

The Neo4j Manual v1.9.M04

The Neo4j Team neo4j.org <http://neo4j.org/>
www.neotechnology.com <http://www.neotechnology.com/>

http://neo4j.org/
http://neo4j.org/
http://www.neotechnology.com/
http://www.neotechnology.com/

The Neo4j Manual v1.9.M04
by The Neo4j Team neo4j.org <http://neo4j.org/> www.neotechnology.com <http://www.neotechnology.com/>

Publication date 2013-01-17 17:29:44
Copyright © 2013 Neo Technology

Starting points

• What is a graph database?
• Cypher Query Language
• Using Neo4j embedded in Java applications
• Using Neo4j embedded in Python applications
• Remote Client Libraries
• Languages
• Neo4j Server
• REST API

License: Creative Commons 3.0
This book is presented in open source and licensed through Creative Commons 3.0. You are free to copy, distribute, transmit, and/or adapt the work. This
license is based upon the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your
use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.

Any of the above conditions can be waived if you get permission from the copyright holder.

In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights
• The author’s moral rights
• Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights

Note
For any reuse or distribution, you must make clear to the others the license terms of this work. The best way to do this is with a direct link to
this page: http://creativecommons.org/licenses/by-sa/3.0/ <http://creativecommons.org/licenses/by-sa/3.0/>

http://neo4j.org/
http://neo4j.org/
http://www.neotechnology.com/
http://www.neotechnology.com/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

iii

Table of Contents
Preface ... iv
I. Introduction .. 1

1. Neo4j Highlights ... 2
2. Graph Database Concepts ... 3
3. The Neo4j Graph Database ... 11

II. Tutorials .. 20
4. Using Neo4j embedded in Java applications .. 21
5. Neo4j Remote Client Libraries ... 50
6. The Traversal Framework ... 56
7. Data Modeling Examples .. 65
8. Languages .. 101
9. Using Neo4j embedded in Python applications .. 102
10. Extending the Neo4j Server .. 106

III. Reference ... 113
11. Capabilities .. 114
12. Transaction Management .. 121
13. Data Import .. 130
14. Indexing ... 134
15. Cypher Query Language ... 153
16. Graph Algorithms .. 239
17. Neo4j Server .. 241
18. REST API .. 254
19. Python embedded bindings ... 368

IV. Operations .. 384
20. Installation & Deployment .. 385
21. Configuration & Performance ... 396
22. High Availability ... 427
23. Backup ... 444
24. Security .. 449
25. Monitoring ... 455

V. Tools ... 466
26. Web Administration .. 467
27. Neo4j Shell .. 473

VI. Community .. 489
28. Community Support .. 490
29. Contributing to Neo4j .. 491

A. Manpages .. 515
neo4j ... 516
neo4j-shell .. 518
neo4j-backup .. 519

B. Questions & Answers ... 521

iv

Preface

This is the reference manual for Neo4j version 1.9.M04, written by the Neo4j Team.

The main parts of the manual are:

• Part I, “Introduction” — introducing graph database concepts and Neo4j.
• Part II, “Tutorials” — learn how to use Neo4j.
• Part III, “Reference” — detailed information on Neo4j.
• Part IV, “Operations” — how to install and maintain Neo4j.
• Part V, “Tools” — guides on tools.
• Part VI, “Community” — getting help from, contributing to.
• Appendix A, Manpages — command line documentation.
• Appendix B, Questions & Answers — common questions.

The material is practical, technical, and focused on answering specific questions. It addresses how
things work, what to do and what to avoid to successfully run Neo4j in a production environment.

The goal is to be thumb-through and rule-of-thumb friendly.

Each section should stand on its own, so you can hop right to whatever interests you. When possible,
the sections distill "rules of thumb" which you can keep in mind whenever you wander out of the
house without this manual in your back pocket.

The included code examples are executed when Neo4j is built and tested. Also, the REST API request
and response examples are captured from real interaction with a Neo4j server. Thus, the examples are
always in sync with Neo4j.

Who should read this?

The topics should be relevant to architects, administrators, developers and operations personnel.

Part I. Introduction
This part gives a bird’s eye view of what a graph database is, and then outlines some specifics of Neo4j.

2

Chapter 1. Neo4j Highlights

As a robust, scalable and high-performance database, Neo4j is suitable for full enterprise deployment
or a subset of the full server can be used in lightweight projects.

It features:

• true ACID transactions
• high availability
• scales to billions of nodes and relationships
• high speed querying through traversals

Proper ACID behavior is the foundation of data reliability. Neo4j enforces that all operations that
modify data occur within a transaction, guaranteeing consistent data. This robustness extends from
single instance embedded graphs to multi-server high availability installations. For details, see
Chapter 12, Transaction Management.

Reliable graph storage can easily be added to any application. A graph can scale in size and
complexity as the application evolves, with little impact on performance. Whether starting new
development, or augmenting existing functionality, Neo4j is only limited by physical hardware.

A single server instance can handle a graph of billions of nodes and relationships. When data
throughput is insufficient, the graph database can be distributed among multiple servers in a high
availability configuration. See Chapter 22, High Availability to learn more.

The graph database storage shines when storing richly-connected data. Querying is performed through
traversals, which can perform millions of traversal steps per second. A traversal step resembles a join
in a RDBMS.

3

Chapter 2. Graph Database Concepts

This chapter contains an introduction to the graph data model and also compares it to other data
models used when persisting data.

Graph Database Concepts

4

2.1. What is a Graph Database?
A graph database stores data in a graph, the most generic of data structures, capable of elegantly
representing any kind of data in a highly accessible way. Let’s follow along some graphs, using them
to express graph concepts. We’ll “read” a graph by following arrows around the diagram to form
sentences.

2.1.1. A Graph contains Nodes and Relationships
“A Graph —records data in→ Nodes —which have→ Properties”

The simplest possible graph is a single Node, a record that has named values referred to as Properties.
A Node could start with a single Property and grow to a few million, though that can get a little
awkward. At some point it makes sense to distribute the data into multiple nodes, organized with
explicit Relationships.

Graph

Nodes

records data in Relat ionships

records data in

Propert ies

have

organize

have

2.1.2. Relationships organize the Graph
“Nodes —are organized by→ Relationships —which also have→ Properties”

Relationships organize Nodes into arbitrary structures, allowing a Graph to resemble a List, a Tree,
a Map, or a compound Entity – any of which can be combined into yet more complex, richly inter-
connected structures.

2.1.3. Query a Graph with a Traversal
“A Traversal —navigates→ a Graph; it —identifies→ Paths —which order→ Nodes”

A Traversal is how you query a Graph, navigating from starting Nodes to related Nodes according to
an algorithm, finding answers to questions like “what music do my friends like that I don’t yet own,”
or “if this power supply goes down, what web services are affected?”

Graph Database Concepts

5

Traversal

Graph

navigates

Paths

ident ifies

Algorithm

expresses

Relat ionships

records data in

Nodes

records data in order

organize

2.1.4. Indexes look-up Nodes or Relationships
“An Index —maps from→ Properties —to either→ Nodes or Relationships”

Often, you want to find a specific Node or Relationship according to a Property it has. Rather than
traversing the entire graph, use an Index to perform a look-up, for questions like “find the Account for
username master-of-graphs.”

Graph Database Concepts

6

Indexes

Relat ionships

m ap to

Nodes

m ap to

Propert ies

m ap fromorganize

have

have

2.1.5. Neo4j is a Graph Database
“A Graph Database —manages a→ Graph and —also manages related→ Indexes”

Neo4j is a commercially supported open-source graph database. It was designed and built from the
ground-up to be a reliable database, optimized for graph structures instead of tables. Working with
Neo4j, your application gets all the expressiveness of a graph, with all the dependability you expect
out of a database.

Graph Database Concepts

7

Graph Database

Graph

m anages

Indexes

m anages

Relat ionships

records data in

Nodes

records data in

m ap to

m ap to

Propert ies

m ap from organize

have

have

Traversal

navigates

Paths

ident ifies

Algorithm

expresses

order

Graph Database Concepts

8

2.2. Comparing Database Models
A Graph Database stores data structured in the Nodes and Relationships of a graph. How does this
compare to other persistence models? Because a graph is a generic structure, let’s compare how a few
models would look in a graph.

2.2.1. A Graph Database transforms a RDBMS
Topple the stacks of records in a relational database while keeping all the relationships, and you’ll see
a graph. Where an RDBMS is optimized for aggregated data, Neo4j is optimized for highly connected
data.

Figure 2.1. RDBMS

A1

A2

A3

B1

B2

B3

B4

B5

B6

B7

C1

C2

C3

Figure 2.2. Graph Database as RDBMS

A1

B1B2

A2

B4B6

A3

B3B5 B7

C1 C2C3

2.2.2. A Graph Database elaborates a Key-Value Store
A Key-Value model is great for lookups of simple values or lists. When the values are themselves
interconnected, you’ve got a graph. Neo4j lets you elaborate the simple data structures into more
complex, interconnected data.

Graph Database Concepts

9

Figure 2.3. Key-Value Store

K1

K2

K3

V1

K2

V2

K1

K3

V3

K1

K* represents a key, V* a value. Note that some keys point to other keys as well as plain values.

Figure 2.4. Graph Database as Key-Value Store

V1

V2

V3
K1

K2

K3

2.2.3. A Graph Database relates Column-Family
Column Family (BigTable-style) databases are an evolution of key-value, using "families" to allow
grouping of rows. Stored in a graph, the families could become hierarchical, and the relationships
among data becomes explicit.

2.2.4. A Graph Database navigates a Document Store
The container hierarchy of a document database accommodates nice, schema-free data that can easily
be represented as a tree. Which is of course a graph. Refer to other documents (or document elements)
within that tree and you have a more expressive representation of the same data. When in Neo4j, those
relationships are easily navigable.

Graph Database Concepts

10

Figure 2.5. Document Store

D1

S1

D2

S2S3

V1D2/S2 V2V3V4D1/S1

D=Document, S=Subdocument, V=Value, D2/S2 = reference to subdocument in (other) document.

Figure 2.6. Graph Database as Document Store

D1

S1D2 S2S3

V1

V2

V3

V4

11

Chapter 3. The Neo4j Graph Database

This chapter goes into more detail on the data model and behavior of Neo4j.

The Neo4j Graph Database

12

3.1. Nodes
The fundamental units that form a graph are nodes and relationships. In Neo4j, both nodes and
relationships can contain properties.

Nodes are often used to represent entities, but depending on the domain relationships may be used for
that purpose as well.

A Node

Relat ionships

can have

Propert ies

can have

can have

Let’s start out with a really simple graph, containing only a single node with one property:

nam e: Marko

The Neo4j Graph Database

13

3.2. Relationships
Relationships between nodes are a key part of a graph database. They allow for finding related data.
Just like nodes, relationships can have properties.

A Relat ionship

Start node

has a

End node

has a

Relat ionship type

has a

Propert ies

can have

Nam e

uniquely ident ified by

A relationship connects two nodes, and is guaranteed to have valid start and end nodes.

Start node End node
relat ionship

As relationships are always directed, they can be viewed as outgoing or incoming relative to a node,
which is useful when traversing the graph:

Node
incom ing relat ionship outgoing relat ionship

Relationships are equally well traversed in either direction. This means that there is no need to add
duplicate relationships in the opposite direction (with regard to traversal or performance).

While relationships always have a direction, you can ignore the direction where it is not useful in your
application.

Note that a node can have relationships to itself as well:

Node loop

To further enhance graph traversal all relationships have a relationship type. Note that the word type
might be misleading here, you could rather think of it as a label. The following example shows a
simple social network with two relationship types.

The Neo4j Graph Database

14

Maja

Oscar

follows follows

William

blocks

Alice

follows

Using relationship direction and type
What How

get who a person follows outgoing follows relationships, depth one
get the followers of a person incoming follows relationships, depth one
get who a person blocks outgoing blocks relationships, depth one
get who a person is blocked by incoming blocks relationships, depth one

This example is a simple model of a file system, which includes symbolic links:

/

A

B

file

C

file

D

sym bolic link
{ nam e: "E"}

file

Depending on what you are looking for, you will use the direction and type of relationships during
traversal.

The Neo4j Graph Database

15

What How

get the full path of a file incoming file relationships
get all paths for a file incoming file and symbolic link relationships
get all files in a directory outgoing file and symbolic link relationships,

depth one
get all files in a directory, excluding symbolic
links

outgoing file relationships, depth one

get all files in a directory, recursively outgoing file and symbolic link relationships

The Neo4j Graph Database

16

3.3. Properties
Both nodes and relationships can have properties.

Properties are key-value pairs where the key is a string. Property values can be either a primitive or an
array of one primitive type. For example String, int and int[] values are valid for properties.

Note
null is not a valid property value. Nulls can instead be modeled by the absence of a key.

A Property

Key

has a

Value

has a

Prim it ive

boolean

byte

short

int

long

float

double

char

St ring

is acan be acan be an array of

Property value types
Type Description Value range

boolean true/false
byte 8-bit integer -128 to 127, inclusive
short 16-bit integer -32768 to 32767, inclusive
int 32-bit integer -2147483648 to 2147483647, inclusive
long 64-bit integer -9223372036854775808 to

9223372036854775807, inclusive
float 32-bit IEEE 754 floating-point number
double 64-bit IEEE 754 floating-point number

The Neo4j Graph Database

17

Type Description Value range

char 16-bit unsigned integers representing
Unicode characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

For further details on float/double values, see Java Language Specification <http://docs.oracle.com/
javase/specs/jls/se5.0/html/typesValues.html#4.2.3>.

http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.3
http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.3
http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.3

The Neo4j Graph Database

18

3.4. Paths
A path is one or more nodes with connecting relationships, typically retrieved as a query or traversal
result.

A Path

Start Node

has a

Relat ionship

can contain one or m ore

End Node

has an

Node

accom panied by a

The shortest possible path has length zero and looks like this:

Node

A path of length one:

Node 1

Node 2

Relat ionship 1

Another path of length one:

Node 1 Relat ionship 1

The Neo4j Graph Database

19

3.5. Traversal
Traversing a graph means visiting its nodes, following relationships according to some rules. In most
cases only a subgraph is visited, as you already know where in the graph the interesting nodes and
relationships are found.

Neo4j comes with a callback based traversal API which lets you specify the traversal rules. At a basic
level there’s a choice between traversing breadth- or depth-first.

For an in-depth introduction to the traversal framework, see Chapter 6, The Traversal Framework. For
Java code examples see Section 4.5, “Traversal”.

Other options to traverse or query graphs in Neo4j are Cypher and Gremlin.

Part II. Tutorials
The tutorial part describes how to set up your environment, and write programs using Neo4j. It takes you
from Hello World to advanced usage of graphs.

21

Chapter 4. Using Neo4j embedded in Java applications

It’s easy to use Neo4j embedded in Java applications. In this chapter you will find everything
needed — from setting up the environment to doing something useful with your data.

Using Neo4j embedded in Java applications

22

4.1. Include Neo4j in your project
After selecting the appropriate edition for your platform, embed Neo4j in your Java application by
including the Neo4j library jars in your build. The following sections will show how to do this by
either altering the build path directly or by using dependency management.

4.1.1. Add Neo4j to the build path
Get the Neo4j libraries from one of these sources:

• Extract a Neo4j download <http://neo4j.org/download/> zip/tarball, and use the jar files found in
the lib/ directory.

• Use the jar files available from Maven Central Repository <http://search.maven.org/#search|ga|1|g
%3A%22org.neo4j%22>

Add the jar files to your project:

JDK tools
Append to -classpath

Eclipse
• Right-click on the project and then go Build Path → Configure Build Path. In the dialog,

choose Add External JARs, browse to the Neo4j lib/ directory and select all of the jar files.
• Another option is to use User Libraries <http://help.eclipse.org/indigo/index.jsp?topic=/

org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-
libraries.htm>.

IntelliJ IDEA
See Libraries, Global Libraries, and the Configure Library dialog <http://www.jetbrains.com/idea/
webhelp/libraries-global-libraries-and-the-configure-library-dialog.html>

NetBeans
• Right-click on the Libraries node of the project, choose Add JAR/Folder, browse to the Neo4j

lib/ directory and select all of the jar files.
• You can also handle libraries from the project node, see Managing a Project’s Classpath <http://

netbeans.org/kb/docs/java/project-setup.html#projects-classpath>.

4.1.2. Add Neo4j as a dependency
For an overview of the main Neo4j artifacts, see Neo4j editions. The artifacts listed there are top-level
artifacts that will transitively include the actual Neo4j implementation. You can either go with the top-
level artifact or include the individual components directly. The examples included here use the top-
level artifact approach.

Maven
Maven dependency.

<project>

...

 <dependencies>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.9.M04</version>

 </dependency>

 ...

http://neo4j.org/download/
http://neo4j.org/download/
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://www.jetbrains.com/idea/webhelp/libraries-global-libraries-and-the-configure-library-dialog.html
http://www.jetbrains.com/idea/webhelp/libraries-global-libraries-and-the-configure-library-dialog.html
http://www.jetbrains.com/idea/webhelp/libraries-global-libraries-and-the-configure-library-dialog.html
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath

Using Neo4j embedded in Java applications

23

 </dependencies>

...

</project>

Where the artifactId is found in Neo4j editions.

Eclipse and Maven
For development in Eclipse <http://www.eclipse.org>, it is recommended to install the m2e plugin
<http://www.eclipse.org/m2e/> and let Maven manage the project build classpath instead, see above.
This also adds the possibility to build your project both via the command line with Maven and have a
working Eclipse setup for development.

Ivy
Make sure to resolve dependencies from Maven Central, for example using this configuration in your
ivysettings.xml file:
<ivysettings>

 <settings defaultResolver="main"/>

 <resolvers>

 <chain name="main">

 <filesystem name="local">

 <artifact pattern="${ivy.settings.dir}/repository/[artifact]-[revision].[ext]" />

 </filesystem>

 <ibiblio name="maven_central" root="http://repo1.maven.org/maven2/" m2compatible="true"/>

 </chain>

 </resolvers>

</ivysettings>

With that in place you can add Neo4j to the mix by having something along these lines to your ivy.xml
file:
..

<dependencies>

 ..

 <dependency org="org.neo4j" name="neo4j" rev="1.9.M04"/>

 ..

</dependencies>

..

Where the name is found in Neo4j editions.

Gradle
The example below shows an example gradle build script for including the Neo4j libraries.
def neo4jVersion = "1.9.M04"

apply plugin: 'java'

repositories {

 mavenCentral()

}

dependencies {

 compile "org.neo4j:neo4j:${neo4jVersion}"

}

Where the coordinates (org.neo4j:neo4j in the example) are found in Neo4j editions.

4.1.3. Starting and stopping
To create a new database or ópen an existing one you instantiate an EmbeddedGraphDatabase <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html>.
graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html

Using Neo4j embedded in Java applications

24

registerShutdownHook(graphDb);

Note
The EmbeddedGraphDatabase instance can be shared among multiple threads. Note however
that you can’t create multiple instances pointing to the same database.

To stop the database, call the shutdown() method:
graphDb.shutdown();

To make sure Neo4j is shut down properly you can add a shutdown hook:
private static void registerShutdownHook(final GraphDatabaseService graphDb)

{

 // Registers a shutdown hook for the Neo4j instance so that it

 // shuts down nicely when the VM exits (even if you "Ctrl-C" the

 // running example before it's completed)

 Runtime.getRuntime().addShutdownHook(new Thread()

 {

 @Override

 public void run()

 {

 graphDb.shutdown();

 }

 });

}

If you want a read-only view of the database, use EmbeddedReadOnlyGraphDatabase <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedReadOnlyGraphDatabase.html>.

To start Neo4j with configuration settings, a Neo4j properties file can be loaded like this:

GraphDatabaseService graphDb = new GraphDatabaseFactory().

 newEmbeddedDatabaseBuilder("target/database/location").

 loadPropertiesFromFile(pathToConfig + "neo4j.properties").

 newGraphDatabase();

Or you could of course create you own Map<String, String> programatically and use that instead.

For configuration settings, see Chapter 21, Configuration & Performance.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedReadOnlyGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedReadOnlyGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedReadOnlyGraphDatabase.html

Using Neo4j embedded in Java applications

25

4.2. Hello World
Learn how to create and access nodes and relationships. For information on project setup, see
Section 4.1, “Include Neo4j in your project”.

Remember, from Section 2.1, “What is a Graph Database?”, that a Neo4j graph consist of:

• Nodes that are connected by
• Relationships, with
• Properties on both nodes and relationships.

All relationships have a type. For example, if the graph represents a social network, a relationship type
could be KNOWS. If a relationship of the type KNOWS connects two nodes, that probably represents two
people that know each other. A lot of the semantics (that is the meaning) of a graph is encoded in the
relationship types of the application. And although relationships are directed they are equally well
traversed regardless of which direction they are traversed.

Tip
The source code of this example is found here: EmbeddedNeo4j.java <https://github.com/
neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/
examples/EmbeddedNeo4j.java>

4.2.1. Prepare the database
Relationship types can be created by using an enum. In this example we only need a single relationship
type. This is how to define it:
private static enum RelTypes implements RelationshipType

{

 KNOWS

}

We also prepare some variables to use:
GraphDatabaseService graphDb;

Node firstNode;

Node secondNode;

Relationship relationship;

The next step is to start the database server. Note that if the directory given for the database doesn’t
already exist, it will be created.
graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

registerShutdownHook(graphDb);

Note that starting a database server is an expensive operation, so don’t start up a new instance
every time you need to interact with the database! The instance can be shared by multiple threads.
Transactions are thread confined.

As seen, we register a shutdown hook that will make sure the database shuts down when the JVM
exits. Now it’s time to interact with the database.

4.2.2. Wrap writes in a transaction
All writes (creating, deleting and updating any data) have to be performed in a transaction. This is
a conscious design decision, since we believe transaction demarcation to be an important part of
working with a real enterprise database. Now, transaction handling in Neo4j is very easy:
Transaction tx = graphDb.beginTx();

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java

Using Neo4j embedded in Java applications

26

try

{

 // Updating operations go here

 tx.success();

}

finally

{

 tx.finish();

}

For more information on transactions, see Chapter 12, Transaction Management and Java
API for Transaction <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
Transaction.html>.

4.2.3. Create a small graph
Now, let’s create a few nodes. The API is very intuitive. Feel free to have a look at the JavaDocs at
http://components.neo4j.org/neo4j/1.9.M04/apidocs/. They’re included in the distribution, as well.
Here’s how to create a small graph consisting of two nodes, connected with one relationship and some
properties:
firstNode = graphDb.createNode();

firstNode.setProperty("message", "Hello, ");

secondNode = graphDb.createNode();

secondNode.setProperty("message", "World!");

relationship = firstNode.createRelationshipTo(secondNode, RelTypes.KNOWS);

relationship.setProperty("message", "brave Neo4j ");

We now have a graph that looks like this:

Figure 4.1. Hello World Graph

m essage = 'Hello, '

m essage = 'World! '

KNOWS
m essage = 'brave Neo4j '

4.2.4. Print the result
After we’ve created our graph, let’s read from it and print the result.
System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.print(secondNode.getProperty("message"));

Which will output:

Hello, brave Neo4j World!

4.2.5. Remove the data
In this case we’ll remove the data before committing:
// let's remove the data

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Transaction.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Transaction.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Transaction.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Transaction.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/

Using Neo4j embedded in Java applications

27

firstNode.getSingleRelationship(RelTypes.KNOWS, Direction.OUTGOING).delete();

firstNode.delete();

secondNode.delete();

Note that deleting a node which still has relationships when the transaction commits will fail. This is
to make sure relationships always have a start node and an end node.

4.2.6. Shut down the database server
Finally, shut down the database server when the application finishes:

graphDb.shutdown();

Using Neo4j embedded in Java applications

28

4.3. User database with index
You have a user database, and want to retrieve users by name. To begin with, this is the structure of
the database we want to create:

Figure 4.2. Node space view of users

That is, the reference node is connected to a users-reference node to which all users are connected.

Tip
The source code used in this example is found here: EmbeddedNeo4jWithIndexing.java
<https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/
java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java>

To begin with, we define the relationship types we want to use:

private static enum RelTypes implements RelationshipType

{

 USER

}

Then we have created two helper methods to handle user names and adding users to the database:

private static String idToUserName(final int id)

{

 return "user" + id + "@neo4j.org";

}

private static Node createAndIndexUser(final String username)

{

 Node node = graphDb.createNode();

 node.setProperty(USERNAME_KEY, username);

 nodeIndex.add(node, USERNAME_KEY, username);

 return node;

}

The next step is to start the database server:

graphDb = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

nodeIndex = graphDb.index().forNodes("nodes");

referenceIndex = graphDb.index().forNodes("references");

registerShutdownHook();

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java

Using Neo4j embedded in Java applications

29

It’s time to add the users:
Transaction tx = graphDb.beginTx();

try

{

 // Create users sub reference node

 Node usersReferenceNode = graphDb.createNode();

 usersReferenceNode.setProperty("reference", "users");

 referenceIndex.add(usersReferenceNode, "reference", "users");

 // Create some users and index their names with the IndexService

 for (int id = 0; id < 100; id++)

 {

 Node userNode = createAndIndexUser(idToUserName(id));

 usersReferenceNode.createRelationshipTo(userNode,

 RelTypes.USER);

 }

And here’s how to find a user by Id:
int idToFind = 45;

Node foundUser = nodeIndex.get(USERNAME_KEY,

 idToUserName(idToFind)).getSingle();

System.out.println("The username of user " + idToFind + " is "

 + foundUser.getProperty(USERNAME_KEY));

Using Neo4j embedded in Java applications

30

4.4. Basic unit testing
The basic pattern of unit testing with Neo4j is illustrated by the following example.

To access the Neo4j testing facilities you should have the neo4j-kernel tests.jar on the classpath
during tests. You can download it from Maven Central: org.neo4j:neo4j-kernel <http://
search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22>.

