCALE SYSTEMS

HUNT, KONAR, JUNQUEIRA, AND REED

INTRO
Provides coordination framework for large-scale

distributed applications

Manipulation of data objects that are organized

hierarchically resembling a file system structure

Guarantees FIFO ordering for all operations

Leader based atomic protocol ;Zab

Writes are linearizable

Allows local data caches that are managed by clients

Utilizes a watch mechanism; A client watches for an

update to a given data object and receives notification

upon change

ZOOKEEPER SERVICE
 Znodes; Abstraction of a set of data nodes organized according to

hierarchically namespace

 Znodes
 Regular

 Explicit deletion

 Ephemeral

 Explicit of automatically

deleted by the system

 Can be created by setting a sequential flag

 When a new node is created with this flag, a monotonically increasing counter is
appended to the node’s name

 The number attached to the name is never higher than a preexisting sibling’s
number

 A watch flag can be set during a read operation
 When it is set

 A client receives a one time notification about a change of that data object

 Data Model

 A non general purpose file system with simplified API

 Full data reads/writes

 Sessions

 Initiated by connecting to Zookeeper

 Terminated

 When Zookeeper does not receive word for more a set time (timeout)

 A client explicitly closing a session

 A client is deleted because it is faulty

 Enables clients to persists across servers

SOME IMPORTANT CLIENT API

create(path, data, flags)

 Creates a znode with path name path, stores data[] in it

 returns the name of the new znode

 flags enables a client to select the type of znode: regular, ephemeral, and set the
sequential flag;

delete(path, version):

 Deletes the znode with the path if that znode is at the expected version

exists(path, watch)

 Returns true if the znode with path name path exists, and returns false otherwise. The
watch flag enables a client to set a watch on the znode

getData(path, watch)

 Returns the data and meta-data, such as version information, associated with the znode.

 The watch flag works in the same way as it does for exists(), except that ZooKeeper does
not set the watch if the znode does not exist;

sync(path)

 Waits for all updates pending at the start of the operation to propagate to the server that
the client is connected to.

All methods have both asynchronous and synchronous versions

PRIMITIVES

 Configuration Management

 Rendezvous

 Group Membership

 Simple Locks

 Simple Locks without Herd Effect

 Read/Write Locks

 Double Barrier

Configuration Management (dynamic configuration)

 Imagine a regular non distributed application

 Imagine the application have an updatable ‘config ‘ file that the

app reads from at some time in the life of that app

 Now, imagine implementing this with Zookeeper

 System configuration is stored at znode Zc

 Each process starts by knowing the path to Zc

 Each starting process obtains its configuration by reading Zc and setting the

watch flag

 When Zc changes, the processes are notified

 They reread Zc and set the watch flag again

Rendezvous

 When a final system configuration cannot be determined at the

beginning of a system but unavailable information about a subset

of the system has to be passed to some subset of the system,

Zookeeper can utilizes its watch feature to solve this problem.

 For example, a client may want to start a master process and several worker

processes, but the starting processes is done by a scheduler, so the client

does not know ahead of time information such as addresses and ports that it

can give the worker processes to connect to the master.

 Let Zd be designated znode.

 At the start of the system, the processes interested in the

information {pi} are given the path to Zd

 {pi} read Zd and set a watch flag

 When the information is known, Zd is updated and {pi} is notified.

 {pi} rereads Zd and set watch flag again and cycles continues

Group Membership

 Recall that ephemeral znodes are just like normal znode but can

be removed automatically when the node fails

 Group membership can be implemented using Zookeeper

 Let Zg be a designated znode that represents a group, g

 Any znode created as child node to Zg is in group, g

 Finding out information about group, g is as simple as reading the children of

g

 In order to have unique children of Zg, unique names can be given or the

sequential flag can be set when creating an ephemeral znode

 Any process, pi that wishes to monitor changes in group, g, can set a watch

flag to Zg and be notified when ever there is a change in that group

 Pi can then read Zg and set the watch flag to true and repeat

 Since ephemeral znodes are sort self maintaining, when a child znodes to Zg

dies, group membership is automatically modified to reflect the new state

SYSTEM PERFORMANCE