Using Maven as a dependency manager you would typically add this dependency together with JUnit
and Hamcrest like so:

Maven dependency.

<project>

...

 <dependencies>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-kernel</artifactId>

 <version>1.9.M04</version>

 <type>test-jar</type>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit-dep</artifactId>

 <version>4.10</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.hamcrest</groupId>

 <artifactId>hamcrest-all</artifactId>

 <version>1.1</version>

 <scope>test</scope>

 </dependency>

 ...

 </dependencies>

...

</project>

With that in place, we’re ready to code our tests.

Tip
For the full source code of this example see: Neo4jBasicTest.java <https://github.com/
neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/
examples/Neo4jBasicTest.java>

Before each test, create a fresh database:

@Before

public void prepareTestDatabase()

{

 graphDb = new TestGraphDatabaseFactory().newImpermanentDatabaseBuilder().newGraphDatabase();

}

After the test has executed, the database should be shut down:

@After

public void destroyTestDatabase()

{

 graphDb.shutdown();

}

http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/Neo4jBasicTest.java

Using Neo4j embedded in Java applications

31

During a test, create nodes and check to see that they are there, while enclosing write operations in a
transaction.
Transaction tx = graphDb.beginTx();

Node n = null;

try

{

 n = graphDb.createNode();

 n.setProperty("name", "Nancy");

 tx.success();

}

catch (Exception e)

{

 tx.failure();

}

finally

{

 tx.finish();

}

// The node should have an id greater than 0, which is the id of the

// reference node.

assertThat(n.getId(), is(greaterThan(0l)));

// Retrieve a node by using the id of the created node. The id's and

// property should match.

Node foundNode = graphDb.getNodeById(n.getId());

assertThat(foundNode.getId(), is(n.getId()));

assertThat((String) foundNode.getProperty("name"), is("Nancy"));

If you want to set configuration parameters at database creation, it’s done like this:
Map<String, String> config = new HashMap<String, String>();

config.put("neostore.nodestore.db.mapped_memory", "10M");

config.put("string_block_size", "60");

config.put("array_block_size", "300");

GraphDatabaseService db = new ImpermanentGraphDatabase(config);

Using Neo4j embedded in Java applications

32

4.5. Traversal
For reading about traversals, see Chapter 6, The Traversal Framework.

For more examples of traversals, see Chapter 7, Data Modeling Examples.

4.5.1. The Matrix
The traversals from the Matrix example above, this time using the new traversal API:

Tip
The source code of the examples is found here: NewMatrix.java <https://github.com/neo4j/
neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/
NewMatrix.java>

Friends and friends of friends.

private static Traverser getFriends(

 final Node person)

{

 TraversalDescription td = Traversal.description()

 .breadthFirst()

 .relationships(RelTypes.KNOWS, Direction.OUTGOING)

 .evaluator(Evaluators.excludeStartPosition());

 return td.traverse(person);

}

Let’s perform the actual traversal and print the results:

int numberOfFriends = 0;

String output = neoNode.getProperty("name") + "'s friends:\n";

Traverser friendsTraverser = getFriends(neoNode);

for (Path friendPath : friendsTraverser)

{

 output += "At depth " + friendPath.length() + " => "

 + friendPath.endNode()

 .getProperty("name") + "\n";

 numberOfFriends++;

}

output += "Number of friends found: " + numberOfFriends + "\n";

Which will give us the following output:

Thomas Anderson's friends:

At depth 1 => Trinity

At depth 1 => Morpheus

At depth 2 => Cypher

At depth 3 => Agent Smith

Number of friends found: 4

Who coded the Matrix?

private static Traverser findHackers(final Node startNode)

{

 TraversalDescription td = Traversal.description()

 .breadthFirst()

 .relationships(RelTypes.CODED_BY, Direction.OUTGOING)

 .relationships(RelTypes.KNOWS, Direction.OUTGOING)

 .evaluator(

 Evaluators.includeWhereLastRelationshipTypeIs(RelTypes.CODED_BY));

 return td.traverse(startNode);

}

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/NewMatrix.java

Using Neo4j embedded in Java applications

33

Print out the result:

String output = "Hackers:\n";

int numberOfHackers = 0;

Traverser traverser = findHackers(getNeoNode());

for (Path hackerPath : traverser)

{

 output += "At depth " + hackerPath.length() + " => "

 + hackerPath.endNode()

 .getProperty("name") + "\n";

 numberOfHackers++;

}

output += "Number of hackers found: " + numberOfHackers + "\n";

Now we know who coded the Matrix:

Hackers:

At depth 4 => The Architect

Number of hackers found: 1

Walking an ordered path
This example shows how to use a path context holding a representation of a path.

Tip
The source code of this example is found here: OrderedPath.java <https://github.com/
neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/
examples/orderedpath/OrderedPath.java>

Create a toy graph.

Node A = db.createNode();

Node B = db.createNode();

Node C = db.createNode();

Node D = db.createNode();

A.createRelationshipTo(B, REL1);

B.createRelationshipTo(C, REL2);

C.createRelationshipTo(D, REL3);

A.createRelationshipTo(C, REL2);

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/orderedpath/OrderedPath.java

Using Neo4j embedded in Java applications

34

A

B

REL1

C

REL2

REL2

D

REL3

Now, the order of relationships (REL1 → REL2 → REL3) is stored in an ArrayList. Upon traversal,
the Evaluator can check against it to ensure that only paths are included and returned that have the
predefined order of relationships:

Define how to walk the path.

final ArrayList<RelationshipType> orderedPathContext = new ArrayList<RelationshipType>();

orderedPathContext.add(REL1);

orderedPathContext.add(withName("REL2"));

orderedPathContext.add(withName("REL3"));

TraversalDescription td = Traversal.description()

 .evaluator(new Evaluator()

 {

 @Override

 public Evaluation evaluate(final Path path)

 {

 if (path.length() == 0)

 {

 return Evaluation.EXCLUDE_AND_CONTINUE;

 }

 RelationshipType expectedType = orderedPathContext.get(path.length() - 1);

 boolean isExpectedType = path.lastRelationship()

 .isType(expectedType);

 boolean included = path.length() == orderedPathContext.size()

 && isExpectedType;

 boolean continued = path.length() < orderedPathContext.size()

 && isExpectedType;

 return Evaluation.of(included, continued);

 }

 });

Perform the traversal and print the result.

Traverser traverser = td.traverse(A);

PathPrinter pathPrinter = new PathPrinter("name");

Using Neo4j embedded in Java applications

35

for (Path path : traverser)

{

 output += Traversal.pathToString(path, pathPrinter);

}

Which will output:

(A)--[REL1]-->(B)--[REL2]-->(C)--[REL3]-->(D)

In this case we use a custom class to format the path output. This is how it’s done:

static class PathPrinter implements Traversal.PathDescriptor<Path>

{

 private final String nodePropertyKey;

 public PathPrinter(String nodePropertyKey)

 {

 this.nodePropertyKey = nodePropertyKey;

 }

 @Override

 public String nodeRepresentation(Path path, Node node)

 {

 return "(" + node.getProperty(nodePropertyKey, "") + ")";

 }

 @Override

 public String relationshipRepresentation(Path path, Node from,

 Relationship relationship)

 {

 String prefix = "--", suffix = "--";

 if (from.equals(relationship.getEndNode()))

 {

 prefix = "<--";

 }

 else

 {

 suffix = "-->";

 }

 return prefix + "[" + relationship.getType().name() + "]" + suffix;

 }

}

For options regarding output of a Path, see the Traversal <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/kernel/Traversal.html> class.

Note
The following examples use a deprecated traversal API. It shares the underlying
implementation with the new traversal API, so performance-wise they are equal. The
functionality it provides is very limited in comparison.

4.5.2. Old traversal API
This is the first graph we want to traverse into:

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html

Using Neo4j embedded in Java applications

36

Figure 4.3. Matrix node space view

Tip
The source code of the examples is found here: Matrix.java <https://github.com/neo4j/
neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/
Matrix.java>

Friends and friends of friends.

private static Traverser getFriends(final Node person)

{

 return person.traverse(Order.BREADTH_FIRST,

 StopEvaluator.END_OF_GRAPH,

 ReturnableEvaluator.ALL_BUT_START_NODE, RelTypes.KNOWS,

 Direction.OUTGOING);

}

Let’s perform the actual traversal and print the results:

int numberOfFriends = 0;

String output = neoNode.getProperty("name") + "'s friends:\n";

Traverser friendsTraverser = getFriends(neoNode);

for (Node friendNode : friendsTraverser)

{

 output += "At depth " +

 friendsTraverser.currentPosition().depth() +

 " => " +

 friendNode.getProperty("name") + "\n";

 numberOfFriends++;

}

output += "Number of friends found: " + numberOfFriends + "\n";

Which will give us the following output:

Thomas Anderson's friends:

At depth 1 => Trinity

At depth 1 => Morpheus

At depth 2 => Cypher

At depth 3 => Agent Smith

Number of friends found: 4

Who coded the Matrix?

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/Matrix.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/Matrix.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/Matrix.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/Matrix.java

Using Neo4j embedded in Java applications

37

private static Traverser findHackers(final Node startNode)

{

 return startNode.traverse(Order.BREADTH_FIRST,

 StopEvaluator.END_OF_GRAPH, new ReturnableEvaluator()

 {

 @Override

 public boolean isReturnableNode(

 final TraversalPosition currentPos)

 {

 return !currentPos.isStartNode()

 && currentPos.lastRelationshipTraversed()

 .isType(RelTypes.CODED_BY);

 }

 }, RelTypes.CODED_BY, Direction.OUTGOING, RelTypes.KNOWS,

 Direction.OUTGOING);

}

Print out the result:

String output = "Hackers:\n";

int numberOfHackers = 0;

Traverser traverser = findHackers(getNeoNode());

for (Node hackerNode : traverser)

{

 output += "At depth " +

 traverser.currentPosition().depth() +

 " => " +

 hackerNode.getProperty("name") + "\n";

 numberOfHackers++;

}

output += "Number of hackers found: " + numberOfHackers + "\n";

Now we know who coded the Matrix:

Hackers:

At depth 4 => The Architect

Number of hackers found: 1

4.5.3. Uniqueness of Paths in traversals
This example is demonstrating the use of node uniqueness. Below an imaginary domain graph with
Principals that own pets that are descendant to other pets.

Figure 4.4. Descendants Example Graph

Node[1]

nam e = 'Pet1'

Node[2]

nam e = 'Pet2'

Node[3]

nam e = 'Pet0'

descendant descendant

Node[4]

nam e = 'Pet3'

descendant

Node[5]

nam e = 'Principal1'

owns owns

Node[6]

nam e = 'Principal2'

owns

In order to return all descendants of Pet0 which have the relation owns to Principal1 (Pet1 and Pet3),
the Uniqueness of the traversal needs to be set to NODE_PATH rather than the default NODE_GLOBAL so that
nodes can be traversed more that once, and paths that have different nodes but can have some nodes in
common (like the start and end node) can be returned.

final Node target = data.get().get("Principal1");

Using Neo4j embedded in Java applications

38

TraversalDescription td = Traversal.description()

 .uniqueness(Uniqueness.NODE_PATH)

 .evaluator(new Evaluator()

{

 @Override

 public Evaluation evaluate(Path path)

 {

 if (path.endNode().equals(target))

 {

 return Evaluation.INCLUDE_AND_PRUNE;

 }

 return Evaluation.EXCLUDE_AND_CONTINUE;

 }

});

Traverser results = td.traverse(start);

This will return the following paths:

(3)--[descendant,0]-->(1)<--[owns,3]--(5)

(3)--[descendant,2]-->(4)<--[owns,5]--(5)

In the default path.toString() implementation, (1)--[knows,2]-->(4) denotes a node with ID=1 having
a relationship with ID 2 or type knows to a node with ID-4.

Let’s create a new TraversalDescription from the old one, having NODE_GLOBAL uniqueness to see the
difference.

Tip
The TraversalDescription object is immutable, so we have to use the new instance returned
with the new uniqueness setting.

TraversalDescription nodeGlobalTd = td.uniqueness(Uniqueness.NODE_GLOBAL);

results = nodeGlobalTd.traverse(start);

Now only one path is returned:

(3)--[descendant,0]-->(1)<--[owns,3]--(5)

4.5.4. Social network

Note
The following example uses the new enhanced traversal API.

Social networks (know as social graphs out on the web) are natural to model with a graph. This
example shows a very simple social model that connects friends and keeps track of status updates.

Tip
The source code of the example is found here: socnet <https://github.com/neo4j/neo4j/
tree/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet>

https://github.com/neo4j/neo4j/tree/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet
https://github.com/neo4j/neo4j/tree/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet
https://github.com/neo4j/neo4j/tree/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet

Using Neo4j embedded in Java applications

39

Simple social model

Figure 4.5. Social network data model

The data model for a social network is pretty simple: Persons with names and StatusUpdates with
timestamped text. These entities are then connected by specific relationships.

• Person

• friend: relates two distinct Person instances (no self-reference)
• status: connects to the most recent StatusUpdate

• StatusUpdate

• next: points to the next StatusUpdate in the chain, which was posted before the current one

Status graph instance
The StatusUpdate list for a Person is a linked list. The head of the list (the most recent status) is found
by following status. Each subsequent StatusUpdate is connected by next.

Here’s an example where Andreas Kollegger micro-blogged his way to work in the morning:

Using Neo4j embedded in Java applications

40

Andreas Kollegger

started designing this graph m odel
9:30 am

status

rode m y awesom e Skeppshult to work
8:45 am

next

is get t ing used to m uesli for breakfast
8:00 am

next

To read the status updates, we can create a traversal, like so:
TraversalDescription traversal = Traversal.description().

 depthFirst().

 relationships(NEXT);

This gives us a traverser that will start at one StatusUpdate, and will follow the chain of updates until
they run out. Traversers are lazy loading, so it’s performant even when dealing with thousands of
statuses — they are not loaded until we actually consume them.

Activity stream
Once we have friends, and they have status messages, we might want to read our friends status'
messages, in reverse time order — latest first. To do this, we go through these steps:

1. Gather all friend’s status update iterators in a list — latest date first.
2. Sort the list.
3. Return the first item in the list.
4. If the first iterator is exhausted, remove it from the list. Otherwise, get the next item in that iterator.
5. Go to step 2 until there are no iterators left in the list.

Animated, the sequence looks like this <http://www.slideshare.net/systay/pattern-activity-stream>.

The code looks like:
PositionedIterator<StatusUpdate> first = statuses.get(0);

StatusUpdate returnVal = first.current();

if (!first.hasNext())

{

 statuses.remove(0);

}

else

http://www.slideshare.net/systay/pattern-activity-stream
http://www.slideshare.net/systay/pattern-activity-stream

Using Neo4j embedded in Java applications

41

{

 first.next();

 sort();

}

return returnVal;

Using Neo4j embedded in Java applications

42

4.6. Domain entities
This page demonstrates one way to handle domain entities when using Neo4j. The principle at use is
to wrap the entities around a node (the same approach can be used with relationships as well).

Tip
The source code of the examples is found here: Person.java <https://github.com/neo4j/
neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/
socnet/Person.java>

First off, store the node and make it accessible inside the package:
private final Node underlyingNode;

Person(Node personNode)

{

 this.underlyingNode = personNode;

}

protected Node getUnderlyingNode()

{

 return underlyingNode;

}

Delegate attributes to the node:
public String getName()

{

 return (String)underlyingNode.getProperty(NAME);

}

Make sure to override these methods:
@Override

public int hashCode()

{

 return underlyingNode.hashCode();

}

@Override

public boolean equals(Object o)

{

 return o instanceof Person &&

 underlyingNode.equals(((Person)o).getUnderlyingNode());

}

@Override

public String toString()

{

 return "Person[" + getName() + "]";

}

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/socnet/Person.java

Using Neo4j embedded in Java applications

43

4.7. Graph Algorithm examples
Tip
The source code used in the example is found here: PathFindingExamplesTest.java
<https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/
java/org/neo4j/examples/PathFindingExamplesTest.java>

Calculating the shortest path (least number of relationships) between two nodes:

Node startNode = graphDb.createNode();

Node middleNode1 = graphDb.createNode();

Node middleNode2 = graphDb.createNode();

Node middleNode3 = graphDb.createNode();

Node endNode = graphDb.createNode();

createRelationshipsBetween(startNode, middleNode1, endNode);

createRelationshipsBetween(startNode, middleNode2, middleNode3, endNode);

// Will find the shortest path between startNode and endNode via

// "MY_TYPE" relationships (in OUTGOING direction), like f.ex:

//

// (startNode)-->(middleNode1)-->(endNode)

//

PathFinder<Path> finder = GraphAlgoFactory.shortestPath(

 Traversal.expanderForTypes(ExampleTypes.MY_TYPE, Direction.OUTGOING), 15);

Iterable<Path> paths = finder.findAllPaths(startNode, endNode);

Using Dijkstra’s algorithm <http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm> to calculate
cheapest path between node A and B where each relationship can have a weight (i.e. cost) and the
path(s) with least cost are found.

PathFinder<WeightedPath> finder = GraphAlgoFactory.dijkstra(

 Traversal.expanderForTypes(ExampleTypes.MY_TYPE, Direction.BOTH), "cost");

WeightedPath path = finder.findSinglePath(nodeA, nodeB);

// Get the weight for the found path

path.weight();

Using A* <http://en.wikipedia.org/wiki/A*_search_algorithm> to calculate the cheapest path between
node A and B, where cheapest is for example the path in a network of roads which has the shortest
length between node A and B. Here’s our example graph:

Node nodeA = createNode("name", "A", "x", 0d, "y", 0d);

Node nodeB = createNode("name", "B", "x", 7d, "y", 0d);

Node nodeC = createNode("name", "C", "x", 2d, "y", 1d);

Relationship relAB = createRelationship(nodeA, nodeC, "length", 2d);

Relationship relBC = createRelationship(nodeC, nodeB, "length", 3d);

Relationship relAC = createRelationship(nodeA, nodeB, "length", 10d);

EstimateEvaluator<Double> estimateEvaluator = new EstimateEvaluator<Double>()

https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/PathFindingExamplesTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/PathFindingExamplesTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/PathFindingExamplesTest.java
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm

Using Neo4j embedded in Java applications

44

{

 public Double getCost(final Node node, final Node goal)

 {

 double dx = (Double) node.getProperty("x") - (Double) goal.getProperty("x");

 double dy = (Double) node.getProperty("y") - (Double) goal.getProperty("y");

 double result = Math.sqrt(Math.pow(dx, 2) + Math.pow(dy, 2));

 return result;

 }

};

PathFinder<WeightedPath> astar = GraphAlgoFactory.aStar(

 Traversal.expanderForAllTypes(),

 CommonEvaluators.doubleCostEvaluator("length"), estimateEvaluator);

WeightedPath path = astar.findSinglePath(nodeA, nodeB);

Using Neo4j embedded in Java applications

45

4.8. Reading a management attribute
The EmbeddedGraphDatabase <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/
EmbeddedGraphDatabase.html> class includes a convenience method <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html#getManagementBean
%28java.lang.Class%29> to get instances of Neo4j management beans. The common JMX service
can be used as well, but from your code you probably rather want to use the approach outlined here.

Tip
The source code of the example is found here: JmxTest.java <https://github.com/neo4j/
neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/
JmxTest.java>

This example shows how to get the start time of a database:
private static Date getStartTimeFromManagementBean(

 GraphDatabaseService graphDbService)

{

 GraphDatabaseAPI graphDb = (GraphDatabaseAPI) graphDbService;

 Kernel kernel = graphDb.getDependencyResolver().resolveDependency(JmxKernelExtension.class)

 .getSingleManagementBean(Kernel.class);

 Date startTime = kernel.getKernelStartTime();

 return startTime;

}

Depending on which Neo4j edition you are using different sets of management beans are available.

• For all editions, see the org.neo4j.jmx <http://components.neo4j.org/neo4j-jmx/1.9.M04/apidocs/
org/neo4j/jmx/package-summary.html> package.

• For the Advanced and Enterprise editions, see the org.neo4j.management <http://
components.neo4j.org/neo4j-management/1.9.M04/apidocs/org/neo4j/management/package-
summary.html> package as well.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html#getManagementBean%28java.lang.Class%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html#getManagementBean%28java.lang.Class%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html#getManagementBean%28java.lang.Class%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html#getManagementBean%28java.lang.Class%29
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/JmxTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/JmxTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/JmxTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/JmxTest.java
http://components.neo4j.org/neo4j-jmx/1.9.M04/apidocs/org/neo4j/jmx/package-summary.html
http://components.neo4j.org/neo4j-jmx/1.9.M04/apidocs/org/neo4j/jmx/package-summary.html
http://components.neo4j.org/neo4j-jmx/1.9.M04/apidocs/org/neo4j/jmx/package-summary.html
http://components.neo4j.org/neo4j-management/1.9.M04/apidocs/org/neo4j/management/package-summary.html
http://components.neo4j.org/neo4j-management/1.9.M04/apidocs/org/neo4j/management/package-summary.html
http://components.neo4j.org/neo4j-management/1.9.M04/apidocs/org/neo4j/management/package-summary.html
http://components.neo4j.org/neo4j-management/1.9.M04/apidocs/org/neo4j/management/package-summary.html

Using Neo4j embedded in Java applications

46

4.9. OSGi setup
In OSGi <http://www.osgi.org/>-related contexts like a number of Application Servers (e.g. Glassfish
<http://glassfish.java.net/>) and Eclipse <http://www.eclipse.org>-based systems, Neo4j can be set
up explicitly rather than being discovered by the Java Service Loader mechanism.

4.9.1. Simple OSGi Activator scenario
As seen in the following example, instead of relying on the Classloading of the Neo4j kernel, the
Neo4j bundles are treated as library bundles, and services like the IndexProviders and CacheProviders
are explicitly instantiated, configured and registered. Just make the necessary jars available as
wrapped library bundles, so all needed classes are exported and seen by the bundle containing the
Activator.
public class Neo4jActivator implements BundleActivator

{

 private static GraphDatabaseService db;

 private ServiceRegistration serviceRegistration;

 private ServiceRegistration indexServiceRegistration;

 @Override

 public void start(BundleContext context) throws Exception

 {

 //the cache providers

 ArrayList<CacheProvider> cacheList = new ArrayList<CacheProvider>();

 cacheList.add(new SoftCacheProvider());

 //the kernel extensions

 LuceneKernelExtensionFactory lucene = new LuceneKernelExtensionFactory();

 List<KernelExtensionFactory<?>> extensions = new ArrayList<KernelExtensionFactory<?>>();

 extensions.add(lucene);

 //the database setup

 GraphDatabaseFactory gdbf = new GraphDatabaseFactory();

 gdbf.setKernelExtensions(extensions);

 gdbf.setCacheProviders(cacheList);

 db = gdbf.newEmbeddedDatabase("target/db");

 //the OSGi registration

 serviceRegistration = context.registerService(

 GraphDatabaseService.class.getName(), db, new Hashtable<String, String>());

 System.out.println("registered " + serviceRegistration.getReference());

 indexServiceRegistration = context.registerService(

 Index.class.getName(), db.index().forNodes("nodes"),

 new Hashtable<String, String>());

 Transaction tx = db.beginTx();

 try

 {

 Node firstNode = db.createNode();

 Node secondNode = db.createNode();

 Relationship relationship = firstNode.createRelationshipTo(

 secondNode, DynamicRelationshipType.withName("KNOWS"));

 firstNode.setProperty("message", "Hello, ");

 secondNode.setProperty("message", "world!");

 relationship.setProperty("message", "brave Neo4j ");

 db.index().forNodes("nodes").add(firstNode, "message", "Hello");

 tx.success();

 }

 catch (Exception e)

 {

 e.printStackTrace();

http://www.osgi.org/
http://www.osgi.org/
http://glassfish.java.net/
http://glassfish.java.net/
http://www.eclipse.org
http://www.eclipse.org

Using Neo4j embedded in Java applications

47

 throw new RuntimeException(e);

 }

 finally

 {

 tx.finish();

 }

 }

 @Override

 public void stop(BundleContext context) throws Exception

 {

 serviceRegistration.unregister();

 indexServiceRegistration.unregister();

 db.shutdown();

 }

}

Tip
The source code of the example above is found here <https://github.com/neo4j/neo4j/
tree/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/osgi/>.

https://github.com/neo4j/neo4j/tree/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/osgi/
https://github.com/neo4j/neo4j/tree/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/osgi/
https://github.com/neo4j/neo4j/tree/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/osgi/

Using Neo4j embedded in Java applications

48

4.10. Execute Cypher Queries from Java
Tip
The full source code of the example: JavaQuery.java <https://github.com/neo4j/
neo4j/blob/1.9.M04/community/cypher/src/test/java/org/neo4j/cypher/javacompat/
JavaQuery.java>

In Java, you can use the Cypher query language like this:
GraphDatabaseService db = new GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

// add some data first, keep id of node so we can refer to it

long id;

Transaction tx = db.beginTx();

try

{

 Node refNode = db.createNode();

 id = refNode.getId();

 refNode.setProperty("name", "reference node");

 tx.success();

}

finally

{

 tx.finish();

}

// let's execute a query now

ExecutionEngine engine = new ExecutionEngine(db);

ExecutionResult result = engine.execute("start n=node("+id+") return n, n.name");

Which will output:
+---+

| n | n.name |

+---+

| Node[1]{name:"reference node"} | "reference node" |

+---+

1 row

0 ms

Caution
The classes used here are from the org.neo4j.cypher.javacompat package, not
org.neo4j.cypher, see link to the Java API below.

You can get a list of the columns in the result:
List<String> columns = result.columns();

This outputs:
[n, n.name]

To fetch the result items in a single column, do like this:
Iterator<Node> n_column = result.columnAs("n");

for (Node node : IteratorUtil.asIterable(n_column))

{

 // note: we're grabbing the name property from the node,

 // not from the n.name in this case.

 nodeResult = node + ": " + node.getProperty("name");

}

In this case there’s only one node in the result:

https://github.com/neo4j/neo4j/blob/1.9.M04/community/cypher/src/test/java/org/neo4j/cypher/javacompat/JavaQuery.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/cypher/src/test/java/org/neo4j/cypher/javacompat/JavaQuery.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/cypher/src/test/java/org/neo4j/cypher/javacompat/JavaQuery.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/cypher/src/test/java/org/neo4j/cypher/javacompat/JavaQuery.java

Using Neo4j embedded in Java applications

49

Node[1]: reference node

To get all columns, do like this instead:
for (Map<String, Object> row : result)

{

 for (Entry<String, Object> column : row.entrySet())

 {

 rows += column.getKey() + ": " + column.getValue() + "; ";

 }

 rows += "\n";

}

This outputs:
n.name: reference node; n: Node[1];

For more information on the Java interface to Cypher, see the Java API <http://components.neo4j.org/
neo4j-cypher/1.9.M04/apidocs/index.html>.

For more information and examples for Cypher, see Chapter 15, Cypher Query Language and
Chapter 7, Data Modeling Examples.

http://components.neo4j.org/neo4j-cypher/1.9.M04/apidocs/index.html
http://components.neo4j.org/neo4j-cypher/1.9.M04/apidocs/index.html
http://components.neo4j.org/neo4j-cypher/1.9.M04/apidocs/index.html

50

Chapter 5. Neo4j Remote Client Libraries

The included Java example shows a “low-level” approach to using the Neo4j REST API from Java.
For other options, see below.

Neo4j REST clients contributed by the community.
name language / framework URL

Java-Rest-Binding Java https://github.com/neo4j/java-
rest-binding/

Neo4jClient .NET http://hg.readify.net/neo4jclient/
Neo4jRestNet .NET https://github.com/SepiaGroup/

Neo4jRestNet
py2neo Python http://py2neo.org/
Bulbflow Python http://bulbflow.com/
neo4jrestclient Python https://github.com/versae/neo4j-

rest-client
neo4django Django https://github.com/scholrly/

neo4django
Neo4jPHP PHP https://github.com/jadell/

Neo4jPHP
neography Ruby https://github.com/maxdemarzi/

neography
neoid Ruby https://github.com/elado/neoid
node.js JavaScript https://github.com/thingdom/

node-neo4j
Neocons Clojure https://github.com/

michaelklishin/neocons
Neo4p Perl http://search.cpan.org/search?

query=REST::Neo4p
Neo4j-GO Go https://github.com/davemeehan/

Neo4j-GO

https://github.com/neo4j/java-rest-binding/
https://github.com/neo4j/java-rest-binding/
http://hg.readify.net/neo4jclient/
https://github.com/SepiaGroup/Neo4jRestNet
https://github.com/SepiaGroup/Neo4jRestNet
http://py2neo.org/
http://bulbflow.com/
https://github.com/versae/neo4j-rest-client
https://github.com/versae/neo4j-rest-client
https://github.com/scholrly/neo4django
https://github.com/scholrly/neo4django
https://github.com/jadell/Neo4jPHP
https://github.com/jadell/Neo4jPHP
https://github.com/maxdemarzi/neography
https://github.com/maxdemarzi/neography
https://github.com/elado/neoid
https://github.com/thingdom/node-neo4j
https://github.com/thingdom/node-neo4j
https://github.com/michaelklishin/neocons
https://github.com/michaelklishin/neocons
http://search.cpan.org/search?query=REST::Neo4p
http://search.cpan.org/search?query=REST::Neo4p
https://github.com/davemeehan/Neo4j-GO
https://github.com/davemeehan/Neo4j-GO

Neo4j Remote Client Libraries

51

5.1. How to use the REST API from Java
5.1.1. Creating a graph through the REST API from Java

The REST API uses HTTP and JSON, so that it can be used from many languages and platforms.
Still, when geting started it’s useful to see some patterns that can be re-used. In this brief overview,
we’ll show you how to create and manipulate a simple graph through the REST API and also how to
query it.

For these examples, we’ve chosen the Jersey <http://jersey.java.net/> client components, which are
easily downloaded <http://jersey.java.net/nonav/documentation/latest/user-guide.html#chapter_deps>
via Maven.

5.1.2. Start the server
Before we can perform any actions on the server, we need to start it as per Section 17.1, “Server
Installation”.
WebResource resource = Client.create()

 .resource(SERVER_ROOT_URI);

ClientResponse response = resource.get(ClientResponse.class);

System.out.println(String.format("GET on [%s], status code [%d]",

 SERVER_ROOT_URI, response.getStatus()));

response.close();

If the status of the response is 200 OK, then we know the server is running fine and we can continue. If
the code fails to conenct to the server, then please have a look at Chapter 17, Neo4j Server.

Note
If you get any other response than 200 OK (particularly 4xx or 5xx responses) then please
check your configuration and look in the log files in the data/log directory.

5.1.3. Creating a node
The REST API uses POST to create nodes. Encapsulating that in Java is straightforward using the
Jersey client:
final String nodeEntryPointUri = SERVER_ROOT_URI + "node";

// http://localhost:7474/db/data/node

WebResource resource = Client.create()

 .resource(nodeEntryPointUri);

// POST {} to the node entry point URI

ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity("{}")

 .post(ClientResponse.class);

final URI location = response.getLocation();

System.out.println(String.format(

 "POST to [%s], status code [%d], location header [%s]",

 nodeEntryPointUri, response.getStatus(), location.toString()));

response.close();

return location;

If the call completes successfully, under the covers it will have sent a HTTP request containing
a JSON payload to the server. The server will then have created a new node in the database and
responded with a 201 Created response and a Location header with the URI of the newly created node.

http://jersey.java.net/
http://jersey.java.net/
http://jersey.java.net/nonav/documentation/latest/user-guide.html#chapter_deps
http://jersey.java.net/nonav/documentation/latest/user-guide.html#chapter_deps

Neo4j Remote Client Libraries

52

In our example, we call this functionality twice to create two nodes in our database.

5.1.4. Adding properties
Once we have nodes in our datatabase, we can use them to store useful data. In this case, we’re going
to store information about music in our database. Let’s start by looking at the code that we use to
create nodes and add properties. Here we’ve added nodes to represent "Joe Strummer" and a band
called "The Clash".

URI firstNode = createNode();

addProperty(firstNode, "name", "Joe Strummer");

URI secondNode = createNode();

addProperty(secondNode, "band", "The Clash");

Inside the addProperty method we determine the resource that represents properties for the node and
decide on a name for that property. We then proceed to PUT the value of that property to the server.

String propertyUri = nodeUri.toString() + "/properties/" + propertyName;

// http://localhost:7474/db/data/node/{node_id}/properties/{property_name}

WebResource resource = Client.create()

 .resource(propertyUri);

ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity("\"" + propertyValue + "\"")

 .put(ClientResponse.class);

System.out.println(String.format("PUT to [%s], status code [%d]",

 propertyUri, response.getStatus()));

response.close();

If everything goes well, we’ll get a 204 No Content back indicating that the server processed the request
but didn’t echo back the property value.

5.1.5. Adding relationships
Now that we have nodes to represent Joe Strummer and The Clash, we can relate them. The REST
API supports this through a POST of a relationship representation to the start node of the relationship.
Correspondingly in Java we POST some JSON to the URI of our node that represents Joe Strummer, to
establish a relationship between that node and the node representing The Clash.

URI relationshipUri = addRelationship(firstNode, secondNode, "singer",

 "{ \"from\" : \"1976\", \"until\" : \"1986\" }");

Inside the addRelationship method, we determine the URI of the Joe Strummer node’s relationships,
and then POST a JSON description of our intended relationship. This description contains the
destination node, a label for the relationship type, and any attributes for the relation as a JSON
collection.

private static URI addRelationship(URI startNode, URI endNode,

 String relationshipType, String jsonAttributes)

 throws URISyntaxException

{

 URI fromUri = new URI(startNode.toString() + "/relationships");

 String relationshipJson = generateJsonRelationship(endNode,

 relationshipType, jsonAttributes);

 WebResource resource = Client.create()

 .resource(fromUri);

 // POST JSON to the relationships URI

 ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

Neo4j Remote Client Libraries

53

 .type(MediaType.APPLICATION_JSON)

 .entity(relationshipJson)

 .post(ClientResponse.class);

 final URI location = response.getLocation();

 System.out.println(String.format(

 "POST to [%s], status code [%d], location header [%s]",

 fromUri, response.getStatus(), location.toString()));

 response.close();

 return location;

}

If all goes well, we receive a 201 Created status code and a Location header which contains a URI of
the newly created relation.

5.1.6. Add properties to a relationship
Like nodes, relationships can have properties. Since we’re big fans of both Joe Strummer and the
Clash, we’ll add a rating to the relationship so that others can see he’s a 5-star singer with the band.

addMetadataToProperty(relationshipUri, "stars", "5");

Inside the addMetadataToProperty method, we determine the URI of the properties of the relationship
and PUT our new values (since it’s PUT it will always overwrite existing values, so be careful).

private static void addMetadataToProperty(URI relationshipUri,

 String name, String value) throws URISyntaxException

{

 URI propertyUri = new URI(relationshipUri.toString() + "/properties");

 String entity = toJsonNameValuePairCollection(name, value);

 WebResource resource = Client.create()

 .resource(propertyUri);

 ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity(entity)

 .put(ClientResponse.class);

 System.out.println(String.format(

 "PUT [%s] to [%s], status code [%d]", entity, propertyUri,

 response.getStatus()));

 response.close();

}

Assuming all goes well, we’ll get a 204 OK response back from the server (which we can check by
calling ClientResponse.getStatus()) and we’ve now established a very small graph that we can query.

5.1.7. Querying graphs
As with the embedded version of the database, the Neo4j server uses graph traversals to look for data
in graphs. Currently the Neo4j server expects a JSON payload describing the traversal to be POST-ed at
the starting node for the traversal (though this is likely to change in time to a GET-based approach).

To start this process, we use a simple class that can turn itself into the equivalent JSON, ready for
POST-ing to the server, and in this case we’ve hardcoded the traverser to look for all nodes with
outgoing relationships with the type "singer".

// TraversalDescription turns into JSON to send to the Server

TraversalDescription t = new TraversalDescription();

t.setOrder(TraversalDescription.DEPTH_FIRST);

t.setUniqueness(TraversalDescription.NODE);

Neo4j Remote Client Libraries

54

t.setMaxDepth(10);

t.setReturnFilter(TraversalDescription.ALL);

t.setRelationships(new Relationship("singer", Relationship.OUT));

Once we have defined the parameters of our traversal, we just need to transfer it. We do this by
determining the URI of the traversers for the start node, and then POST-ing the JSON representation of
the traverser to it.
URI traverserUri = new URI(startNode.toString() + "/traverse/node");

WebResource resource = Client.create()

 .resource(traverserUri);

String jsonTraverserPayload = t.toJson();

ClientResponse response = resource.accept(MediaType.APPLICATION_JSON)

 .type(MediaType.APPLICATION_JSON)

 .entity(jsonTraverserPayload)

 .post(ClientResponse.class);

System.out.println(String.format(

 "POST [%s] to [%s], status code [%d], returned data: "

 + System.getProperty("line.separator") + "%s",

 jsonTraverserPayload, traverserUri, response.getStatus(),

 response.getEntity(String.class)));

response.close();

Once that request has completed, we get back our dataset of singers and the bands they belong to:
[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/82/relationships/out",

 "data" : {

 "band" : "The Clash",

 "name" : "Joe Strummer"

 },

 "traverse" : "http://localhost:7474/db/data/node/82/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/82/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/82/properties/{key}",

 "all_relationships" : "http://localhost:7474/db/data/node/82/relationships/all",

 "self" : "http://localhost:7474/db/data/node/82",

 "properties" : "http://localhost:7474/db/data/node/82/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/82/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/82/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/82/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/82/relationships"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/83/relationships/out",

 "data" : {

 },

 "traverse" : "http://localhost:7474/db/data/node/83/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/83/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/83/properties/{key}",

 "all_relationships" : "http://localhost:7474/db/data/node/83/relationships/all",

 "self" : "http://localhost:7474/db/data/node/83",

 "properties" : "http://localhost:7474/db/data/node/83/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/83/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/83/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/83/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/83/relationships"

}]

5.1.8. Phew, is that it?
That’s a flavor of what we can do with the REST API. Naturally any of the HTTP idioms we provide
on the server can be easily wrapped, including removing nodes and relationships through DELETE.
Still if you’ve gotten this far, then switching .post() for .delete() in the Jersey client code should be
straightforward.

Neo4j Remote Client Libraries

55

5.1.9. What’s next?
The HTTP API provides a good basis for implementers of client libraries, it’s also great for HTTP
and REST folks. In the future though we expect that idiomatic language bindings will appear to take
advantage of the REST API while providing comfortable language-level constructs for developers to
use, much as there are similar bindings for the embedded database.

5.1.10. Appendix: the code

• CreateSimpleGraph.java <https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-
examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java>

• Relationship.java <https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/
main/java/org/neo4j/examples/server/Relationship.java>

• TraversalDescription.java <https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-
examples/src/main/java/org/neo4j/examples/server/TraversalDescription.java>

https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/CreateSimpleGraph.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/Relationship.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/Relationship.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/Relationship.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/TraversalDescription.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/TraversalDescription.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/TraversalDescription.java

56

Chapter 6. The Traversal Framework

The Neo4j Traversal API <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
traversal/package-summary.html> is a callback based, lazily executed way of specifying desired
movements through a graph in Java. Some traversal examples are collected under Section 4.5,
“Traversal”.

Other options to traverse or query graphs in Neo4j are Cypher and Gremlin.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/package-summary.html

The Traversal Framework

57

6.1. Main concepts
Here follows a short explanation of all different methods that can modify or add to a traversal
description.

• Expanders — define what to traverse, typically in terms of relationship direction and type.
• Order — for example depth-first or breadth-first.
• Uniqueness — visit nodes (relationships, paths) only once.
• Evaluator — decide what to return and whether to stop or continue traversal beyond the current

position.
• Starting nodes where the traversal will begin.

Traversal Descript ion

Traverser

applies

Uniqueness

avoid duplicates

Evaluator

return and prune policy

Prune/Cont inue

Order

where to go next

Expander

what to t raverse

Relat ionship Type

Depth First Breadth First Direct ionUnique NodesUnique Relat ionships Unique Paths NoneInclude/Exclude

Paths

result as

Nodes

result as

Relat ionships

result as

A Node
start ing point of

See Section 6.2, “Traversal Framework Java API” for more details.

The Traversal Framework

58

6.2. Traversal Framework Java API
The traversal framework consists of a few main interfaces in addition to Node and Relationship:
TraversalDescription, Evaluator, Traverser and Uniqueness are the main ones. The Path interface also
has a special purpose in traversals, since it is used to represent a position in the graph when evaluating
that position. Furthermore the PathExpander (replacing RelationshipExpander) and Expander interfaces
are central to traversals, but users of the API rarely need to implement them. There are also a set of
interfaces for advanced use, when explicit control over the traversal order is required: BranchSelector,
BranchOrderingPolicy and TraversalBranch.

6.2.1. TraversalDescription
The TraversalDescription <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
traversal/TraversalDescription.html> is the main interface used for defining and initializing traversals.
It is not meant to be implemented by users of the traversal framework, but rather to be provided
by the implementation of the traversal framework as a way for the user to describe traversals.
TraversalDescription instances are immutable and its methods returns a new TraversalDescription that
is modified compared to the object the method was invoked on with the arguments of the method.

Relationships
Adds a relationship type to the list of relationship types to traverse. By default that list is
empty and it means that it will traverse all relationships, irregardless of type. If one or more
relationships are added to this list only the added types will be traversed. There are two
methods, one including direction <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/
neo4j/graphdb/traversal/TraversalDescription.html#relationships> and another one excluding
direction <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/
TraversalDescription.html#relationships>, where the latter traverses relationships in both directions
<http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Direction.html#BOTH>.

6.2.2. Evaluator
Evaluator <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/
Evaluator.html>s are used for deciding, at each position (represented as a Path): should the traversal
continue, and/or should the node be included in the result. Given a Path, it asks for one of four actions
for that branch of the traversal:

• Evaluation.INCLUDE_AND_CONTINUE: Include this node in the result and continue the traversal
• Evaluation.INCLUDE_AND_PRUNE: Include this node in the result, but don’t continue the traversal
• Evaluation.EXCLUDE_AND_CONTINUE: Exclude this node from the result, but continue the traversal
• Evaluation.EXCLUDE_AND_PRUNE: Exclude this node from the result and don’t continue the traversal

More than one evaluator can be added. Note that evaluators will be called for all positions the
traverser encounters, even for the start node.

6.2.3. Traverser
The Traverser <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/
graphdb/traversal/Traverser.html> object is the result of invoking traverse() <http://
components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/
TraversalDescription.html#traverse(org.neo4j.graphdb.Node)> of a TraversalDescription object. It
represents a traversal positioned in the graph, and a specification of the format of the result. The actual
traversal is performed lazily each time the next()-method of the iterator of the Traverser is invoked.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#relationships
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Direction.html#BOTH
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Direction.html#BOTH
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluator.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluator.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluator.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#traverse(org.neo4j.graphdb.Node)

The Traversal Framework

59

6.2.4. Uniqueness
Sets the rules for how positions can be revisited during a traversal as stated in Uniqueness <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html>. Default if
not set is NODE_GLOBAL <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/
Uniqueness.html#NODE_GLOBAL>.

A Uniqueness can be supplied to the TraversalDescription to dictate under what circumstances a
traversal may revisit the same position in the graph. The various uniqueness levels that can be used in
Neo4j are:

• NONE: Any position in the graph may be revisited.
• NODE_GLOBAL uniqueness: No node in the entire graph may be visited more than once. This could

potentially consume a lot of memory since it requires keeping an in-memory data structure
remembering all the visited nodes.

• RELATIONSHIP_GLOBAL uniqueness: no relationship in the entire graph may be visited more than once.
For the same reasons as NODE_GLOBAL uniqueness, this could use up a lot of memory. But since
graphs typically have a larger number of relationships than nodes, the memory overhead of this
uniqueness level could grow even quicker.

• NODE_PATH uniqueness: A node may not occur previously in the path reaching up to it.
• RELATIONSHIP_PATH uniqueness: A relationship may not occur previously in the path reaching up to it.
• NODE_RECENT uniqueness: Similar to NODE_GLOBAL uniqueness in that there is a global collection of

visited nodes each position is checked against. This uniqueness level does however have a cap on
how much memory it may consume in the form of a collection that only contains the most recently
visited nodes. The size of this collection can be specified by providing a number as the second
argument to the TraversalDescription.uniqueness()-method along with the uniqueness level.

• RELATIONSHIP_RECENT uniqueness: Works like NODE_RECENT uniqueness, but with relationships instead
of nodes.

Depth First / Breadth First
These are convenience methods for setting preorder depth-first <http://en.wikipedia.org/
wiki/Depth-first_search>/ breadth-first <http://en.wikipedia.org/wiki/Breadth-first_search>
BranchSelector|ordering policies. The same result can be achieved by calling the order
<http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/
TraversalDescription.html#order> method with ordering policies from the Traversal <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderDepthFirst>
factory <http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/
Traversal.html#preorderBreadthFirst>, or to write your own BranchSelector/BranchOrderingPolicy and
pass in.

6.2.5. Order — How to move through branches?
A more generic version of depthFirst/breadthFirst methods in that it allows an arbitrary
BranchOrderingPolicy <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
traversal/BranchOrderingPolicy.html> to be injected into the description.

6.2.6. BranchSelector
A BranchSelector is used for selecting which branch of the traversal to attempt next. This is used
for implementing traversal orderings. The traversal framework provides a few basic ordering
implementations:

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html#NODE_GLOBAL
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html#NODE_GLOBAL
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html#NODE_GLOBAL
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#order
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#order
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#order
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderDepthFirst
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderDepthFirst
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderDepthFirst
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderBreadthFirst
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderBreadthFirst
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#preorderBreadthFirst
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/BranchOrderingPolicy.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/BranchOrderingPolicy.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/BranchOrderingPolicy.html

The Traversal Framework

60

• Traversal.preorderDepthFirst(): Traversing depth first, visiting each node before visiting its child
nodes.

• Traversal.postorderDepthFirst(): Traversing depth first, visiting each node after visiting its child
nodes.

• Traversal.preorderBreadthFirst(): Traversing breadth first, visiting each node before visiting its
child nodes.

• Traversal.postorderBreadthFirst(): Traversing breadth first, visiting each node after visiting its
child nodes.

Note
Please note that breadth first traversals have a higher memory overhead than depth first
traversals.

BranchSelectors carries state and hence needs to be uniquely instantiated for each traversal. Therefore
it is supplied to the TraversalDescription through a BranchOrderingPolicy interface, which is a factory
of BranchSelector instances.

A user of the Traversal framework rarely needs to implement his own BranchSelector or
BranchOrderingPolicy, it is provided to let graph algorithm implementors provide their own traversal
orders. The Neo4j Graph Algorithms package contains for example a BestFirst order BranchSelector/
BranchOrderingPolicy that is used in BestFirst search algorithms such as A* and Dijkstra.

BranchOrderingPolicy
A factory for creating BranchSelectors to decide in what order branches are returned (where
a branch’s position is represented as a Path <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/graphdb/Path.html> from the start node to the current node). Common
policies are depth-first <http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/
org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()> and breadth-first
<http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/
TraversalDescription.html#breadthFirst()> and that’s why there are convenience methods for those.
For example, calling TraversalDescription#depthFirst() <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()> is equivalent to:

description.order(Traversal.preorderDepthFirst());

TraversalBranch
An object used by the BranchSelector to get more branches from a certain branch. In essence these are
a composite of a Path and a RelationshipExpander that can be used to get new TraversalBranch <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalBranch.html>es
from the current one.

6.2.7. Path
A Path <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html> is a
general interface that is part of the Neo4j API. In the traversal API of Neo4j the use of Paths are
twofold. Traversers can return their results in the form of the Paths of the visited positions in the
graph that are marked for being returned. Path objects are also used in the evaluation of positions in
the graph, for determining if the traversal should continue from a certain point or not, and whether a
certain position should be included in the result set or not.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#breadthFirst()
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#breadthFirst()
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#breadthFirst()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html#depthFirst()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalBranch.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalBranch.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalBranch.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html

The Traversal Framework

61

6.2.8. PathExpander/RelationshipExpander
The traversal framework use PathExpanders (replacing RelationshipExpander) to discover the
relationships that should be followed from a particular path to further branches in the traversal.

6.2.9. Expander
A more generic version of relationships where a RelationshipExpander is injected, defining all
relationships to be traversed for any given node. By default (and when using relationships)
a default expander <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/
Traversal.html#emptyExpander> is used, where any particular order of relationships isn’t
guaranteed. There’s another implementation which guarantees that relationships are traversed in
order of relationship type <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/
OrderedByTypeExpander.html>, where types are iterated in the order they were added.

The Expander interface is an extension of the RelationshipExpander interface that makes it possible to
build customized versions of an Expander. The implementation of TraversalDescription uses this to
provide methods for defining which relationship types to traverse, this is the usual way a user of the
API would define a RelationshipExpander — by building it internally in the TraversalDescription.

All the RelationshipExpanders provided by the Neo4j traversal framework also implement the
Expander interface. For a user of the traversal API it is easier to implement the PathExpander/
RelationshipExpander interface, since it only contains one method — the method for getting the
relationships from a path/node, the methods that the Expander interface adds are just for building new
Expanders.

6.2.10. How to use the Traversal framework
In contrary to Node#traverse <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
Node.html#traverse> a traversal description <http://components.neo4j.org/neo4j/1.9.M04/apidocs/
org/neo4j/graphdb/traversal/TraversalDescription.html> is built (using a fluent interface) and such
a description can spawn traversers <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/
graphdb/traversal/Traverser.html>.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#emptyExpander
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#emptyExpander
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Traversal.html#emptyExpander
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/OrderedByTypeExpander.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/OrderedByTypeExpander.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/OrderedByTypeExpander.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html#traverse
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html#traverse
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html#traverse
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html

The Traversal Framework

62

Figure 6.1. Traversal Example Graph

Node[1]

nam e = 'Lars'

Node[6]

nam e = 'Dirk'

KNOWS

Node[5]

nam e = 'Peter'

KNOWS

Node[2]

nam e = 'Sara'

Node[3]

nam e = 'Ed'

KNOWS

Node[4]

nam e = 'Lisa'

KNOWS

Node[7]

nam e = 'Joe'

LIKES

KNOWS

KNOWS

With the definition of the RelationshipTypes as
private enum Rels implements RelationshipType

{

 LIKES, KNOWS

}

The graph can be traversed with for example the following traverser, starting at the “Joe” node:
for (Path position : Traversal.description()

 .depthFirst()

 .relationships(Rels.KNOWS)

 .relationships(Rels.LIKES, Direction.INCOMING)

 .evaluator(Evaluators.toDepth(5))

 .traverse(node))

{

 output += position + "\n";

}

The traversal will output:
(7)

(7)<--[LIKES,1]--(4)

(7)<--[LIKES,1]--(4)--[KNOWS,6]-->(1)

(7)<--[LIKES,1]--(4)--[KNOWS,6]-->(1)--[KNOWS,4]-->(6)

(7)<--[LIKES,1]--(4)--[KNOWS,6]-->(1)--[KNOWS,4]-->(6)--[KNOWS,3]-->(5)

The Traversal Framework

63

(7)<--[LIKES,1]--(4)--[KNOWS,6]-->(1)--[KNOWS,4]-->(6)--[KNOWS,3]-->(5)--[KNOWS,2]-->(2)

(7)<--[LIKES,1]--(4)--[KNOWS,6]-->(1)<--[KNOWS,5]--(3)

Since TraversalDescription <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
traversal/TraversalDescription.html>s are immutable it is also useful to create template descriptions
which holds common settings shared by different traversals. For example, let’s start with this
traverser:

final TraversalDescription FRIENDS_TRAVERSAL = Traversal.description()

 .depthFirst()

 .relationships(Rels.KNOWS)

 .uniqueness(Uniqueness.RELATIONSHIP_GLOBAL);

This traverser would yield the following output (we will keep starting from the “Joe” node):

(7)

(7)--[KNOWS,0]-->(2)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)<--[KNOWS,4]--(1)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)<--[KNOWS,4]--(1)<--[KNOWS,5]--(3)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)<--[KNOWS,4]--(1)<--[KNOWS,6]--(4)

Now let’s create a new traverser from it, restricting depth to three:

for (Path path : FRIENDS_TRAVERSAL

 .evaluator(Evaluators.toDepth(3))

 .traverse(node))

{

 output += path + "\n";

}

This will give us the following result:

(7)

(7)--[KNOWS,0]-->(2)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)

Or how about from depth two to four? That’s done like this:

for (Path path : FRIENDS_TRAVERSAL

 .evaluator(Evaluators.fromDepth(2))

 .evaluator(Evaluators.toDepth(4))

 .traverse(node))

{

 output += path + "\n";

}

This traversal gives us:

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)

(7)--[KNOWS,0]-->(2)<--[KNOWS,2]--(5)<--[KNOWS,3]--(6)<--[KNOWS,4]--(1)

For various useful evaluators, see the Evaluators <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/graphdb/traversal/Evaluators.html> Java API or simply implement the Evaluator
<http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluator.html>
interface yourself.

If you’re not interested in the Path <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/
neo4j/graphdb/Path.html>s, but the Node <http://components.neo4j.org/neo4j/1.9.M04/apidocs/
org/neo4j/graphdb/Node.html>s you can transform the traverser into an iterable of nodes <http://

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/TraversalDescription.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluators.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluators.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluators.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluator.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Evaluator.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()

The Traversal Framework

64

components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()>
like this:
for (Node currentNode : FRIENDS_TRAVERSAL

 .traverse(node)

 .nodes())

{

 output += currentNode.getProperty("name") + "\n";

}

In this case we use it to retrieve the names:
Joe

Sara

Peter

Dirk

Lars

Ed

Lisa

Relationships <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/
Traverser.html#relationships()> are fine as well, here’s how to get them:
for (Relationship relationship : FRIENDS_TRAVERSAL

 .traverse(node)

 .relationships())

{

 output += relationship.getType() + "\n";

}

Here the relationship types are written, and we get:
KNOWS

KNOWS

KNOWS

KNOWS

KNOWS

KNOWS

The source code for the traversers in this example is available at: TraversalExample.java <https://
github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/
examples/TraversalExample.java>

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#nodes()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#relationships()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#relationships()
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/traversal/Traverser.html#relationships()
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/main/java/org/neo4j/examples/TraversalExample.java

65

Chapter 7. Data Modeling Examples

The following chapters contain simplified examples of how different domains can be modeled using
Neo4j. The aim is not to give full examples, but to suggest possible ways to think using nodes,
relationships, graph patterns and data locality in traversals.

The examples use Cypher queries a lot, read Chapter 15, Cypher Query Language for more
information.

Data Modeling Examples

66

7.1. User roles in graphs
This is an example showing a hierarchy of roles. What’s interesting is that a tree is not sufficient for
storing this structure, as elaborated below.

This is an implementation of an example found in the article A Model to Represent Directed Acyclic
Graphs (DAG) on SQL Databases <http://www.codeproject.com/Articles/22824/A-Model-to-
Represent-Directed-Acyclic-Graphs-DAG-o> by Kemal Erdogan <http://www.codeproject.com/
script/Articles/MemberArticles.aspx?amid=274518>. The article discusses how to store directed
acyclic graphs <http://en.wikipedia.org/wiki/Directed_acyclic_graph> (DAGs) in SQL based DBs.
DAGs are almost trees, but with a twist: it may be possible to reach the same node through different
paths. Trees are restricted from this possibility, which makes them much easier to handle. In our case
it is "Ali" and "Engin", as they are both admins and users and thus reachable through these group
nodes. Reality often looks this way and can’t be captured by tree structures.

In the article an SQL Stored Procedure solution is provided. The main idea, that also have some
support from scientists, is to pre-calculate all possible (transitive) paths. Pros and cons of this
approach:

• decent performance on read
• low performance on insert
• wastes lots of space
• relies on stored procedures

In Neo4j storing the roles is trivial. In this case we use PART_OF (green edges) relationships to model
the group hierarchy and MEMBER_OF (blue edges) to model membership in groups. We also connect the
top level groups to the reference node by ROOT relationships. This gives us a useful partitioning of the
graph. Neo4j has no predefined relationship types, you are free to create any relationship types and
give them any semantics you want.

Lets now have a look at how to retrieve information from the graph. The Java code is using the Neo4j
Traversal API (see Section 6.2, “Traversal Framework Java API”), the queries are done using Cypher.

http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=274518
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=274518
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=274518
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph

Data Modeling Examples

67

7.1.1. Get the admins
Node admins = getNodeByName("Admins");

Traverser traverser = admins.traverse(

 Traverser.Order.BREADTH_FIRST,

 StopEvaluator.END_OF_GRAPH,

 ReturnableEvaluator.ALL_BUT_START_NODE,

 RoleRels.PART_OF, Direction.INCOMING,

 RoleRels.MEMBER_OF, Direction.INCOMING);

resulting in the output
Found: Ali at depth: 0

Found: HelpDesk at depth: 0

Found: Engin at depth: 1

Found: Demet at depth: 1

The result is collected from the traverser using this code:
String output = "";

for (Node node : traverser)

{

 output += "Found: " + node.getProperty(NAME) + " at depth: "

 + (traverser.currentPosition().depth() - 1) + "\n";

}

In Cypher, a similar query would be:
START admins=node(14)

MATCH admins<-[:PART_OF*0..]-group<-[:MEMBER_OF]-user

RETURN user.name, group.name

resulting in:

user.name group.name

"Ali" "Admins"

"Engin" "HelpDesk"

"Demet" "HelpDesk"

3 rows

59 ms

7.1.2. Get the group memberships of a user
Using the Neo4j Java Traversal API, this query looks like:
Node jale = getNodeByName("Jale");

traverser = jale.traverse(

 Traverser.Order.DEPTH_FIRST,

 StopEvaluator.END_OF_GRAPH,

 ReturnableEvaluator.ALL_BUT_START_NODE,

 RoleRels.MEMBER_OF, Direction.OUTGOING,

 RoleRels.PART_OF, Direction.OUTGOING);

resuling in:
Found: ABCTechnicians at depth: 0

Found: Technicians at depth: 1

Found: Users at depth: 2

In Cypher:
START jale=node(10)

Data Modeling Examples

68

MATCH jale-[:MEMBER_OF]->()-[:PART_OF*0..]->group

RETURN group.name

group.name

"ABCTechnicians"

"Technicians"

"Users"

3 rows

7 ms

7.1.3. Get all groups
In Java:
Node referenceNode = getNodeByName("Reference_Node") ;

traverser = referenceNode.traverse(

 Traverser.Order.BREADTH_FIRST,

 StopEvaluator.END_OF_GRAPH,

 ReturnableEvaluator.ALL_BUT_START_NODE,

 RoleRels.ROOT, Direction.INCOMING,

 RoleRels.PART_OF, Direction.INCOMING);

resulting in:
Found: Admins at depth: 0

Found: Users at depth: 0

Found: HelpDesk at depth: 1

Found: Managers at depth: 1

Found: Technicians at depth: 1

Found: ABCTechnicians at depth: 2

In Cypher:
START refNode=node(16)

MATCH refNode<-[:ROOT]->()<-[:PART_OF*0..]-group

RETURN group.name

group.name

"Admins"

"HelpDesk"

"Users"

"Managers"

"Technicians"

"ABCTechnicians"

6 rows

3 ms

7.1.4. Get all members of all groups
Now, let’s try to find all users in the system being part of any group.

in Java:
traverser = referenceNode.traverse(

 Traverser.Order.BREADTH_FIRST,

Data Modeling Examples

69

 StopEvaluator.END_OF_GRAPH,

 new ReturnableEvaluator()

 {

 @Override

 public boolean isReturnableNode(

 TraversalPosition currentPos)

 {

 if (currentPos.isStartNode())

 {

 return false;

 }

 Relationship rel = currentPos.lastRelationshipTraversed();

 return rel.isType(RoleRels.MEMBER_OF);

 }

 },

 RoleRels.ROOT, Direction.INCOMING,

 RoleRels.PART_OF, Direction.INCOMING,

 RoleRels.MEMBER_OF, Direction.INCOMING);

Found: Ali at depth: 1

Found: Engin at depth: 1

Found: Burcu at depth: 1

Found: Can at depth: 1

Found: Demet at depth: 2

Found: Gul at depth: 2

Found: Fuat at depth: 2

Found: Hakan at depth: 2

Found: Irmak at depth: 2

Found: Jale at depth: 3

In Cypher, this looks like:
START refNode=node(16)

MATCH refNode<-[:ROOT]->root, p=root<-[PART_OF*0..]-()<-[:MEMBER_OF]-user

RETURN user.name, min(length(p))

ORDER BY min(length(p)), user.name

and results in the following output:

user.name min(length(p))

"Ali" 1

"Burcu" 1

"Can" 1

"Engin" 1

"Demet" 2

"Fuat" 2

"Gul" 2

"Hakan" 2

"Irmak" 2

"Jale" 3

10 rows

0 ms

As seen above, querying even more complex scenarios can be done using comparatively short
constructs in Java and other query mechanisms.

Data Modeling Examples

70

7.2. ACL structures in graphs
This example gives a generic overview of an approach to handling Access Control Lists (ACLs) in
graphs, and a simplified example with concrete queries.

7.2.1. Generic approach
In many scenarios, an application needs to handle security on some form of managed objects. This
example describes one pattern to handle this through the use of a graph structure and traversers
that build a full permissions-structure for any managed object with exclude and include overriding
possibilities. This results in a dynamic construction of ACLs based on the position and context of the
managed object.

The result is a complex security scheme that can easily be implemented in a graph structure,
supporting permissions overriding, principal and content composition, without duplicating data
anywhere.

Technique
As seen in the example graph layout, there are some key concepts in this domain model:

• The managed content (folders and files) that are connected by HAS_CHILD_CONTENT relationships
• The Principal subtree pointing out principals that can act as ACL members, pointed out by the

PRINCIPAL relationships.
• The aggregation of principals into groups, connected by the IS_MEMBER_OF relationship. One principal

(user or group) can be part of many groups at the same time.
• The SECURITY — relationships, connecting the content composite structure to the principal composite

structure, containing a addition/removal modifier property ("+RW").

Data Modeling Examples

71

Constructing the ACL
The calculation of the effective permissions (e.g. Read, Write, Execute) for a principal for any given
ACL-managed node (content) follows a number of rules that will be encoded into the permissions-
traversal:

Top-down-Traversal
This approach will let you define a generic permission pattern on the root content, and then refine that
for specific sub-content nodes and specific principals.

1. Start at the content node in question traverse upwards to the content root node to determine the
path to it.

2. Start with a effective optimistic permissions list of "all permitted" (111 in a bit encoded
ReadWriteExecute case) or 000 if you like pessimistic security handling (everything is forbidden
unless explicitly allowed).

3. Beginning from the topmost content node, look for any SECURITY relationships on it.
4. If found, look if the principal in question is part of the end-principal of the SECURITY relationship.
5. If yes, add the "+" permission modifiers to the existing permission pattern, revoke the "-"

permission modifiers from the pattern.
6. If two principal nodes link to the same content node, first apply the more generic prinipals

modifiers.
7. Repeat the security modifier search all the way down to the target content node, thus overriding

more generic permissions with the set on nodes closer to the target node.

The same algorithm is applicable for the bottom-up approach, basically just traversing from the target
content node upwards and applying the security modifiers dynamically as the traverser goes up.

Example
Now, to get the resulting access rights for e.g. "user 1" on the "My File.pdf" in a Top-Down approach
on the model in the graph above would go like:

1. Traveling upward, we start with "Root folder", and set the permissions to 11 initially (only
considering Read, Write).

2. There are two SECURITY relationships to that folder. User 1 is contained in both of them, but "root"
is more generic, so apply it first then "All principals" +W +R → 11.

3. "Home" has no SECURITY instructions, continue.
4. "user1 Home" has SECURITY. First apply "Regular Users" (-R -W) → 00, Then "user 1" (+R +W) → 11.
5. The target node "My File.pdf" has no SECURITY modifiers on it, so the effective permissions for "User

1" on "My File.pdf" are ReadWrite → 11.

7.2.2. Read-permission example
In this example, we are going to examine a tree structure of directories and files. Also, there are
users that own files and roles that can be assigned to users. Roles can have permissions on directory or
files structures (here we model only canRead, as opposed to full rwx Unix permissions) and be nested.
A more thorough example of modeling ACL structures can be found at How to Build Role-Based
Access Control in SQL <http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-
control-in-sql/>.

http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/
http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/
http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/
http://www.xaprb.com/blog/2006/08/16/how-to-build-role-based-access-control-in-sql/

Data Modeling Examples

72

Node[20]

'nam e' = 'Hom eU1'

Node[17]

'nam e' = 'File1'

leaf

Node[23]

'nam e' = 'Desktop'

Node[16]

'nam e' = 'File2'

leaf

Node[10]

'nam e' = 'Hom e'

contains

Node[15]

'nam e' = 'Hom eU2'

contains

contains

Node[11]

'nam e' = ' init .d'

Node[12]

'nam e' = 'etc'

contains

Node[18]

'nam e' = 'FileRoot '

contains contains

Node[7]

'nam e' = 'User'

Node[14]

'nam e' = 'User1'

m em ber

Node[13]

'nam e' = 'User2'

m em ber

owns

owns

Node[8]

'nam e' = 'Adm in2'

Node[9]

'nam e' = 'Adm in1'

Node[21]

'nam e' = 'Role'

subRole

Node[22]

'nam e' = 'SUDOers'

subRole

canReadm em ber m em ber

Node[19]

'nam e' = 'Root '

has

has

Find all files in the directory structure
In order to find all files contained in this structure, we need a variable length query that follows all
contains relationships and retrieves the nodes at the other end of the leaf relationships.

START root=node:node_auto_index(name = 'FileRoot')

MATCH root-[:contains*0..]->(parentDir)-[:leaf]->file

RETURN file

resulting in:

file

Node[11]{name:"File1"}

Node[10]{name:"File2"}

2 rows

8 ms

What files are owned by whom?
If we introduce the concept of ownership on files, we then can ask for the owners of the files we
find — connected via owns relationships to file nodes.

START root=node:node_auto_index(name = 'FileRoot')

MATCH root-[:contains*0..]->()-[:leaf]->file<-[:owns]-user

RETURN file, user

Returning the owners of all files below the FileRoot node.

Data Modeling Examples

73

file user

Node[11]{name:"File1"} Node[8]{name:"User1"}

Node[10]{name:"File2"} Node[7]{name:"User2"}

2 rows

8 ms

Who has access to a File?
If we now want to check what users have read access to all Files, and define our ACL as

• The root directory has no access granted.
• Any user having a role that has been granted canRead access to one of the parent folders of a File has

read access.

In order to find users that can read any part of the parent folder hierarchy above the files, Cypher
provides optional variable length path.
START file=node:node_auto_index('name:File*')

MATCH file<-[:leaf]-()<-[:contains*0..]-dir<-[?:canRead]-role-[:member]->readUser

RETURN file.name, dir.name, role.name, readUser.name

This will return the file, and the directory where the user has the canRead permission along with the
user and their role.

file.name dir.name role.name readUser.name

"File2" "Desktop" <null> <null>

"File2" "HomeU2" <null> <null>

"File2" "Home" <null> <null>

"File2" "FileRoot" "SUDOers" "Admin1"

"File2" "FileRoot" "SUDOers" "Admin2"

"File1" "HomeU1" <null> <null>

"File1" "Home" <null> <null>

"File1" "FileRoot" "SUDOers" "Admin1"

"File1" "FileRoot" "SUDOers" "Admin2"

9 rows

15 ms

The results listed above contain null values for optional path segments, which can be mitigated by
either asking several queries or returning just the really needed values.

Data Modeling Examples

74

7.3. Linked Lists
A powerful feature of using a graph database, is that you can create your own in-graph data
structures — like a linked list.

This datastructure uses a single node as the list reference. The reference has an outgoing relationship
to the head of the list, and an incoming relationship from the last element of the list. If the list is
empty, the reference will point to it self.

Something like this:

Figure 7.1. Graph

nam e = 'A'
value = 10

nam e = 'B'
value = 20

LINK

nam e = 'C'
value = 30

LINK

nam e = 'ROOT'

LINK

LINK

To initialize an empty linked list, we simply create an empty node, and make it link to itself.

Query.

CREATE root-[:LINK]->root // no ‘value’ property assigned to root

RETURN root

Adding values is done by finding the relationship where the new value should be placed in, and
replacing it with a new node, and two relationships to it.

Query.

START root=node:node_auto_index(name = "ROOT")

MATCH root-[:LINK*0..]->before,// before could be same as root

after-[:LINK*0..]->root, // after could be same as root

before-[old:LINK]->after

WHERE before.value? < 25 // This is the value, which would normally

AND 25 < after.value? // be supplied through a parameter.

CREATE before-[:LINK]->({value:25})-[:LINK]->after

DELETE old

Deleting a value, conversely, is done by finding the node with the value, and the two relationships
going in and out from it, and replacing with a new value.

Query.

START root=node:node_auto_index(name = "ROOT")

MATCH root-[:LINK*0..]->before,

before-[delBefore:LINK]->del-[delAfter:LINK]->after,

after-[:LINK*0..]->root

WHERE del.value! = 10

CREATE before-[:LINK]->after

DELETE del, delBefore, delAfter

Data Modeling Examples

75

7.4. Hyperedges
Imagine a user being part of different groups. A group can have different roles, and a user can be part
of different groups. He also can have different roles in different groups apart from the membership.
The association of a User, a Group and a Role can be referred to as a HyperEdge. However, it can be
easily modeled in a property graph as a node that captures this n-ary relationship, as depicted below in
the U1G2R1 node.

Figure 7.2. Graph

nam e = 'U1G2R1'

nam e = 'Role1'

hasRole nam e = 'Group2'

hasGroup

nam e = 'Role'

isA

canHave

nam e = 'Role2'

canHave

nam e = 'Group'

isA

isA

nam e = 'Group1'

canHave canHaveisA

nam e = 'User1'

hasRoleInGroup

in in nam e = 'U1G1R2'

hasRoleInGroup

hasRole

hasGroup

7.4.1. Find Groups
To find out in what roles a user is for a particular groups (here Group2), the following query can
traverse this HyperEdge node and provide answers.

Query.

START n=node:node_auto_index(name = 'User1')

MATCH n-[:hasRoleInGroup]->hyperEdge-[:hasGroup]->group, hyperEdge-[:hasRole]->role

WHERE group.name = "Group2"

RETURN role.name

The role of User1 is returned:

Data Modeling Examples

76

Result
role.name

"Role1"

1 row

2 ms

7.4.2. Find all groups and roles for a user
Here, find all groups and the roles a user has, sorted by the name of the role.

Query.

START n=node:node_auto_index(name = "User1")

MATCH n-[:hasRoleInGroup]->hyperEdge-[:hasGroup]->group, hyperEdge-[:hasRole]->role

RETURN role.name, group.name

ORDER BY role.name asc

The groups and roles of User1 are returned:

Result
role.name group.name

"Role1" "Group2"

"Role2" "Group1"

2 rows

0 ms

7.4.3. Find common groups based on shared roles
Assume a more complicated graph:

1. Two user nodes User1, User2.
2. User1 is in Group1, Group2, Group3.
3. User1 has Role1, Role2 in Group1; Role2, Role3 in Group2; Role3, Role4 in Group3 (hyper edges).
4. User2 is in Group1, Group2, Group3.
5. User2 has Role2, Role5 in Group1; Role3, Role4 in Group2; Role5, Role6 in Group3 (hyper edges).

The graph for this looks like the following (nodes like U1G2R23 representing the HyperEdges):

Figure 7.3. Graph

nam e = 'U2G2R34'

nam e = 'Group2'

hasGroup

nam e = 'Role3'

hasRole

nam e = 'Role4'

hasRole

nam e = 'U1G3R34'

hasRole hasRole

nam e = 'Group3'

hasGroup

nam e = 'User2'

hasRoleInGroup

nam e = 'U2G1R25'

hasRoleInGroup

nam e = 'U2G3R56'

hasRoleInGroup

nam e = 'Role2'

hasRole

nam e = 'Role5'

hasRole

nam e = 'Group1'

hasGrouphasGroup

nam e = 'Role6'

hasRole hasRole

nam e = 'User1'

hasRoleInGroup

nam e = 'U1G1R12'

hasRoleInGroup

nam e = 'U1G2R23'

hasRoleInGroup

hasRole hasGroup

nam e = 'Role1'

hasRolehasGroup hasRole hasRole

To return Group1 and Group2 as User1 and User2 share at least one common role in these two groups, the
query looks like this:

Query.

START u1=node:node_auto_index(name = 'User1'), u2=node:node_auto_index(name = 'User2')

Data Modeling Examples

77

MATCH u1-[:hasRoleInGroup]->hyperEdge1-[:hasGroup]->group,

 hyperEdge1-[:hasRole]->role,

 u2-[:hasRoleInGroup]->hyperEdge2-[:hasGroup]->group,

 hyperEdge2-[:hasRole]->role

RETURN group.name, count(role)

ORDER BY group.name ASC

The groups where User1 and User2 share at least one common role:

Result
group.name count(role)

"Group1" 1

"Group2" 1

2 rows

0 ms

Data Modeling Examples

78

7.5. Basic friend finding based on social neighborhood
Imagine an example graph like the following one:

Figure 7.4. Graph

nam e = 'Bill'

nam e = 'Derrick'

knows

nam e = 'Ian'

knows

nam e = 'Sara'

knows

knows nam e = 'Jill'

knows

nam e = 'Joe'

knows

knows

To find out the friends of Joe’s friends that are not already his friends, the query looks like this:

Query.

START joe=node:node_auto_index(name = "Joe")

MATCH joe-[:knows*2..2]-friend_of_friend

WHERE not(joe-[:knows]-friend_of_friend)

RETURN friend_of_friend.name, COUNT(*)

ORDER BY COUNT(*) DESC, friend_of_friend.name

This returns a list of friends-of-friends ordered by the number of connections to them, and secondly by
their name.

Result
friend_of_friend.name COUNT(*)

"Ian" 2

"Derrick" 1

"Jill" 1

3 rows

0 ms

Data Modeling Examples

79

7.6. Co-favorited places
Figure 7.5. Graph

nam e = 'SaunaX' nam e = 'CoffeeShop1'

nam e = 'Cool'

tagged

nam e = 'Cosy'

tagged

nam e = 'MelsPlace'

taggedtagged

nam e = 'CoffeeShop3'

tagged

nam e = 'CoffeeShop2'

tagged

nam e = 'CoffeShop2'

nam e = 'Jill'

favorite favorite favorite

nam e = 'Joe'

favorite favorite favorite

7.6.1. Co-favorited places — users who like x also like y
Find places that people also like who favorite this place:

• Determine who has favorited place x.
• What else have they favorited that is not place x.

Query.

START place=node:node_auto_index(name = "CoffeeShop1")

MATCH place<-[:favorite]-person-[:favorite]->stuff

RETURN stuff.name, count(*)

ORDER BY count(*) DESC, stuff.name

The list of places that are favorited by people that favorited the start place.

Result
stuff.name count(*)

"MelsPlace" 2

"CoffeShop2" 1

"SaunaX" 1

3 rows

1 ms

7.6.2. Co-Tagged places — places related through tags
Find places that are tagged with the same tags:

• Determine the tags for place x.
• What else is tagged the same as x that is not x.

Query.

START place=node:node_auto_index(name = "CoffeeShop1")

MATCH place-[:tagged]->tag<-[:tagged]-otherPlace

RETURN otherPlace.name, collect(tag.name)

ORDER BY length(collect(tag.name)) DESC, otherPlace.name

This query returns other places than CoffeeShop1 which share the same tags; they are ranked by the
number of tags.

Data Modeling Examples

80

Result
otherPlace.name collect(tag.name)

"MelsPlace" ["Cool", "Cosy"]

"CoffeeShop2" ["Cool"]

"CoffeeShop3" ["Cosy"]

3 rows

0 ms

Data Modeling Examples

81

7.7. Find people based on similar favorites
Figure 7.6. Graph

nam e = 'Sara'

nam e = 'Cats'

favorite

nam e = 'Bikes'

favorite

nam e = 'Derrick'

favoritefavorite

nam e = 'Jill'

favorite

nam e = 'Joe'

friend

favoritefavorite

To find out the possible new friends based on them liking similar things as the asking person, use a
query like this:

Query.

START me=node:node_auto_index(name = "Joe")

MATCH me-[:favorite]->stuff<-[:favorite]-person

WHERE NOT(me-[:friend]-person)

RETURN person.name, count(stuff)

ORDER BY count(stuff) DESC

The list of possible friends ranked by them liking similar stuff that are not yet friends is returned.

Result
person.name count(stuff)

"Derrick" 2

"Jill" 1

2 rows

0 ms

Data Modeling Examples

82

7.8. Find people based on mutual friends and groups
Figure 7.7. Graph

Node[1]

nam e = 'Bill'

Node[2]

nam e = 'Group1'

m em ber_of_group

Node[3]

nam e = 'Bob'

m em ber_of_group

Node[4]

nam e = 'Jill'

knows

m em ber_of_group

Node[5]

nam e = 'Joe'

knows

m em ber_of_group

In this scenario, the problem is to determine mutual friends and groups, if any, between persons. If no
mutual groups or friends are found, there should be a 0 returned.

Query.

START me=node(5), other=node(4, 3)

MATCH pGroups=me-[?:member_of_group]->mg<-[?:member_of_group]-other,

pMutualFriends=me-[?:knows]->mf<-[?:knows]-other

RETURN other.name as name,

count(distinct pGroups) AS mutualGroups,

count(distinct pMutualFriends) AS mutualFriends

ORDER BY mutualFriends DESC

The question we are asking is — how many unique paths are there between me and Jill, the paths
being common group memberships, and common friends. If the paths are mandatory, no results will
be returned if me and Bob lack any common friends, and we don’t want that. To make a path optional,
you have to make at least one of it’s relationships optional. That makes the whole path optional.

Result
name mutualGroups mutualFriends

"Jill" 1 1

"Bob" 1 0

2 rows

0 ms

Data Modeling Examples

83

7.9. Find friends based on similar tagging
Figure 7.8. Graph

nam e = 'Anim als' nam e = 'Hobby'

nam e = 'Surfing'

tagged

nam e = 'Sara'

nam e = 'Bikes'

favorite

nam e = 'Horses'

favorite

taggedtagged

nam e = 'Cats'

tagged

nam e = 'Derrick'

favorite

nam e = 'Joe'

favorite favoritefavoritefavorite

To find people similar to me based on the taggings of their favorited items, one approach could be:

• Determine the tags associated with what I favorite.
• What else is tagged with those tags?
• Who favorites items tagged with the same tags?
• Sort the result by how many of the same things these people like.

Query.

START me=node:node_auto_index(name = "Joe")

MATCH me-[:favorite]->myFavorites-[:tagged]->tag<-[:tagged]-theirFavorites<-[:favorite]-people

WHERE NOT(me=people)

RETURN people.name as name, count(*) as similar_favs

ORDER BY similar_favs DESC

The query returns the list of possible friends ranked by them liking similar stuff that are not yet
friends.

Result
name similar_favs

"Sara" 2

"Derrick" 1

2 rows

0 ms

Data Modeling Examples

84

7.10. Multirelational (social) graphs
Figure 7.9. Graph

nam e = 'cats'

nam e = 'nature'

nam e = 'Ben'

nam e = 'Sara'

LIKES

FOLLOWS

nam e = 'Joe'

FOLLOWS

nam e = 'bikes'

LIKES

nam e = 'cars'

LIKES

LIKES

FOLLOWS

LIKES

nam e = 'Maria'

LOVES
FOLLOWSFOLLOWSLOVES

LIKES

This example shows a multi-relational network between persons and things they like. A multi-
relational graph is a graph with more than one kind of relationship between nodes.

Query.

START me=node:node_auto_index(name = 'Joe')

MATCH me-[r1:FOLLOWS|LOVES]->other-[r2]->me

WHERE type(r1)=type(r2)

RETURN other.name, type(r1)

The query returns people that FOLLOWS or LOVES Joe back.

Result
other.name type(r1)

"Sara" "FOLLOWS"

"Maria" "FOLLOWS"

"Maria" "LOVES"

3 rows

3 ms

Data Modeling Examples

85

7.11. Implementing newsfeeds in a graph

Node[1]

nam e = 'Bob'

Node[2]

nam e = 'bob_s1'
text = 'bobs status1'
date = 1

STATUS

Node[4]

nam e = 'Alice'

FRIEND
status = 'CONFIRMED'

Node[3]

nam e = 'bob_s2'
text = 'bobs status2'
date = 4

NEXT

Node[5]

nam e = 'alice_s1'
text = 'Alices status1'
date = 2

STATUS

Node[7]

nam e = 'Joe'

FRIEND
status = 'PENDING'

Node[6]

nam e = 'alice_s2'
text = 'Alices status2'
date = 5

NEXT

FRIEND
status = 'CONFIRMED'

Node[8]

nam e = ' joe_s1'
text = 'Joe status1'
date = 3

STATUS

Node[9]

nam e = ' joe_s2'
text = 'Joe status2'
date = 6

NEXT

Implementation of newsfeed or timeline feature is a frequent requirement for social applications. The
following exmaples are inspired by Newsfeed feature powered by Neo4j Graph Database <http://
techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/>. The query asked here is:

Starting at me, retrieve the time-ordered status feed of the status updates of me and and all friends that
are connected via a CONFIRMED FRIEND relationship to me.

Query.

START me=node:node_auto_index(name='Joe')

MATCH me-[rels:FRIEND*0..1]-myfriend

WHERE ALL(r in rels

WHERE r.status = 'CONFIRMED')

WITH myfriend

http://techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/
http://techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/
http://techfin.in/2012/10/newsfeed-feature-powered-by-neo4j-graph-database/

Data Modeling Examples

86

MATCH myfriend-[:STATUS]-latestupdate-[:NEXT*0..1]-statusupdates

RETURN myfriend.name as name, statusupdates.date as date, statusupdates.text as text

ORDER BY statusupdates.date DESC

LIMIT 3

To understand the strategy, let’s divide the query into five steps:

1. First Get the list of all my friends (along with me) through FRIEND relationship (MATCH me-
[rels:FRIEND*0..1]-myfriend). Also, the WHERE predicate can be added to check whether the friend
request is pending or confirmed.

2. Get the latest status update of my friends through Status relationship (MATCH myfriend-[:STATUS]-
latestupdate).

3. Get subsequent status updates (along with the latest one) of my friends through NEXT relationships
(MATCH myfriend-[:STATUS]-latestupdate-[:NEXT*0..1]-statusupdates).

4. Sort the status updates by posted date (ORDER BY statusupdates.date DESC).
5. LIMIT the number of updates you need in every query (LIMIT x SKIP x*y).

Result

name date text

"Joe" 6 "Joe status2"

"Bob" 4 "bobs status2"

"Joe" 3 "Joe status1"

3 rows

0 ms

Here, the example shows how to add a new status update into the existing data for a user.

Query.

START me=node:node_auto_index(name='Bob')

MATCH me-[r?:STATUS]-secondlatestupdate

DELETE r

WITH me, secondlatestupdate

CREATE me-[:STATUS]->(latest_update{text:'Status',date:123})

WITH latest_update,secondlatestupdate

CREATE latest_update-[:NEXT]-secondlatestupdate

WHERE secondlatestupdate <> null

RETURN latest_update.text as new_status

Dividing the query into steps, this query resembles adding new item in middle of a doubly linked list:

1. Get the latest update (if it exists) of the user through the STATUS relationship (MATCH me-[r?:STATUS]-
secondlatestupdate).

2. Delete the STATUS relationship between user and secondlatestupdate (if it exists), as this would
become the second latest update now and only the latest update would be added through a STATUS
relationship, all earlier updates would be connected to their subsequent updates through a NEXT
relationship. (DELETE r).

3. Now, create the new statusupdate node (with text and date as properties) and connect this with the
user through a STATUS relationship (CREATE me-[:STATUS]->(latest_update{text:'Status',date:123})).

4. Now, create a NEXT relationship between the latest status update and the second latest status update
(if it exists) (CREATE latest_update-[:NEXT]-secondlatestupdate WHERE secondlatestupdate <> null).

Data Modeling Examples

87

Result
new_status

"Status"

1 row

Nodes created: 1

Relationships created: 2

Properties set: 2

Relationships deleted: 1

2 ms

Node[1]

nam e = 'Bob'

Node[2]

nam e = 'bob_s1'
text = 'bobs status1'
date = 1

STATUS

Node[3]

nam e = 'bob_s2'
text = 'bobs status2'
date = 4

NEXT

Data Modeling Examples

88

7.12. Boosting recommendation results
Figure 7.10. Graph

nam e = 'Clark Kent '

nam e = 'Lois Lane'

KNOWS
weight = 4

nam e = 'Jim m y Olsen'

KNOWS
weight = 4

nam e = 'Daily Planet '

WORKSAT
weight = 2
act ivity = 45

WORKSAT
weight = 2
act ivity = 56

nam e = 'Perry White'

KNOWS
weight = 4

nam e = 'Anderson Cooper'

KNOWS
weight = 4

WORKSAT
weight = 2
act ivity = 10

KNOWS
weight = 4

WORKSAT
weight = 2
act ivity = 6

nam e = 'CNN'

WORKSAT
weight = 2
act ivity = 3

WORKSAT
weight = 2
act ivity = 2

This query finds the recommended friends for the origin that are working at the same place as the
origin, or know a person that the origin knows, also, the origin should not already know the target.
This recommendation is weighted for the weight of the relationship r2, and boosted with a factor of 2,
if there is an activity-property on that relationship

Query.

START origin=node:node_auto_index(name = "Clark Kent")

MATCH origin-[r1:KNOWS|WORKSAT]-(c)-[r2:KNOWS|WORKSAT]-candidate

WHERE type(r1)=type(r2) AND (NOT (origin-[:KNOWS]-candidate))

RETURN origin.name as origin, candidate.name as candidate,

SUM(ROUND(r2.weight + (COALESCE(r2.activity?, 0) * 2))) as boost

ORDER BY boost desc

LIMIT 10

This returns the recommended friends for the origin nodes and their recommendation score.

Result
origin candidate boost

"Clark Kent" "Perry White" 22

"Clark Kent" "Anderson Cooper" 4

2 rows

0 ms

Data Modeling Examples

89

7.13. Calculating the clustering coefficient of a network
Figure 7.11. Graph

Node[1]

nam e = 'startnode'

Node[2]

KNOWS

Node[3]

KNOWS

Node[4]

KNOWS
Node[5]

KNOWS

Node[6]

KNOWS

Node[7]

KNOWS KNOWS

In this example, adapted from Niko Gamulins blog post on Neo4j for Social Network Analysis
<http://mypetprojects.blogspot.se/2012/06/social-network-analysis-with-neo4j.html>, the graph in
question is showing the 2-hop relationships of a sample person as nodes with KNOWS relationships.

The clustering coefficient <http://en.wikipedia.org/wiki/Clustering_coefficient> of a selected node
is defined as the probability that two randomly selected neighbors are connected to each other. With
the number of neighbors as n and the number of mutual connections between the neighbors r the
calculation is:

The number of possible connections between two neighbors is n!/(2!(n-2)!) = 4!/(2!(4-2)!) = 24/4 =
6, where n is the number of neighbors n = 4 and the actual number r of connections is 1. Therefore the
clustering coefficient of node 1 is 1/6.

n and r are quite simple to retrieve via the following query:

Query.

START a = node(*)

MATCH (a)--(b)

WITH a, count(distinct b) as n

MATCH (a)--()-[r]-()--(a)

WHERE a.name! = "startnode"

RETURN n, count(distinct r) as r

This returns n and r for the above calculations.

Result
n r

4 1

1 row

0 ms

http://mypetprojects.blogspot.se/2012/06/social-network-analysis-with-neo4j.html
http://mypetprojects.blogspot.se/2012/06/social-network-analysis-with-neo4j.html
http://en.wikipedia.org/wiki/Clustering_coefficient
http://en.wikipedia.org/wiki/Clustering_coefficient

Data Modeling Examples

90

7.14. Pretty graphs
This section is showing how to create some of the named pretty graphs on Wikipedia <http://
en.wikipedia.org/wiki/Gallery_of_named_graphs>.

7.14.1. Star graph
The graph is created by first creating a center node, and then once per element in the range, creates a
leaf node and connects it to the center.

Query.

CREATE center

foreach(x in range(1,6) :

CREATE leaf, center-[:X]->leaf

)

RETURN id(center) as id;

The query returns the id of the center node.

Result
id

8

1 row

Nodes created: 7

Relationships created: 6

2 ms

Figure 7.12. Graph

7.14.2. Wheel graph
This graph is created in a number of steps:

• Create a center node.
• Once per element in the range, create a leaf and connect it to the center.
• Select 2 leafs from the center node and connect them.
• Find the minimum and maximum leaf and connect these.
• Return the id of the center node.

Query.

CREATE center

foreach(x in range(1,6) :

CREATE leaf={count:x}, center-[:X]->leaf

)

==== center ====

MATCH large_leaf<--center-->small_leaf

WHERE large_leaf.count = small_leaf.count + 1

CREATE small_leaf-[:X]->large_leaf

==== center, min(small_leaf.count) as min, max(large_leaf.count) as max ====

MATCH first_leaf<--center-->last_leaf

http://en.wikipedia.org/wiki/Gallery_of_named_graphs
http://en.wikipedia.org/wiki/Gallery_of_named_graphs
http://en.wikipedia.org/wiki/Gallery_of_named_graphs

Data Modeling Examples

91

WHERE first_leaf.count = min AND last_leaf.count = max

CREATE last_leaf-[:X]->first_leaf

RETURN id(center) as id

The query returns the id of the center node.

Result
id

8

1 row

Nodes created: 7

Relationships created: 12

Properties set: 6

5 ms

Figure 7.13. Graph

7.14.3. Complete graph
For this graph, a root node is created, and used to hang a number of nodes from. Then, two nodes are
selected, hanging from the center, with the requirement that the id of the first is less than the id of the
next. This is to prevent double relationships and self relationships. Using said match, relationships
between all these nodes are created. Lastly, the center node and all relationships connected to it are
removed.
Query.

CREATE center

foreach(x in range(1,6) :

CREATE leaf={count : x}, center-[:X]->leaf

)

==== center ====

MATCH leaf1<--center-->leaf2

WHERE id(leaf1)<id(leaf2)

CREATE leaf1-[:X]->leaf2

==== center ====

MATCH center-[r]->()

DELETE center,r;

Nothing is returned by this query.

Result
(empty result)

Nodes created: 7

Relationships created: 21

Properties set: 6

Nodes deleted: 1

Relationships deleted: 6

2 ms

Data Modeling Examples

92

Figure 7.14. Graph

7.14.4. Friendship graph
This query first creates a center node, and then once per element in the range, creates a cycle graph
and connects it to the center

Query.

CREATE center

foreach(x in range(1,3) :

CREATE leaf1, leaf2, center-[:X]->leaf1, center-[:X]->leaf2, leaf1-[:X]->leaf2

)

RETURN ID(center) as id

The id of the center node is returned by the query.

Result
id

8

1 row

Nodes created: 7

Relationships created: 9

3 ms

Figure 7.15. Graph

Data Modeling Examples

93

7.15. A multilevel indexing structure (path tree)
In this example, a multi-level tree structure is used to index event nodes (here Event1, Event2 and
Event3, in this case with a YEAR-MONTH-DAY granularity, making this a timeline indexing
structure. However, this approach should work for a wide range of multi-level ranges.

The structure follows a couple of rules:

• Events can be indexed multiple times by connecting the indexing structure leafs with the events via
a VALUE relationship.

• The querying is done in a path-range fashion. That is, the start- and end path from the indexing root
to the start and end leafs in the tree are calculated

• Using Cypher, the queries following different strategies can be expressed as path sections and put
together using one single query.

The graph below depicts a structure with 3 Events being attached to an index structure at different
leafs.

Figure 7.16. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

7.15.1. Return zero range
Here, only the events indexed under one leaf (2010-12-31) are returned. The query only needs one
path segment rootPath (color Green) through the index.

Data Modeling Examples

94

Figure 7.17. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Query.

START root=node:node_auto_index(name = 'Root')

MATCH rootPath=root-[:`2010`]->()-[:`12`]->()-[:`31`]->leaf, leaf-[:VALUE]->event

RETURN event.name

ORDER BY event.name ASC

Returning all events on the date 2010-12-31, in this case Event1 and Event2

Result

event.name

"Event1"

"Event2"

2 rows

0 ms

7.15.2. Return the full range
In this case, the range goes from the first to the last leaf of the index tree. Here, startPath (color
Greenyellow) and endPath (color Green) span up the range, valuePath (color Blue) is then connecting the
leafs, and the values can be read from the middle node, hanging off the values (color Red) path.

Data Modeling Examples

95

Figure 7.18. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Query.

START root=node:node_auto_index(name = 'Root')

MATCH startPath=root-[:`2010`]->()-[:`12`]->()-[:`31`]->startLeaf,

 endPath=root-[:`2011`]->()-[:`01`]->()-[:`03`]->endLeaf,

 valuePath=startLeaf-[:NEXT*0..]->middle-[:NEXT*0..]->endLeaf,

 values=middle-[:VALUE]->event

RETURN event.name

ORDER BY event.name ASC

Returning all events between 2010-12-31 and 2011-01-03, in this case all events.

Result

event.name

"Event1"

"Event2"

"Event2"

"Event3"

4 rows

0 ms

Data Modeling Examples

96

7.15.3. Return partly shared path ranges
Here, the query range results in partly shared paths when querying the index, making the introduction
of and common path segment commonPath (color Black) necessary, before spanning up startPath (color
Greenyellow) and endPath (color Darkgreen) . After that, valuePath (color Blue) connects the leafs and the
indexed values are returned off values (color Red) path.

Figure 7.19. Graph

Root

Year 2010

2010

Year 2011

2011

Month 12

12

Month 01

01

Day 31

31

Day 01

01

Day 02

02

Day 03

03

NEXT

Event1

VALUE

Event2

VALUE

NEXT

VALUE

NEXT

Event3

VALUE

Query.

START root=node:node_auto_index(name = 'Root')

MATCH commonPath=root-[:`2011`]->()-[:`01`]->commonRootEnd,

 startPath=commonRootEnd-[:`01`]->startLeaf,

 endPath=commonRootEnd-[:`03`]->endLeaf,

 valuePath=startLeaf-[:NEXT*0..]->middle-[:NEXT*0..]->endLeaf,

 values=middle-[:VALUE]->event

RETURN event.name

ORDER BY event.name ASC

Returning all events between 2011-01-01 and 2011-01-03, in this case Event2 and Event3.

Data Modeling Examples

97

Result
event.name

"Event2"

"Event3"

2 rows

0 ms

Data Modeling Examples

98

7.16. Complex similarity computations
7.16.1. Calculate similarities by complex calculations

Here, a similarity between two players in a game is calculated by the number of times they have eaten
the same food.

Query.

START me=node:node_auto_index(name = "me")

MATCH me-[r1:ATE]->food<-[r2:ATE]-you

==== me,count(distinct r1) as H1,count(distinct r2) as H2,you ====

MATCH me-[r1:ATE]->food<-[r2:ATE]-you

RETURN sum((1-ABS(r1.times/H1-r2.times/H2))*(r1.times+r2.times)/(H1+H2)) as similarity

The two players and their similarity measure.

Result
similarity

-30. 0

1 row

0 ms

Figure 7.20. Graph

nam e = 'm e'

nam e = 'm eat '

ATE
t im es = 10

nam e = 'you'

ATE
t im es = 5

Data Modeling Examples

99

7.17. The Graphity activity stream model
7.17.1. Find Activity Streams in a network without scaling penalty

This is an approach for scaling the retrieval of activity streams in a friend graph put forward by Rene
Pickard as Graphity <http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-
the-top-k-news-feeds-for-users-in-social-networks/>. In short, a linked list is created for every persons
friends in the order that the last activities of these friends have occured. When new activities occur for
a friend, all the ordered friend lists that this friend is part of are reordered, transfering computing load
to the time of new event updates instead of activity stream reads.

Tip
This approach of course makes excessive use of relationship types. Right now now the
maximum amount of relationship types in Neo4j is 65.000 which needs to be taken into
consideration when designing a production system with this approach.

To find the activity stream for a person, just follow the linked list of the friend list, and retrieve the needed amount of activities form the respective activity list of the friends.

Query.

START me=node:node_auto_index(name = "Jane")

MATCH p=me-[:jane_knows*]->friend, friend-[:has]->status

RETURN me.name, friend.name, status.name, length(p)

ORDER BY length(p)

The activity stream for Jane.

Result

me.name friend.name status.name length(p)

"Jane" "Bill" "Bill_s1" 1

"Jane" "Joe" "Joe_s1" 2

"Jane" "Bob" "Bob_s1" 3

3 rows

0 ms

http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-networks/
http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-networks/
http://www.rene-pickhardt.de/graphity-an-efficient-graph-model-for-retrieving-the-top-k-news-feeds-for-users-in-social-networks/

Data Modeling Examples

100

Figure 7.21. Graph

Node[1]

nam e = 'Bill'

Node[3]

nam e = 'Bill_s1'

has

Node[12]

nam e = 'Joe'

jane_knows

Node[5]

nam e = 'Bill_s2'

next

Node[7]

nam e = 'Joe_s1'

has

Node[8]

nam e = 'Bob'

jane_knows

Node[2]

nam e = 'Ted_s1'

Node[4]

nam e = 'Ted_s2'

next

Node[6]

nam e = 'Jane'

jane_knows

Node[10]

nam e = 'Joe_s2'

next

Node[11]

nam e = 'Bob_s1'

has

Node[9]

nam e = 'Ted'

bob_knows

bob_knows

has

101

Chapter 8. Languages

The table below lists community contributed language- and framework bindings for using Neo4j in
embedded mode.

Neo4j embedded drivers contributed by the community.
name language / framework URL

Neo4j.rb JRuby https://github.com/andreasronge/
neo4j

Neo4django Python, Django https://github.com/scholrly/
neo4django

Neo4js JavaScript https://github.com/neo4j/neo4js
Gremlin Java, Groovy Section 18.18, “Gremlin

Plugin”, https://github.com/
tinkerpop/gremlin/wiki

Neo4j-Scala Scala https://github.com/FaKod/neo4j-
scala

Borneo Clojure https://github.com/wagjo/borneo

For information on REST clients for different languages, see Chapter 5, Neo4j Remote Client
Libraries.

https://github.com/andreasronge/neo4j
https://github.com/andreasronge/neo4j
https://github.com/scholrly/neo4django
https://github.com/scholrly/neo4django
https://github.com/neo4j/neo4js
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/gremlin/wiki
https://github.com/FaKod/neo4j-scala
https://github.com/FaKod/neo4j-scala
https://github.com/wagjo/borneo

102

Chapter 9. Using Neo4j embedded in Python applications

For instructions on how to install the Python Neo4j driver, see Section 19.1, “Installation”.

For general information on the Python language binding, see Chapter 19, Python embedded bindings.

Using Neo4j embedded in Python applications

103

9.1. Hello, world!
Here is a simple example to get you started.
from neo4j import GraphDatabase

Create a database

db = GraphDatabase(folder_to_put_db_in)

All write operations happen in a transaction

with db.transaction:

 firstNode = db.node(name='Hello')

 secondNode = db.node(name='world!')

 # Create a relationship with type 'knows'

 relationship = firstNode.knows(secondNode, name='graphy')

Read operations can happen anywhere

message = ' '.join([firstNode['name'], relationship['name'], secondNode['name']])

print message

Delete the data

with db.transaction:

 firstNode.knows.single.delete()

 firstNode.delete()

 secondNode.delete()

Always shut down your database when your application exits

db.shutdown()

Using Neo4j embedded in Python applications

104

9.2. A sample app using cypher and indexes
For detailed documentation on the concepts used here, see Section 19.3, “Indexes” and Section 19.4,
“Cypher Queries”.

This example shows you how to get started building something like a simple invoice tracking
application with Neo4j.

We start out by importing Neo4j, and creating some meta data that we will use to organize our actual
data with.
from neo4j import GraphDatabase, INCOMING, Evaluation

Create a database

db = GraphDatabase(folder_to_put_db_in)

All write operations happen in a transaction

with db.transaction:

 # A node to connect customers to

 customers = db.node()

 # A node to connect invoices to

 invoices = db.node()

 # Connected to the reference node, so

 # that we can always find them.

 db.reference_node.CUSTOMERS(customers)

 db.reference_node.INVOICES(invoices)

 # An index, helps us rapidly look up customers

 customer_idx = db.node.indexes.create('customers')

9.2.1. Domain logic
Then we define some domain logic that we want our application to be able to perform. Our application
has two domain objects, Customers and Invoices. Let’s create methods to add new customers and
invoices.
def create_customer(name):

 with db.transaction:

 customer = db.node(name=name)

 customer.INSTANCE_OF(customers)

 # Index the customer by name

 customer_idx['name'][name] = customer

 return customer

def create_invoice(customer, amount):

 with db.transaction:

 invoice = db.node(amount=amount)

 invoice.INSTANCE_OF(invoices)

 invoice.SENT_TO(customer)

 return customer

In the customer case, we create a new node to represent the customer and connect it to the customers
node. This helps us find customers later on, as well as determine if a given node is a customer.

We also index the name of the customer, to allow for quickly finding customers by name.

In the invoice case, we do the same, except no indexing. We also connect each new invoice to the
customer it was sent to, using a relationship of type SENT_TO.

Using Neo4j embedded in Python applications

105

Next, we want to be able to retrieve customers and invoices that we have added. Because we are
indexing customer names, finding them is quite simple.
def get_customer(name):

 return customer_idx['name'][name].single

Lets say we also like to do something like finding all invoices for a given customer that are above
some given amount. This could be done by writing a cypher query, like this:
def get_invoices_with_amount_over(customer, min_sum):

 # Find all invoices over a given sum for a given customer.

 # Note that we return an iterator over the "invoice" column

 # in the result (['invoice']).

 return db.query('''START customer=node({customer_id})

 MATCH invoice-[:SENT_TO]->customer

 WHERE has(invoice.amount) and invoice.amount >= {min_sum}

 RETURN invoice''',

 customer_id = customer.id, min_sum = min_sum)['invoice']

9.2.2. Creating data and getting it back
Putting it all together, we can create customers and invoices, and use the search methods we wrote to
find them.
for name in ['Acme Inc.', 'Example Ltd.']:

 create_customer(name)

Loop through customers

for relationship in customers.INSTANCE_OF:

 customer = relationship.start

 for i in range(1,12):

 create_invoice(customer, 100 * i)

Finding large invoices

large_invoices = get_invoices_with_amount_over(get_customer('Acme Inc.'), 500)

Getting all invoices per customer:

for relationship in get_customer('Acme Inc.').SENT_TO.incoming:

 invoice = relationship.start

106

Chapter 10. Extending the Neo4j Server

The Neo4j Server can be extended by either plugins or unmanaged extensions. For more information
on the server, see Chapter 17, Neo4j Server.

Extending the Neo4j Server

107

10.1. Server Plugins
Quick info

• The server’s functionality can be extended by adding plugins.
• Plugins are user-specified code which extend the capabilities of the database, nodes, or

relationships.
• The neo4j server will then advertise the plugin functionality within representations as

clients interact via HTTP.

Plugins provide an easy way to extend the Neo4j REST API with new functionality, without the need
to invent your own API. Think of plugins as server-side scripts that can add functions for retrieving
and manipulating nodes, relationships, paths, properties or indices.

Tip
If you want to have full control over your API, and are willing to put in the effort, and
understand the risks, then Neo4j server also provides hooks for unmanaged extensions
based on JAX-RS.

The needed classes reside in the org.neo4j:server-api <http://search.maven.org/#search|gav|1|g
%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22> jar file. See the linked page for
downloads and instructions on how to include it using dependency management. For Maven projects,
add the Server API dependencies in your pom.xml like this:
<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>server-api</artifactId>

 <version>${neo4j-version}</version>

</dependency>

Where ${neo4j-version} is the intended version.
To create a plugin, your code must inherit from the ServerPlugin <http://components.neo4j.org/server-
api/1.9.M04/apidocs/org/neo4j/server/plugins/ServerPlugin.html> class. Your plugin should also:

• ensure that it can produce an (Iterable of) Node, Relationship or Path, any Java primitive or String or
an instance of a org.neo4j.server.rest.repr.Representation

• specify parameters,
• specify a point of extension and of course
• contain the application logic.
• make sure that the discovery point type in the @PluginTarget and the @Source parameter are of the

same type.

An example of a plugin which augments the database (as opposed to nodes or relationships) follows:
Get all nodes or relationships plugin.

@Description("An extension to the Neo4j Server for getting all nodes or relationships")

public class GetAll extends ServerPlugin

{

 @Name("get_all_nodes")

 @Description("Get all nodes from the Neo4j graph database")

 @PluginTarget(GraphDatabaseService.class)

 public Iterable<Node> getAllNodes(@Source GraphDatabaseService graphDb)

 {

http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://components.neo4j.org/server-api/1.9.M04/apidocs/org/neo4j/server/plugins/ServerPlugin.html
http://components.neo4j.org/server-api/1.9.M04/apidocs/org/neo4j/server/plugins/ServerPlugin.html
http://components.neo4j.org/server-api/1.9.M04/apidocs/org/neo4j/server/plugins/ServerPlugin.html

Extending the Neo4j Server

108

 return GlobalGraphOperations.at(graphDb).getAllNodes();

 }

 @Description("Get all relationships from the Neo4j graph database")

 @PluginTarget(GraphDatabaseService.class)

 public Iterable<Relationship> getAllRelationships(@Source GraphDatabaseService graphDb)

 {

 return GlobalGraphOperations.at(graphDb).getAllRelationships();

 }

}

The full source code is found here: GetAll.java <https://github.com/neo4j/neo4j/blob/1.9.M04/
community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java>
Find the shortest path between two nodes plugin.
public class ShortestPath extends ServerPlugin

{

 @Description("Find the shortest path between two nodes.")

 @PluginTarget(Node.class)

 public Iterable<Path> shortestPath(

 @Source Node source,

 @Description("The node to find the shortest path to.")

 @Parameter(name = "target") Node target,

 @Description("The relationship types to follow when searching for the shortest path(s). " +

 "Order is insignificant, if omitted all types are followed.")

 @Parameter(name = "types", optional = true) String[] types,

 @Description("The maximum path length to search for, default value (if omitted) is 4.")

 @Parameter(name = "depth", optional = true) Integer depth)

 {

 Expander expander;

 if (types == null)

 {

 expander = Traversal.expanderForAllTypes();

 }

 else

 {

 expander = Traversal.emptyExpander();

 for (int i = 0; i < types.length; i++)

 {

 expander = expander.add(DynamicRelationshipType.withName(types[i]));

 }

 }

 PathFinder<Path> shortestPath = GraphAlgoFactory.shortestPath(

 expander, depth == null ? 4 : depth.intValue());

 return shortestPath.findAllPaths(source, target);

 }

}

The full source code is found here: ShortestPath.java <https://github.com/neo4j/neo4j/blob/1.9.M04/
community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java>
To deploy the code, simply compile it into a .jar file and place it onto the server classpath (which by
convention is the plugins directory under the Neo4j server home directory).

Tip
Make sure the directories listings are retained in the jarfile by either building with default
Maven, or with jar -cvf myext.jar *, making sure to jar directories instead of specifying
single files.

The .jar file must include the file META-INF/services/org.neo4j.server.plugins.ServerPlugin with the
fully qualified name of the implementation class. This is an example with multiple entries, each on a
separate line:

https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/GetAll.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/plugins/ShortestPath.java

Extending the Neo4j Server

109

org.neo4j.examples.server.plugins.GetAll

org.neo4j.examples.server.plugins.DepthTwo

org.neo4j.examples.server.plugins.ShortestPath

The code above makes an extension visible in the database representation (via the @PluginTarget
annotation) whenever it is served from the Neo4j Server. Simply changing the @PluginTarget
parameter to Node.class or Relationship.class allows us to target those parts of the data model
should we wish. The functionality extensions provided by the plugin are automatically advertised
in representations on the wire. For example, clients can discover the extension implemented by the
above plugin easily by examining the representations they receive as responses from the server, e.g.
by performing a GET on the default database URI:
curl -v http://localhost:7474/db/data/

The response to the GET request will contain (by default) a JSON container that itself contains a
container called "extensions" where the available plugins are listed. In the following case, we only
have the GetAll plugin registered with the server, so only its extension functionality is available.
Extension names will be automatically assigned, based on method names, if not specifically specified
using the @Name annotation.
{

"extensions-info" : "http://localhost:7474/db/data/ext",

"node" : "http://localhost:7474/db/data/node",

"node_index" : "http://localhost:7474/db/data/index/node",

"relationship_index" : "http://localhost:7474/db/data/index/relationship",

"reference_node" : "http://localhost:7474/db/data/node/0",

"extensions_info" : "http://localhost:7474/db/data/ext",

"extensions" : {

 "GetAll" : {

 "get_all_nodes" : "http://localhost:7474/db/data/ext/GetAll/graphdb/get_all_nodes",

 "get_all_relationships" : "http://localhost:7474/db/data/ext/GetAll/graphdb/getAllRelationships"

 }

}

Performing a GET on one of the two extension URIs gives back the meta information about the service:
curl http://localhost:7474/db/data/ext/GetAll/graphdb/get_all_nodes

{

 "extends" : "graphdb",

 "description" : "Get all nodes from the Neo4j graph database",

 "name" : "get_all_nodes",

 "parameters" : []

}

To use it, just POST to this URL, with parameters as specified in the description and encoded as
JSON data content. F.ex for calling the shortest path extension (URI gotten from a GET to http://
localhost:7474/db/data/node/123):
curl -X POST http://localhost:7474/db/data/ext/GetAll/node/123/shortestPath \

 -H "Content-Type: application/json" \

 -d '{"target":"http://localhost:7474/db/data/node/456&depth=5"}'

If everything is OK a response code 200 and a list of zero or more items will be returned. If nothing is
returned (null returned from extension) an empty result and response code 204 will be returned. If the
extension throws an exception response code 500 and a detailed error message is returned.

Extensions that do any kind of write operation will have to manage their own transactions, i.e.
transactions aren’t managed automatically.

Through this model, any plugin can naturally fit into the general hypermedia scheme that Neo4j
espouses — meaning that clients can still take advantage of abstractions like Nodes, Relationships

http://localhost:7474/db/data/node/123
http://localhost:7474/db/data/node/123

Extending the Neo4j Server

110

and Paths with a straightforward upgrade path as servers are enriched with plugins (old clients don’t
break).

Extending the Neo4j Server

111

10.2. Unmanaged Extensions
Quick info

• Danger: Men at Work! The unmanaged extensions are a way of deploying arbitrary JAX-
RS code into the Neo4j server.

• The unmanaged extensions are exactly that: unmanaged. If you drop poorly tested code into
the server, it’s highly likely you’ll degrade its performance, so be careful.

Some projects want extremely fine control over their server-side code. For this we’ve introduced an
unmanaged extension API.

Warning
This is a sharp tool, allowing users to deploy arbitrary JAX-RS <http://en.wikipedia.org/
wiki/JAX-RS> classes to the server and so you should be careful when thinking about
using this. In particular you should understand that it’s easy to consume lots of heap space
on the server and hinder performance if you’re not careful.

Still, if you understand the disclaimer, then you load your JAX-RS classes into the Neo4j server
simply by adding adding a @Context annotation to your code, compiling against the JAX-RS jar and
any Neo4j jars you’re making use of. Then add your classes to the runtime classpath (just drop it in
the lib directory of the Neo4j server). In return you get access to the hosted environment of the Neo4j
server like logging through the org.neo4j.server.logging.Logger.

In your code, you get access to the underlying GraphDatabaseService through the @Context annotation
like so:

public MyCoolService(@Context GraphDatabaseService database)

{

 // Have fun here, but be safe!

}

Remember, the unmanaged API is a very sharp tool. It’s all to easy to compromise the server by
deploying code this way, so think first and see if you can’t use the managed extensions in preference.
However, a number of context parameters can be automatically provided for you, like the reference to
the database.

In order to specify the mount point of your extension, a full class looks like this:

Unmanaged extension example.

@Path("/helloworld")

public class HelloWorldResource

{

 private final GraphDatabaseService database;

 public HelloWorldResource(@Context GraphDatabaseService database)

 {

 this.database = database;

 }

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 @Path("/{nodeId}")

 public Response hello(@PathParam("nodeId") long nodeId)

 {

http://en.wikipedia.org/wiki/JAX-RS
http://en.wikipedia.org/wiki/JAX-RS
http://en.wikipedia.org/wiki/JAX-RS

Extending the Neo4j Server

112

 // Do stuff with the database

 return Response.status(Status.OK).entity(

 ("Hello World, nodeId=" + nodeId).getBytes()).build();

 }

}

The full source code is found here: HelloWorldResource.java <https://github.com/neo4j/neo4j/
blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/
HelloWorldResource.java>

Build this code, and place the resulting jar file (and any custom dependencies) into the
$NEO4J_SERVER_HOME/plugins directory, and include this class in the neo4j-server.properties file, like so:

Tip
Make sure the directories listings are retained in the jarfile by either building with default
Maven, or with jar -cvf myext.jar *, making sure to jar directories instead of specifying
single files.

#Comma separated list of JAXRS packages containing JAXRS Resource, one package name for each mountpoint.

org.neo4j.server.thirdparty_jaxrs_classes=org.neo4j.examples.server.unmanaged=/examples/unmanaged

Which binds the hello method to respond to GET requests at the URI: http://{neo4j_server}:
{neo4j_port}/examples/unmanaged/helloworld/{nodeId}

curl http://localhost:7474/examples/unmanaged/helloworld/123

which results in
Hello World, nodeId=123

https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java

Part III. Reference
The reference part is the authoritative source for details on Neo4j usage. It covers details on capabilities,
transactions, indexing and queries among other topics.

114

Chapter 11. Capabilities

Capabilities

115

11.1. Data Security
Some data may need to be protected from unauthorized access (e.g., theft, modification). Neo4j does
not deal with data encryption explicitly, but supports all means built into the Java programming
language and the JVM to protect data by encrypting it before storing.

Furthermore, data can be easily secured by running on an encrypted datastore at the file system level.
Finally, data protection should be considered in the upper layers of the surrounding system in order to
prevent problems with scraping, malicious data insertion, and other threats.

Capabilities

116

11.2. Data Integrity
In order to keep data consistent, there needs to be mechanisms and structures that guarantee the
integrity of all stored data. In Neo4j, data integrity is maintained for the core graph engine together
with other data sources - see below.

11.2.1. Core Graph Engine
In Neo4j, the whole data model is stored as a graph on disk and persisted as part of every committed
transaction. In the storage layer, Relationships, Nodes, and Properties have direct pointers to each
other. This maintains integrity without the need for data duplication between the different backend
store files.

11.2.2. Different Data Sources
In a number of scenarios, the core graph engine is combined with other systems in order to achieve
optimal performance for non-graph lookups. For example, Apache Lucene is frequently used as an
additional index system for text queries that would otherwise be very processing-intensive in the
graph layer.

To keep these external systems in synchronization with each other, Neo4j provides full Two Phase
Commit transaction management, with rollback support over all data sources. Thus, failed index
insertions into Lucene can be transparently rolled back in all data sources and thus keep data up-to-
date.

Capabilities

117

11.3. Data Integration
Most enterprises rely primarily on relational databases to store their data, but this may cause
performance limitations. In some of these cases, Neo4j can be used as an extension to supplement
search/lookup for faster decision making. However, in any situation where multiple data repositories
contain the same data, synchronization can be an issue.

In some applications, it is acceptable for the search platform to be slightly out of sync with the
relational database. In others, tight data integrity (eg., between Neo4j and RDBMS) is necessary.
Typically, this has to be addressed for data changing in real-time and for bulk data changes happening
in the RDBMS.

A few strategies for synchronizing integrated data follows.

11.3.1. Event-based Synchronization
In this scenario, all data stores, both RDBMS and Neo4j, are fed with domain-specific events via
an event bus. Thus, the data held in the different backends is not actually synchronized but rather
replicated.

11.3.2. Periodic Synchronization
Another viable scenario is the periodic export of the latest changes in the RDBMS to Neo4j via
some form of SQL query. This allows a small amount of latency in the synchronization, but has the
advantage of using the RDBMS as the master for all data purposes. The same process can be applied
with Neo4j as the master data source.

11.3.3. Periodic Full Export/Import of Data
Using the Batch Inserter tools for Neo4j, even large amounts of data can be imported into the database
in very short times. Thus, a full export from the RDBMS and import into Neo4j becomes possible. If
the propagation lag between the RDBMS and Neo4j is not a big issue, this is a very viable solution.

Capabilities

118

11.4. Availability and Reliability
Most mission-critical systems require the database subsystem to be accessible at all times. Neo4j
ensures availability and reliability through a few different strategies.

11.4.1. Operational Availability
In order not to create a single point of failure, Neo4j supports different approaches which provide
transparent fallback and/or recovery from failures.

Online backup (Cold spare)
In this approach, a single instance of the master database is used, with Online Backup enabled. In
case of a failure, the backup files can be mounted onto a new Neo4j instance and reintegrated into the
application.

Online Backup High Availability (Hot spare)
Here, a Neo4j "backup" instance listens to online transfers of changes from the master. In the event of
a failure of the master, the backup is already running and can directly take over the load.

High Availability cluster
This approach uses a cluster of database instances, with one (read/write) master and a number of
(read-only) slaves. Failing slaves can simply be restarted and brought back online. Alternatively, a
new slave may be added by cloning an existing one. Should the master instance fail, a new master will
be elected by the remaining cluster nodes.

11.4.2. Disaster Recovery/ Resiliency
In cases of a breakdown of major part of the IT infrastructure, there need to be mechanisms in place
that enable the fast recovery and regrouping of the remaining services and servers. In Neo4j, there are
different components that are suitable to be part of a disaster recovery strategy.

Prevention

• Online Backup High Availability to other locations outside the current data center.
• Online Backup to different file system locations: this is a simpler form of backup, applying changes

directly to backup files; it is thus more suited for local backup scenarios.
• Neo4j High Availability cluster: a cluster of one write-master Neo4j server and a number of read-

slaves, getting transaction logs from the master. Write-master failover is handled by quorum
election among the read-slaves for a new master.

Detection

• SNMP and JMX monitoring can be used for the Neo4j database.

Correction

• Online Backup: A new Neo4j server can be started directly on the backed-up files and take over
new requests.

• Neo4j High Availability cluster: A broken Neo4j read slave can be reinserted into the cluster,
getting the latest updates from the master. Alternatively, a new server can be inserted by copying an
existing server and applying the latest updates to it.

Capabilities

119

11.5. Capacity
11.5.1. File Sizes

Neo4j relies on Java’s Non-blocking I/O subsystem for all file handling. Furthermore, while the
storage file layout is optimized for interconnected data, Neo4j does not require raw devices. Thus,
filesizes are only limited by the underlying operating system’s capacity to handle large files.
Physically, there is no built-in limit of the file handling capacity in Neo4j.

Neo4j tries to memory-map as much of the underlying store files as possible. If the available RAM is
not sufficient to keep all data in RAM, Neo4j will use buffers in some cases, reallocating the memory-
mapped high-performance I/O windows to the regions with the most I/O activity dynamically. Thus,
ACID speed degrades gracefully as RAM becomes the limiting factor.

11.5.2. Read speed
Enterprises want to optimize the use of hardware to deliver the maximum business value from
available resources. Neo4j’s approach to reading data provides the best possible usage of all available
hardware resources. Neo4j does not block or lock any read operations; thus, there is no danger for
deadlocks in read operations and no need for read transactions. With a threaded read access to the
database, queries can be run simultaneously on as many processors as may be available. This provides
very good scale-up scenarios with bigger servers.

11.5.3. Write speed
Write speed is a consideration for many enterprise applications. However, there are two different
scenarios:

1. sustained continuous operation and
2. bulk access (e.g., backup, initial or batch loading).

To support the disparate requirements of these scenarios, Neo4j supports two modes of writing to the
storage layer.

In transactional, ACID-compliant normal operation, isolation level is maintained and read operations
can occur at the same time as the writing process. At every commit, the data is persisted to disk and
can be recovered to a consistent state upon system failures. This requires disk write access and a real
flushing of data. Thus, the write speed of Neo4j on a single server in continuous mode is limited
by the I/O capacity of the hardware. Consequently, the use of fast SSDs is highly recommended for
production scenarios.

Neo4j has a Batch Inserter that operates directly on the store files. This mode does not provide
transactional security, so it can only be used when there is a single write thread. Because data is
written sequentially, and never flushed to the logical logs, huge performance boosts are achieved. The
Batch Inserter is optimized for non-transactional bulk import of large amounts of data.

11.5.4. Data size
In Neo4j, data size is mainly limited by the address space of the primary keys for Nodes,
Relationships, Properties and RelationshipTypes. Currently, the address space is as follows:

nodes 235 (∼ 34 billion)
relationships 235 (∼ 34 billion)

Capabilities

120

properties 236 to 238 depending on property types (maximum
∼ 274 billion, always at least ∼ 68 billion)

relationship types 215 (∼ 32 000)

121

Chapter 12. Transaction Management

In order to fully maintain data integrity and ensure good transactional behavior, Neo4j supports the
ACID properties:

• atomicity: If any part of a transaction fails, the database state is left unchanged.
• consistency: Any transaction will leave the database in a consistent state.
• isolation: During a transaction, modified data cannot be accessed by other operations.
• durability: The DBMS can always recover the results of a committed transaction.

Specifically:

• All modifications to Neo4j data must be wrapped in transactions.
• The default isolation level is READ_COMMITTED.
• Data retrieved by traversals is not protected from modification by other transactions.
• Non-repeatable reads may occur (i.e., only write locks are acquired and held until the end of the

transaction).
• One can manually acquire write locks on nodes and relationships to achieve higher level of

isolation (SERIALIZABLE).
• Locks are acquired at the Node and Relationship level.
• Deadlock detection is built into the core transaction management.

Transaction Management

122

12.1. Interaction cycle
All write operations that work with the graph must be performed in a transaction. Transactions are
thread confined and can be nested as “flat nested transactions”. Flat nested transactions means that
all nested transactions are added to the scope of the top level transaction. A nested transaction can
mark the top level transaction for rollback, meaning the entire transaction will be rolled back. To only
rollback changes made in a nested transaction is not possible.

When working with transactions the interaction cycle looks like this:

1. Begin a transaction.
2. Operate on the graph performing write operations.
3. Mark the transaction as successful or not.
4. Finish the transaction.

It is very important to finish each transaction. The transaction will not release the locks or memory
it has acquired until it has been finished. The idiomatic use of transactions in Neo4j is to use a try-
finally block, starting the transaction and then try to perform the write operations. The last operation
in the try block should mark the transaction as successful while the finally block should finish the
transaction. Finishing the transaction will perform commit or rollback depending on the success
status.

Caution
All modifications performed in a transaction are kept in memory. This means that very
large updates have to be split into several top level transactions to avoid running out of
memory. It must be a top level transaction since splitting up the work in many nested
transactions will just add all the work to the top level transaction.

In an environment that makes use of thread pooling other errors may occur when failing to finish a
transaction properly. Consider a leaked transaction that did not get finished properly. It will be tied
to a thread and when that thread gets scheduled to perform work starting a new (what looks to be a)
top level transaction it will actually be a nested transaction. If the leaked transaction state is “marked
for rollback” (which will happen if a deadlock was detected) no more work can be performed on that
transaction. Trying to do so will result in error on each call to a write operation.

Transaction Management

123

12.2. Isolation levels
By default a read operation will read the last committed value unless a local modification within the
current transaction exist. The default isolation level is very similar to READ_COMMITTED: reads do not
block or take any locks so non-repeatable reads can occur. It is possible to achieve a stronger isolation
level (such as REPETABLE_READ and SERIALIZABLE) by manually acquiring read and write locks.

Transaction Management

124

12.3. Default locking behavior
• When adding, changing or removing a property on a node or relationship a write lock will be taken

on the specific node or relationship.
• When creating or deleting a node a write lock will be taken for the specific node.
• When creating or deleting a relationship a write lock will be taken on the specific relationship and

both its nodes.

The locks will be added to the transaction and released when the transaction finishes.

Transaction Management

125

12.4. Deadlocks
Since locks are used it is possible for deadlocks to happen. Neo4j will however detect any deadlock
(caused by acquiring a lock) before they happen and throw an exception. Before the exception is
thrown the transaction is marked for rollback. All locks acquired by the transaction are still being held
but will be released when the transaction is finished (in the finally block as pointed out earlier). Once
the locks are released other transactions that were waiting for locks held by the transaction causing the
deadlock can proceed. The work performed by the transaction causing the deadlock can then be retried
by the user if needed.

Experiencing frequent deadlocks is an indication of concurrent write requests happening in such a
way that it is not possible to execute them while at the same time live up to the intended isolation
and consistency. The solution is to make sure concurrent updates happen in a reasonable way. For
example given two specific nodes (A and B), adding or deleting relationships to both these nodes in
random order for each transaction will result in deadlocks when there are two or more transactions
doing that concurrently. One solution is to make sure that updates always happens in the same order
(first A then B). Another solution is to make sure that each thread/transaction does not have any
conflicting writes to a node or relationship as some other concurrent transaction. This can for example
be achieved by letting a single thread do all updates of a specific type.

Important
Deadlocks caused by the use of other synchronization than the locks managed by
Neo4j can still happen. Since all operations in the Neo4j API are thread safe unless
specified otherwise, there is no need for external synchronization. Other code that requires
synchronization should be synchronized in such a way that it never performs any Neo4j
operation in the synchronized block.

Transaction Management

126

12.5. Delete semantics
When deleting a node or a relationship all properties for that entity will be automatically removed but
the relationships of a node will not be removed.

Caution
Neo4j enforces a constraint (upon commit) that all relationships must have a valid
start node and end node. In effect this means that trying to delete a node that still has
relationships attached to it will throw an exception upon commit. It is however possible
to choose in which order to delete the node and the attached relationships as long as no
relationships exist when the transaction is committed.

The delete semantics can be summarized in the following bullets:

• All properties of a node or relationship will be removed when it is deleted.
• A deleted node can not have any attached relationships when the transaction commits.
• It is possible to acquire a reference to a deleted relationship or node that has not yet been

committed.
• Any write operation on a node or relationship after it has been deleted (but not yet committed) will

throw an exception
• After commit trying to acquire a new or work with an old reference to a deleted node or relationship

will throw an exception.

Transaction Management

127

12.6. Creating unique nodes
In many use cases, a certain level of uniqueness is desired among entities. You could for instance
imagine that only one user with a certain e-mail address may exist in a system. If multiple concurrent
threads naively try to create the user, duplicates will be created. There are three main strategies for
ensuring uniqueness, and they all work across HA and single-instance deployments.

12.6.1. Single thread
By using a single thread, no two threads will even try to create a particular entity simultaneously. On
HA, an external single-threaded client can perform the operations on the cluster.

12.6.2. Get or create
By using put-if-absent <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29> functionality,
entity uniqueness can be guaranteed using an index. Here the index acts as the lock and will only
lock the smallest part needed to guaranteed uniqueness across threads and transactions. To get the
more high-level get-or-create functionality make use of UniqueFactory <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/UniqueFactory.html> as seen in the example below.

Example code:
public Node getOrCreateUserWithUniqueFactory(String username, GraphDatabaseService graphDb)

{

 UniqueFactory<Node> factory = new UniqueFactory.UniqueNodeFactory(graphDb, "users")

 {

 @Override

 protected void initialize(Node created, Map<String, Object> properties)

 {

 created.setProperty("name", properties.get("name"));

 }

 };

 return factory.getOrCreate("name", username);

}

12.6.3. Pessimistic locking

Important
While this is a working solution, please consider using the preferred Section 12.6.2, “Get
or create” instead.

By using explicit, pessimistic locking, unique creation of entities can be achieved in a multi-threaded
environment. It is most commonly done by locking on a single or a set of common nodes.

One might be tempted to use Java synchronization for this, but it is dangerous. By mixing locks in the
Neo4j kernel and in the Java runtime, it is easy to produce deadlocks that are not detectable by Neo4j.
As long as all locking is done by Neo4j, all deadlocks will be detected and avoided. Also, a solution
using manual synchronization doesn’t ensure uniqueness in an HA environment.

Example code:
public Node getOrCreateUserPessimistically(String username, GraphDatabaseService graphDb, Node lockNode)

{

 Index<Node> usersIndex = graphDb.index().forNodes("users");

 Node userNode = usersIndex.get("name", username).getSingle();

 if (userNode != null) return userNode;

 Transaction tx = graphDb.beginTx();

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#putIfAbsent%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/UniqueFactory.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/UniqueFactory.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/UniqueFactory.html

Transaction Management

128

 try

 {

 tx.acquireWriteLock(lockNode);

 userNode = usersIndex.get("name", username).getSingle();

 if (userNode == null)

 {

 userNode = graphDb.createNode();

 userNode.setProperty("name", username);

 usersIndex.add(userNode, "name", username);

 }

 tx.success();

 return userNode;

 }

 finally

 {

 tx.finish();

 }

}

Transaction Management

129

12.7. Transaction events
Transaction event handlers can be registered to receive Neo4j Transaction events. Once it has been
registered at a GraphDatabaseService instance it will receive events about what has happened in
each transaction which is about to be committed. Handlers won’t get notified about transactions
which haven’t performed any write operation or won’t be committed (either if Transaction#success()
hasn’t been called or the transaction has been marked as failed Transaction#failure(). Right before
a transaction is about to be committed the beforeCommit method is called with the entire diff of
modifications made in the transaction. At this point the transaction is still running so changes can still
be made. However there’s no guarantee that other handlers will see such changes since the order in
which handlers are executed is undefined. This method can also throw an exception and will, in such
a case, prevent the transaction from being committed (where a call to afterRollback will follow). If
beforeCommit is successfully executed the transaction will be committed and the afterCommit method
will be called with the same transaction data as well as the object returned from beforeCommit. This
assumes that all other handlers (if more were registered) also executed beforeCommit successfully.

130

Chapter 13. Data Import

For high-performance data import, the batch insert facilities described in this chapter are
recommended.

Other ways to import data into Neo4j include using Gremlin graph import (see Section 18.18.2, “Load
a sample graph”) or using the Geoff notation (see http://geoff.nigelsmall.net/).

http://geoff.nigelsmall.net/

Data Import

131

13.1. Batch Insertion
Neo4j has a batch insertion facility intended for initial imports, which bypasses transactions and other
checks in favor of performance. This is useful when you have a big dataset that needs to be loaded
once.

Batch insertion is inlcuded in the neo4j-kernel <http://search.maven.org/#search|ga|1|neo4j-kernel>
component, which is part of all Neo4j distributions and editions.

Be aware of the following points when using batch insertion:

• The intended use is for initial import of data.
• Batch insertion is not thread safe.
• Batch insertion is non-transactional.
• Unless shutdown is successfully invoked at the end of the import, the database files will be corrupt.

Warning
Always perform batch insertion in a single thread (or use synchronization to make only
one thread at a time access the batch inserter) and invoke shutdown when finished.

13.1.1. Batch Inserter Examples
Creating a batch inserter is similar to how you normally create data in the database, but in this case
the low-level BatchInserter <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/
batchinsert/BatchInserter.html> interface is used. As we have already pointed out, you can’t have
multiple threads using the batch inserter concurrently without external synchronization.

Tip
The source code of the examples is found here: BatchInsertExampleTest.java <https://
github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/
BatchInsertExampleTest.java>

To get hold of a BatchInseter, use BatchInserters <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/unsafe/batchinsert/BatchInserters.html> and then go from there:
BatchInserter inserter = BatchInserters.inserter("target/batchinserter-example");

Map<String, Object> properties = new HashMap<String, Object>();

properties.put("name", "Mattias");

long mattiasNode = inserter.createNode(properties);

properties.put("name", "Chris");

long chrisNode = inserter.createNode(properties);

RelationshipType knows = DynamicRelationshipType.withName("KNOWS");

// To set properties on the relationship, use a properties map

// instead of null as the last parameter.

inserter.createRelationship(mattiasNode, chrisNode, knows, null);

inserter.shutdown();

To gain good performance you probably want to set some configuration settings for the batch inserter.
Read Section 21.9.2, “Batch insert example” for information on configuring a batch inserter. This is
how to start a batch inserter with configuration options:
Map<String, String> config = new HashMap<String, String>();

config.put("neostore.nodestore.db.mapped_memory", "90M");

BatchInserter inserter = BatchInserters.inserter(

 "target/batchinserter-example-config", config);

// Insert data here ... and then shut down:

inserter.shutdown();

http://search.maven.org/#search|ga|1|neo4j-kernel
http://search.maven.org/#search|ga|1|neo4j-kernel
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserter.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserter.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserter.html
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserters.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserters.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserters.html

Data Import

132

In case you have stored the configuration in a file, you can load it like this:

Map<String, String> config = MapUtil.load(new File(

 "target/batchinsert-config"));

BatchInserter inserter = BatchInserters.inserter(

 "target/batchinserter-example-config", config);

// Insert data here ... and then shut down:

inserter.shutdown();

13.1.2. Batch Graph Database
In case you already have code for data import written against the normal Neo4j API, you could
consider using a batch inserter exposing that API.

Note
This will not perform as good as using the BatchInserter API directly.

Also be aware of the following:

• Starting a transaction or invoking Transaction.finish() or Transaction.success() will do nothing.
• Invoking the Transaction.failure() method will generate a NotInTransaction exception.
• Node.delete() and Node.traverse() are not supported.
• Relationship.delete() is not supported.
• Event handlers and indexes are not supported.
• GraphDatabaseService.getRelationshipTypes(), getAllNodes() and getAllRelationships() are not

supported.

With these precautions in mind, this is how to do it:

GraphDatabaseService batchDb =

 BatchInserters.batchDatabase("target/batchdb-example");

Node mattiasNode = batchDb.createNode();

mattiasNode.setProperty("name", "Mattias");

Node chrisNode = batchDb.createNode();

chrisNode.setProperty("name", "Chris");

RelationshipType knows = DynamicRelationshipType.withName("KNOWS");

mattiasNode.createRelationshipTo(chrisNode, knows);

batchDb.shutdown();

Tip
The source code of the example is found here: BatchInsertExampleTest.java <https://
github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/
BatchInsertExampleTest.java>

13.1.3. Index Batch Insertion
For general notes on batch insertion, see Section 13.1, “Batch Insertion”.

Indexing during batch insertion is done using BatchInserterIndex <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html> which are provided via
BatchInserterIndexProvider <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/
batchinsert/BatchInserterIndexProvider.html>. An example:

BatchInserter inserter = BatchInserters.inserter("target/neo4jdb-batchinsert");

BatchInserterIndexProvider indexProvider =

 new LuceneBatchInserterIndexProvider(inserter);

https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/kernel/src/test/java/examples/BatchInsertExampleTest.java
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndexProvider.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndexProvider.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndexProvider.html

Data Import

133

BatchInserterIndex actors =

 indexProvider.nodeIndex("actors", MapUtil.stringMap("type", "exact"));

actors.setCacheCapacity("name", 100000);

Map<String, Object> properties = MapUtil.map("name", "Keanu Reeves");

long node = inserter.createNode(properties);

actors.add(node, properties);

//make the changes visible for reading, use this sparsely, requires IO!

actors.flush();

// Make sure to shut down the index provider as well

indexProvider.shutdown();

inserter.shutdown();

The configuration parameters are the same as mentioned in Section 14.10, “Configuration and fulltext
indexes”.

Best practices
Here are some pointers to get the most performance out of BatchInserterIndex:

• Try to avoid flushing <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/
batchinsert/BatchInserterIndex.html#flush%28%29> too often because each flush will result in all
additions (since last flush) to be visible to the querying methods, and publishing those changes can
be a performance penalty.

• Have (as big as possible) phases where one phase is either only writes or only reads, and don’t
forget to flush after a write phase so that those changes becomes visible to the querying methods.

• Enable caching <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/
BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29> for keys you know
you’re going to do lookups for later on to increase performance significantly (though insertion
performance may degrade slightly).

Note
Changes to the index are available for reading first after they are flushed to disk. Thus,
for optimal performance, read and lookup operations should be kept to a minimum during
batchinsertion since they involve IO and impact speed negatively.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#flush%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#flush%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#flush%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/unsafe/batchinsert/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29

134

Chapter 14. Indexing

Indexing in Neo4j can be done in two different ways:

1. The database itself is a natural index consisting of its relationships of different types between
nodes. For example a tree structure can be layered on top of the data and used for index lookups
performed by a traverser.

2. Separate index engines can be used, with Apache Lucene <http://lucene.apache.org/java/3_5_0/
index.html> being the default backend included with Neo4j.

This chapter demonstrate how to use the second type of indexing, focusing on Lucene.

http://lucene.apache.org/java/3_5_0/index.html
http://lucene.apache.org/java/3_5_0/index.html
http://lucene.apache.org/java/3_5_0/index.html

Indexing

135

14.1. Introduction
Indexing operations are part of the Neo4j index API <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/graphdb/index/package-summary.html>.

Each index is tied to a unique, user-specified name (for example "first_name" or "books") and
can index either nodes <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
Node.html> or relationships <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/
Relationship.html>.

The default index implementation is provided by the neo4j-lucene-index component, which is included
in the standard Neo4j download. It can also be downloaded separately from http://repo1.maven.org/
maven2/org/neo4j/neo4j-lucene-index/ . For Maven users, the neo4j-lucene-index component
has the coordinates org.neo4j:neo4j-lucene-index and should be used with the same version of
org.neo4j:neo4j-kernel. Different versions of the index and kernel components are not compatible in
the general case. Both components are included transitively by the org.neo4j:neo4j:pom artifact which
makes it simple to keep the versions in sync.

For initial import of data using indexes, see Section 13.1.3, “Index Batch Insertion”.

Note
All modifying index operations must be performed inside a transaction, as with any
modifying operation in Neo4j.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Relationship.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Relationship.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Relationship.html
http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/
http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/

Indexing

136

14.2. Create
An index is created if it doesn’t exist when you ask for it. Unless you give it a custom configuration, it
will be created with default configuration and backend.

To set the stage for our examples, let’s create some indexes to begin with:
IndexManager index = graphDb.index();

Index<Node> actors = index.forNodes("actors");

Index<Node> movies = index.forNodes("movies");

RelationshipIndex roles = index.forRelationships("roles");

This will create two node indexes and one relationship index with default configuration. See
Section 14.8, “Relationship indexes” for more information specific to relationship indexes.

See Section 14.10, “Configuration and fulltext indexes” for how to create fulltext indexes.

You can also check if an index exists like this:
IndexManager index = graphDb.index();

boolean indexExists = index.existsForNodes("actors");

Indexing

137

14.3. Delete
Indexes can be deleted. When deleting, the entire contents of the index will be removed as well as its
associated configuration. A new index can be created with the same name at a later point in time.
IndexManager index = graphDb.index();

Index<Node> actors = index.forNodes("actors");

actors.delete();

Note that the actual deletion of the index is made during the commit of the surrounding transaction.
Calls made to such an index instance after delete() <http://components.neo4j.org/neo4j/1.9.M04/
apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29> has been called are invalid inside that
transaction as well as outside (if the transaction is successful), but will become valid again if the
transaction is rolled back.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29

Indexing

138

14.4. Add
Each index supports associating any number of key-value pairs with any number of entities (nodes or
relationships), where each association between entity and key-value pair is performed individually. To
begin with, let’s add a few nodes to the indexes:

// Actors

Node reeves = graphDb.createNode();

reeves.setProperty("name", "Keanu Reeves");

actors.add(reeves, "name", reeves.getProperty("name"));

Node bellucci = graphDb.createNode();

bellucci.setProperty("name", "Monica Bellucci");

actors.add(bellucci, "name", bellucci.getProperty("name"));

// multiple values for a field, in this case for search only

// and not stored as a property.

actors.add(bellucci, "name", "La Bellucci");

// Movies

Node theMatrix = graphDb.createNode();

theMatrix.setProperty("title", "The Matrix");

theMatrix.setProperty("year", 1999);

movies.add(theMatrix, "title", theMatrix.getProperty("title"));

movies.add(theMatrix, "year", theMatrix.getProperty("year"));

Node theMatrixReloaded = graphDb.createNode();

theMatrixReloaded.setProperty("title", "The Matrix Reloaded");

theMatrixReloaded.setProperty("year", 2003);

movies.add(theMatrixReloaded, "title", theMatrixReloaded.getProperty("title"));

movies.add(theMatrixReloaded, "year", 2003);

Node malena = graphDb.createNode();

malena.setProperty("title", "Malèna");

malena.setProperty("year", 2000);

movies.add(malena, "title", malena.getProperty("title"));

movies.add(malena, "year", malena.getProperty("year"));

Note that there can be multiple values associated with the same entity and key.

Next up, we’ll create relationships and index them as well:

// we need a relationship type

DynamicRelationshipType ACTS_IN = DynamicRelationshipType.withName("ACTS_IN");

// create relationships

Relationship role1 = reeves.createRelationshipTo(theMatrix, ACTS_IN);

role1.setProperty("name", "Neo");

roles.add(role1, "name", role1.getProperty("name"));

Relationship role2 = reeves.createRelationshipTo(theMatrixReloaded, ACTS_IN);

role2.setProperty("name", "Neo");

roles.add(role2, "name", role2.getProperty("name"));

Relationship role3 = bellucci.createRelationshipTo(theMatrixReloaded, ACTS_IN);

role3.setProperty("name", "Persephone");

roles.add(role3, "name", role3.getProperty("name"));

Relationship role4 = bellucci.createRelationshipTo(malena, ACTS_IN);

role4.setProperty("name", "Malèna Scordia");

roles.add(role4, "name", role4.getProperty("name"));

After these operations, our example graph looks like this:

Indexing

139

Figure 14.1. Movie and Actor Graph

nam e = 'Keanu Reeves'

t it le = 'The Matrix '
year = 1999

ACTS_IN
nam e = 'Neo'

t it le = 'The Matrix Reloaded'
year = 2003

ACTS_IN
nam e = 'Neo'

nam e = 'Monica Bellucci'

ACTS_IN
nam e = 'Persephone'

t it le = 'Malèna'
year = 2000

ACTS_IN
nam e = 'Malèna Scordia'

Indexing

140

14.5. Remove
Removing <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/
Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29> from an index is similar to
adding, but can be done by supplying one of the following combinations of arguments:

• entity
• entity, key
• entity, key, value

// completely remove bellucci from the actors index

actors.remove(bellucci);

// remove any "name" entry of bellucci from the actors index

actors.remove(bellucci, "name");

// remove the "name" -> "La Bellucci" entry of bellucci

actors.remove(bellucci, "name", "La Bellucci");

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29

Indexing

141

14.6. Update
Important
To update an index entry, the old one must be removed and a new one added. For details
on removing index entries, see Section 14.5, “Remove”.

Remember that a node or relationship can be associated with any number of key-value pairs in an
index. This means that you can index a node or relationship with many key-value pairs that have
the same key. In the case where a property value changes and you’d like to update the index, it’s not
enough to just index the new value — you’ll have to remove the old value as well.

Here’s a code example that demonstrates how it’s done:
// create a node with a property

// so we have something to update later on

Node fishburn = graphDb.createNode();

fishburn.setProperty("name", "Fishburn");

// index it

actors.add(fishburn, "name", fishburn.getProperty("name"));

// update the index entry

// when the property value changes

actors.remove(fishburn, "name", fishburn.getProperty("name"));

fishburn.setProperty("name", "Laurence Fishburn");

actors.add(fishburn, "name", fishburn.getProperty("name"));

Indexing

142

14.7. Search
An index can be searched in two ways, get <http://components.neo4j.org/neo4j/1.9.M04/apidocs/
org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29> and query
<http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#query
%28java.lang.String,%20java.lang.Object%29>. The get method will return exact matches to
the given key-value pair, whereas query exposes querying capabilities directly from the backend
used by the index. For example the Lucene query syntax <http://lucene.apache.org/java/3_5_0/
queryparsersyntax.html> can be used directly with the default indexing backend.

14.7.1. Get
This is how to search for a single exact match:

IndexHits<Node> hits = actors.get("name", "Keanu Reeves");

Node reeves = hits.getSingle();

IndexHits <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/
IndexHits.html> is an Iterable with some additional useful methods. For example getSingle() <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle
%28%29> returns the first and only item from the result iterator, or null if there isn’t any hit.

Here’s how to get a single relationship by exact matching and retrieve its start and end nodes:

Relationship persephone = roles.get("name", "Persephone").getSingle();

Node actor = persephone.getStartNode();

Node movie = persephone.getEndNode();

Finally, we can iterate over all exact matches from a relationship index:

for (Relationship role : roles.get("name", "Neo"))

{

 // this will give us Reeves twice

 Node reeves = role.getStartNode();

}

Important
In case you don’t iterate through all the hits, IndexHits.close() <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/
IndexHits.html#close%28%29> must be called explicitly.

14.7.2. Query
There are two query methods, one which uses a key-value signature where the value represents a
query for values with the given key only. The other method is more generic and supports querying for
more than one key-value pair in the same query.

Here’s an example using the key-query option:

for (Node actor : actors.query("name", "*e*"))

{

 // This will return Reeves and Bellucci

}

In the following example the query uses multiple keys:

for (Node movie : movies.query("title:*Matrix* AND year:1999"))

{

 // This will return "The Matrix" from 1999 only.

}

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29

Indexing

143

Note
Beginning a wildcard search with "*" or "?" is discouraged by Lucene, but will
nevertheless work.

Caution
You can’t have any whitespace in the search term with this syntax. See Section 14.11.3,
“Querying with Lucene Query objects” for how to do that.

Indexing

144

14.8. Relationship indexes
An index for relationships is just like an index for nodes, extended by providing support to constrain
a search to relationships with a specific start and/or end nodes These extra methods reside in the
RelationshipIndex <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/
RelationshipIndex.html> interface which extends Index<Relationship> <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html>.

Example of querying a relationship index:
// find relationships filtering on start node

// using exact matches

IndexHits<Relationship> reevesAsNeoHits;

reevesAsNeoHits = roles.get("name", "Neo", reeves, null);

Relationship reevesAsNeo = reevesAsNeoHits.iterator().next();

reevesAsNeoHits.close();

// find relationships filtering on end node

// using a query

IndexHits<Relationship> matrixNeoHits;

matrixNeoHits = roles.query("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator().next();

matrixNeoHits.close();

And here’s an example for the special case of searching for a specific relationship type:
// find relationships filtering on end node

// using a relationship type.

// this is how to add it to the index:

roles.add(reevesAsNeo, "type", reevesAsNeo.getType().name());

// Note that to use a compound query, we can't combine committed

// and uncommitted index entries, so we'll commit before querying:

tx.success();

tx.finish();

// and now we can search for it:

IndexHits<Relationship> typeHits;

typeHits = roles.query("type:ACTS_IN AND name:Neo", null, theMatrix);

Relationship typeNeo = typeHits.iterator().next();

typeHits.close();

Such an index can be useful if your domain has nodes with a very large number of relationships
between them, since it reduces the search time for a relationship between two nodes. A good example
where this approach pays dividends is in time series data, where we have readings represented as a
relationship per occurrence.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html

Indexing

145

14.9. Scores
The IndexHits interface exposes scoring <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/
neo4j/graphdb/index/IndexHits.html#currentScore%28%29> so that the index can communicate
scores for the hits. Note that the result is not sorted by the score unless you explicitly specify that. See
Section 14.11.2, “Sorting” for how to sort by score.
IndexHits<Node> hits = movies.query("title", "The*");

for (Node movie : hits)

{

 System.out.println(movie.getProperty("title") + " " + hits.currentScore());

}

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29

Indexing

146

14.10. Configuration and fulltext indexes
At the time of creation extra configuration can be specified to control the behavior of the index and
which backend to use. For example to create a Lucene fulltext index:
IndexManager index = graphDb.index();

Index<Node> fulltextMovies = index.forNodes("movies-fulltext",

 MapUtil.stringMap(IndexManager.PROVIDER, "lucene", "type", "fulltext"));

fulltextMovies.add(theMatrix, "title", "The Matrix");

fulltextMovies.add(theMatrixReloaded, "title", "The Matrix Reloaded");

// search in the fulltext index

Node found = fulltextMovies.query("title", "reloAdEd").getSingle();

Here’s an example of how to create an exact index which is case-insensitive:
Index<Node> index = graphDb.index().forNodes("exact-case-insensitive",

 stringMap("type", "exact", "to_lower_case", "true"));

Node node = graphDb.createNode();

index.add(node, "name", "Thomas Anderson");

assertContains(index.query("name", "\"Thomas Anderson\""), node);

assertContains(index.query("name", "\"thoMas ANDerson\""), node);

Tip
In order to search for tokenized words, the query method has to be used. The get method
will only match the full string value, not the tokens.

The configuration of the index is persisted once the index has been created. The provider
configuration key is interpreted by Neo4j, but any other configuration is passed onto the backend
index (e.g. Lucene) to interpret.

Lucene indexing configuration parameters
Parameter Possible values Effect

type exact, fulltext exact is the default and uses a Lucene
keyword analyzer <http://lucene.apache.org/
java/3_5_0/api/core/org/apache/lucene/analysis/
KeywordAnalyzer.html>. fulltext uses a white-
space tokenizer in its analyzer.

to_lower_case true, false This parameter goes together with type: fulltext
and converts values to lower case during both
additions and querying, making the index case
insensitive. Defaults to true.

analyzer the full class name of
an Analyzer <http://
lucene.apache.org/
java/3_5_0/api/core/org/
apache/lucene/analysis/
Analyzer.html>

Overrides the type so that a custom analyzer
can be used. Note: to_lower_case still affects
lowercasing of string queries. If the custom
analyzer uppercases the indexed tokens, string
queries will not match as expected.

http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/analysis/Analyzer.html

Indexing

147

14.11. Extra features for Lucene indexes
14.11.1. Numeric ranges

Lucene supports smart indexing of numbers, querying for ranges and sorting such results, and so does
its backend for Neo4j. To mark a value so that it is indexed as a numeric value, we can make use of
the ValueContext <http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/
lucene/ValueContext.html> class, like this:
movies.add(theMatrix, "year-numeric", new ValueContext(1999).indexNumeric());

movies.add(theMatrixReloaded, "year-numeric", new ValueContext(2003).indexNumeric());

movies.add(malena, "year-numeric", new ValueContext(2000).indexNumeric());

int from = 1997;

int to = 1999;

hits = movies.query(QueryContext.numericRange("year-numeric", from, to));

Note
The same type must be used for indexing and querying. That is, you can’t index a value as
a Long and then query the index using an Integer.

By giving null as from/to argument, an open ended query is created. In the following example we are
doing that, and have added sorting to the query as well:
hits = movies.query(

 QueryContext.numericRange("year-numeric", from, null)

 .sortNumeric("year-numeric", false));

From/to in the ranges defaults to be inclusive, but you can change this behavior by using two extra
parameters:
movies.add(theMatrix, "score", new ValueContext(8.7).indexNumeric());

movies.add(theMatrixReloaded, "score", new ValueContext(7.1).indexNumeric());

movies.add(malena, "score", new ValueContext(7.4).indexNumeric());

// include 8.0, exclude 9.0

hits = movies.query(QueryContext.numericRange("score", 8.0, 9.0, true, false));

14.11.2. Sorting
Lucene performs sorting very well, and that is also exposed in the index backend, through the
QueryContext <http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/
lucene/QueryContext.html> class:
hits = movies.query("title", new QueryContext("*").sort("title"));

for (Node hit : hits)

{

 // all movies with a title in the index, ordered by title

}

// or

hits = movies.query(new QueryContext("title:*").sort("year", "title"));

for (Node hit : hits)

{

 // all movies with a title in the index, ordered by year, then title

}

We sort the results by relevance (score) like this:
hits = movies.query("title", new QueryContext("The*").sortByScore());

for (Node movie : hits)

{

http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/ValueContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/ValueContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/ValueContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html

Indexing

148

 // hits sorted by relevance (score)

}

14.11.3. Querying with Lucene Query objects
Instead of passing in Lucene query syntax queries, you can instantiate such queries programmatically
and pass in as argument, for example:
// a TermQuery will give exact matches

Node actor = actors.query(new TermQuery(new Term("name", "Keanu Reeves"))).getSingle();

Note that the TermQuery <http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/search/
TermQuery.html> is basically the same thing as using the get method on the index.

This is how to perform wildcard searches using Lucene Query Objects:
hits = movies.query(new WildcardQuery(new Term("title", "The Matrix*")));

for (Node movie : hits)

{

 System.out.println(movie.getProperty("title"));

}

Note that this allows for whitespace in the search string.

14.11.4. Compound queries
Lucene supports querying for multiple terms in the same query, like so:
hits = movies.query("title:*Matrix* AND year:1999");

Caution
Compound queries can’t search across committed index entries and those who haven’t got
committed yet at the same time.

14.11.5. Default operator
The default operator (that is whether AND or OR is used in between different terms) in a query is OR.
Changing that behavior is also done via the QueryContext <http://components.neo4j.org/neo4j-lucene-
index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html> class:
QueryContext query = new QueryContext("title:*Matrix* year:1999")

 .defaultOperator(Operator.AND);

hits = movies.query(query);

14.11.6. Caching
If your index lookups becomes a performance bottle neck, caching can be enabled for certain keys in
certain indexes (key locations) to speed up get requests. The caching is implemented with an LRU
<http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used> cache so that only the most
recently accessed results are cached (with "results" meaning a query result of a get request, not a
single entity). You can control the size of the cache (the maximum number of results) per index key.
Index<Node> index = graphDb.index().forNodes("actors");

((LuceneIndex<Node>) index).setCacheCapacity("name", 300000);

Caution
This setting is not persisted after shutting down the database. This means: set this value
after each startup of the database if you want to keep it.

http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/search/TermQuery.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/search/TermQuery.html
http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/search/TermQuery.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.9.M04/apidocs/org/neo4j/index/lucene/QueryContext.html
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

Indexing

149

14.12. Automatic Indexing
Neo4j provides a single index for nodes and one for relationships in each database that automatically
follow property values as they are added, deleted and changed on database primitives. This
functionality is called auto indexing and is controlled both from the database configuration Map and
through its own API.

14.12.1. Configuration
By default Auto Indexing is off for both Nodes and Relationships. To configure this in the
neo4j.properties file, use the configuration keys node_auto_indexing and relationship_auto_indexing.
For embedded mode, use the configuration options GraphDatabaseSettings.node_auto_indexing and
GraphDatabaseSettings.relationship_auto_indexing. In both cases, set the value to true. This will
enable automatic indexing on startup. Just note that we’re not done yet, see below!

To actually auto index something, you have to set which properties should get indexed. You do
this by listing the property keys to index on. In the configuration file, use the node_keys_indexable
and relationship_keys_indexable configuration keys. When using embedded mode, use the
GraphDatabaseSettings.node_keys_indexable and GraphDatabaseSettings.relationship_keys_indexable
configuration keys. In all cases, the value should be a comma separated list of property keys to index
on.

When coding in Java, it’s done like this:
/*

 * Creating the configuration, adding nodeProp1 and nodeProp2 as

 * auto indexed properties for Nodes and relProp1 and relProp2 as

 * auto indexed properties for Relationships. Only those will be

 * indexed. We also have to enable auto indexing for both these

 * primitives explicitly.

 */

GraphDatabaseService graphDb = new GraphDatabaseFactory().

 newEmbeddedDatabaseBuilder(storeDirectory).

 setConfig(GraphDatabaseSettings.node_keys_indexable, "nodeProp1,nodeProp2").

 setConfig(GraphDatabaseSettings.relationship_keys_indexable, "relProp1,relProp2").

 setConfig(GraphDatabaseSettings.node_auto_indexing, "true").

 setConfig(GraphDatabaseSettings.relationship_auto_indexing, "true").

 newGraphDatabase();

Transaction tx = graphDb.beginTx();

Node node1 = null, node2 = null;

Relationship rel = null;

try

{

 // Create the primitives

 node1 = graphDb.createNode();

 node2 = graphDb.createNode();

 rel = node1.createRelationshipTo(node2,

 DynamicRelationshipType.withName("DYNAMIC"));

 // Add indexable and non-indexable properties

 node1.setProperty("nodeProp1", "nodeProp1Value");

 node2.setProperty("nodeProp2", "nodeProp2Value");

 node1.setProperty("nonIndexed", "nodeProp2NonIndexedValue");

 rel.setProperty("relProp1", "relProp1Value");

 rel.setProperty("relPropNonIndexed", "relPropValueNonIndexed");

 // Make things persistent

 tx.success();

}

catch (Exception e)

Indexing

150

{

 tx.failure();

}

finally

{

 tx.finish();

}

14.12.2. Search
The usefulness of the auto indexing functionality comes of course from the ability to actually
query the index and retrieve results. To that end, you can acquire a ReadableIndex object from the
AutoIndexer that exposes all the query and get methods of a full Index <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html> with exactly the same functionality.
Continuing from the previous example, accessing the index is done like this:

// Get the Node auto index

ReadableIndex<Node> autoNodeIndex = graphDb.index()

 .getNodeAutoIndexer()

 .getAutoIndex();

// node1 and node2 both had auto indexed properties, get them

assertEquals(node1,

 autoNodeIndex.get("nodeProp1", "nodeProp1Value").getSingle());

assertEquals(node2,

 autoNodeIndex.get("nodeProp2", "nodeProp2Value").getSingle());

// node2 also had a property that should be ignored.

assertFalse(autoNodeIndex.get("nonIndexed",

 "nodeProp2NonIndexedValue").hasNext());

// Get the relationship auto index

ReadableIndex<Relationship> autoRelIndex = graphDb.index()

 .getRelationshipAutoIndexer()

 .getAutoIndex();

// One property was set for auto indexing

assertEquals(rel,

 autoRelIndex.get("relProp1", "relProp1Value").getSingle());

// The rest should be ignored

assertFalse(autoRelIndex.get("relPropNonIndexed",

 "relPropValueNonIndexed").hasNext());

14.12.3. Runtime Configuration
The same options that are available during database creation via the configuration can also be set
during runtime via the AutoIndexer API.

Gaining access to the AutoIndexer API and adding two Node and one Relationship properties to auto
index is done like so:

// Start without any configuration

GraphDatabaseService graphDb = new GraphDatabaseFactory().

 newEmbeddedDatabase(storeDirectory);

// Get the Node AutoIndexer, set nodeProp1 and nodeProp2 as auto

// indexed.

AutoIndexer<Node> nodeAutoIndexer = graphDb.index()

 .getNodeAutoIndexer();

nodeAutoIndexer.startAutoIndexingProperty("nodeProp1");

nodeAutoIndexer.startAutoIndexingProperty("nodeProp2");

// Get the Relationship AutoIndexer

AutoIndexer<Relationship> relAutoIndexer = graphDb.index()

 .getRelationshipAutoIndexer();

relAutoIndexer.startAutoIndexingProperty("relProp1");

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/Index.html

Indexing

151

// None of the AutoIndexers are enabled so far. Do that now

nodeAutoIndexer.setEnabled(true);

relAutoIndexer.setEnabled(true);

Note
Parameters to the AutoIndexers passed through the Configuration and settings made
through the API are cumulative. So you can set some beforehand known settings, do
runtime checks to augment the initial configuration and then enable the desired auto
indexers - the final configuration is the same regardless of the method used to reach it.

14.12.4. Updating the Automatic Index
Updates to the auto indexed properties happen of course automatically as you update them. Removal
of properties from the auto index happens for two reasons. One is that you actually removed the
property. The other is that you stopped autoindexing on a property. When the latter happens, any
primitive you touch and it has that property, it is removed from the auto index, regardless of any
operations on the property. When you start or stop auto indexing on a property, no auto update
operation happens currently. If you need to change the set of auto indexed properties and have them
re-indexed, you currently have to do this by hand. An example will illustrate the above better:

/*

 * Creating the configuration

 */

GraphDatabaseService graphDb = new GraphDatabaseFactory().

 newEmbeddedDatabaseBuilder(storeDirectory).

 setConfig(GraphDatabaseSettings.node_keys_indexable, "nodeProp1,nodeProp2").

 setConfig(GraphDatabaseSettings.node_auto_indexing, "true").

 newGraphDatabase();

Transaction tx = graphDb.beginTx();

Node node1 = null, node2 = null, node3 = null, node4 = null;

try

{

 // Create the primitives

 node1 = graphDb.createNode();

 node2 = graphDb.createNode();

 node3 = graphDb.createNode();

 node4 = graphDb.createNode();

 // Add indexable and non-indexable properties

 node1.setProperty("nodeProp1", "nodeProp1Value");

 node2.setProperty("nodeProp2", "nodeProp2Value");

 node3.setProperty("nodeProp1", "nodeProp3Value");

 node4.setProperty("nodeProp2", "nodeProp4Value");

 // Make things persistent

 tx.success();

}

catch (Exception e)

{

 tx.failure();

}

finally

{

 tx.finish();

}

/*

 * Here both nodes are indexed. To demonstrate removal, we stop

Indexing

152

 * autoindexing nodeProp1.

 */

AutoIndexer<Node> nodeAutoIndexer = graphDb.index().getNodeAutoIndexer();

nodeAutoIndexer.stopAutoIndexingProperty("nodeProp1");

tx = graphDb.beginTx();

try

{

 /*

 * nodeProp1 is no longer auto indexed. It will be

 * removed regardless. Note that node3 will remain.

 */

 node1.setProperty("nodeProp1", "nodeProp1Value2");

 /*

 * node2 will be auto updated

 */

 node2.setProperty("nodeProp2", "nodeProp2Value2");

 /*

 * remove node4 property nodeProp2 from index.

 */

 node4.removeProperty("nodeProp2");

 // Make things persistent

 tx.success();

}

catch (Exception e)

{

 tx.failure();

}

finally

{

 tx.finish();

}

// Verify

ReadableIndex<Node> nodeAutoIndex = nodeAutoIndexer.getAutoIndex();

// node1 is completely gone

assertFalse(nodeAutoIndex.get("nodeProp1", "nodeProp1Value").hasNext());

assertFalse(nodeAutoIndex.get("nodeProp1", "nodeProp1Value2").hasNext());

// node2 is updated

assertFalse(nodeAutoIndex.get("nodeProp2", "nodeProp2Value").hasNext());

assertEquals(node2,

 nodeAutoIndex.get("nodeProp2", "nodeProp2Value2").getSingle());

/*

 * node3 is still there, despite its nodeProp1 property not being monitored

 * any more because it was not touched, in contrast with node1.

 */

assertEquals(node3,

 nodeAutoIndex.get("nodeProp1", "nodeProp3Value").getSingle());

// Finally, node4 is removed because the property was removed.

assertFalse(nodeAutoIndex.get("nodeProp2", "nodeProp4Value").hasNext());

Caution
If you start the database with auto indexing enabled but different auto indexed properties
than the last run, then already auto-indexed properties will be deleted from the index when
a value is written to them (assuming the property isn’t present in the new configuration).
Make sure that the monitored set is what you want before enabling the functionality.

153

Chapter 15. Cypher Query Language

Cypher is a declarative graph query language that allows for expressive and efficient querying and
updating of the graph store without having to write traversals through the graph structure in code.
Cypher is still growing and maturing, and that means that there probably will be breaking syntax
changes. It also means that it has not undergone the same rigorous performance testing as other Neo4j
components.

Cypher is designed to be a humane query language, suitable for both developers and (importantly, we
think) operations professionals who want to make ad-hoc queries on the database. Our guiding goal is
to make the simple things simple, and the complex things possible. Its constructs are based on English
prose and neat iconography, which helps to make it (somewhat) self-explanatory.

Cypher is inspired by a number of different approaches and builds upon established practices for
expressive querying. Most of the keywords like WHERE and ORDER BY are inspired by SQL <http://
en.wikipedia.org/wiki/SQL>. Pattern matching borrows expression approaches from SPARQL <http://
en.wikipedia.org/wiki/SPARQL>.

Being a declarative language, Cypher focuses on the clarity of expressing what to retrieve from a
graph, not how to do it, in contrast to imperative languages like Java, and scripting languages like
Gremlin <http://gremlin.tinkerpop.com> (supported via the Section 18.18, “Gremlin Plugin”) and
the JRuby Neo4j bindings <http://neo4j.rubyforge.org/>. This makes the concern of how to optimize
queries an implementation detail not exposed to the user.

The query language is comprised of several distinct clauses.

• START: Starting points in the graph, obtained via index lookups or by element IDs.
• MATCH: The graph pattern to match, bound to the starting points in START.
• WHERE: Filtering criteria.
• RETURN: What to return.
• CREATE: Creates nodes and relationships.
• DELETE: Removes nodes, relationships and properties.
• SET: Set values to properties.
• FOREACH: Performs updating actions once per element in a list.
• WITH: Divides a query into multiple, distinct parts.

Let’s see three of them in action.

Imagine an example graph like the following one:

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SPARQL
http://en.wikipedia.org/wiki/SPARQL
http://en.wikipedia.org/wiki/SPARQL
http://gremlin.tinkerpop.com
http://gremlin.tinkerpop.com
http://neo4j.rubyforge.org/
http://neo4j.rubyforge.org/

Cypher Query Language

154

Figure 15.1. Example Graph

Node[1]

nam e = 'Sara'

Node[2]

nam e = 'Maria'

friend

Node[3]

nam e = 'Steve'

Node[4]

nam e = 'John'

friend

Node[5]

nam e = 'Joe'

friend

friend

For example, here is a query which finds a user called John in an index and then traverses the graph
looking for friends of Johns friends (though not his direct friends) before returning both John and any
friends-of-friends that are found.
START john=node:node_auto_index(name = 'John')

MATCH john-[:friend]->()-[:friend]->fof

RETURN john, fof

Resulting in:

john fof

Node[4]{name:"John"} Node[2]{name:"Maria"}

Node[4]{name:"John"} Node[3]{name:"Steve"}

2 rows

49 ms

Next up we will add filtering to set more parts in motion:

In this next example, we take a list of users (by node ID) and traverse the graph looking for those
other users that have an outgoing friend relationship, returning only those followed users who have a
name property starting with S.
START user=node(5,4,1,2,3)

MATCH user-[:friend]->follower

WHERE follower.name =~ 'S.*'

RETURN user, follower.name

Resulting in:

user follower.name

Node[5]{name:"Joe"} "Steve"

Node[4]{name:"John"} "Sara"

2 rows

2 ms

Cypher Query Language

155

To use Cypher from Java, see Section 4.10, “Execute Cypher Queries from Java”. For more Cypher
examples, see Chapter 7, Data Modeling Examples as well.

Cypher Query Language

156

15.1. Operators
Operators in Cypher are of three different varieties — mathematical, equality and relationships.

The mathematical operators are +, -, *, / and %. Of these, only the plus-sign works on strings and
collections.

The comparison operators are =, <>, <, >, <=, >=.

Since Neo4j is a schema-free graph database, Cypher has two special operators — ? and !.

They are used on properties, and are used to deal with missing values. A comparison on a property
that does not exist would normally cause an error. Instead of having to always check if the property
exists before comparing its value with something else, the question mark make the comparison always
return true if the property is missing, and the exclamation mark makes the comparator return false.

This predicate will evaluate to true if n.prop is missing.

WHERE n.prop? = "foo"

This predicate will evaluate to false if n.prop is missing.

WHERE n.prop! = "foo"

Warning
Mixing the two in the same comparison will lead to unpredictable results.

This is really syntactic sugar that expands to this:

WHERE n.prop? = "foo" ⇒ WHERE (not(has(n.prop)) OR n.prop = "foo")

WHERE n.prop! = "foo" ⇒ WHERE (has(n.prop) AND n.prop = "foo")

Cypher Query Language

157

15.2. Expressions
An expression in Cypher can be:

• A numeric literal (integer or double): 13, 40000, 3.14.
• A string literal: "Hello", 'World'.
• A boolean literal: true, false, TRUE, FALSE.
• An identifier: n, x, rel, myFancyIdentifier, `A name with weird stuff in it[]!`.
• A property: n.prop, x.prop, rel.thisProperty, myFancyIdentifier.`(weird property name)`.
• A nullable property: it’s a property, with a question mark or exclamation mark — n.prop?,

rel.thisProperty!.
• A parameter: {param}, {0}
• A collection of expressions: ["a", "b"], [1,2,3], ["a", 2, n.property, {param}], [].
• A function call: length(p), nodes(p).
• An aggregate function: avg(x.prop), count(*).
• Relationship types: :REL_TYPE, :`REL TYPE`, :REL1|REL2.
• A path-pattern: a-->()<--b.
• A predicate expression is an expression that returns true or false: a.prop = "Hello", length(p) > 10,

has(a.name)

15.2.1. Note on string literals
String literals can contain these escape sequences.

Escape
sequence

Character

\t Tab
\b Backspace
\n Newline
\r Carriage return
\f Form feed
\' Single quote
\" Double quote
\\ Backslash

Cypher Query Language

158

15.3. Parameters
Cypher supports querying with parameters. This allows developers to not to have to do string building
to create a query, and it also makes caching of execution plans much easier for Cypher.

Parameters can be used for literals and expressions in the WHERE clause, for the index key and index
value in the START clause, index queries, and finally for node/relationship ids. Parameters can not be
used as for property names, since property notation is part of query structure that is compiled into a
query plan.

Accepted names for parameter are letters and number, and any combination of these.

Here follows a few examples of how you can use parameters from Java.

Parameter for node id.

Map<String, Object> params = new HashMap<String, Object>();

params.put("id", 0);

ExecutionResult result = engine.execute("start n=node({id}) return n.name", params);

Parameter for node object.

Map<String, Object> params = new HashMap<String, Object>();

params.put("node", andreasNode);

ExecutionResult result = engine.execute("start n=node({node}) return n.name", params);

Parameter for multiple node ids.

Map<String, Object> params = new HashMap<String, Object>();

params.put("id", Arrays.asList(0, 1, 2));

ExecutionResult result = engine.execute("start n=node({id}) return n.name", params);

Parameter for string literal.

Map<String, Object> params = new HashMap<String, Object>();

params.put("name", "Johan");

ExecutionResult result =

 engine.execute("start n=node(0,1,2) where n.name = {name} return n", params);

Parameter for index key and value.

Map<String, Object> params = new HashMap<String, Object>();

params.put("key", "name");

params.put("value", "Michaela");

ExecutionResult result =

 engine.execute("start n=node:people({key} = {value}) return n", params);

Parameter for index query.

Map<String, Object> params = new HashMap<String, Object>();

params.put("query", "name:Andreas");

ExecutionResult result = engine.execute("start n=node:people({query}) return n", params);

Numeric parameters for SKIP and LIMIT.

Map<String, Object> params = new HashMap<String, Object>();

params.put("s", 1);

params.put("l", 1);

ExecutionResult result =

 engine.execute("start n=node(0,1,2) return n.name skip {s} limit {l}", params);

Parameter for regular expression.

Map<String, Object> params = new HashMap<String, Object>();

params.put("regex", ".*h.*");

ExecutionResult result =

Cypher Query Language

159

 engine.execute("start n=node(0,1,2) where n.name =~ {regex} return n.name", params);

Parameter setting properties on node.

Map<String, Object> n1 = new HashMap<String, Object>();

n1.put("name", "Andres");

n1.put("position", "Developer");

Map<String, Object> params = new HashMap<String, Object>();

params.put("props", n1);

engine.execute("START n=node(0) SET n = {props}", params);

Cypher Query Language

160

15.4. Identifiers
When you reference parts of the pattern, you do so by naming them. The names you give the different
parts are called identifiers.

In this example:
START n=node(1) MATCH n-->b RETURN b

The identifiers are n and b.

Identifier names are case sensitive, and can contain underscores and alphanumeric characters (a-z,
0-9), but must start with a letter. If other characters are needed, you can quote the identifier using
backquote (`) signs.

The same rules apply to property names.

Cypher Query Language

161

15.5. Comments
To add comments to your queries, use double slash. Examples:
START n=node(1) RETURN n //This is an end of line comment

START n=node(1)

//This is a whole line comment

RETURN n

START n=node(1) WHERE n.property = "//This is NOT a comment" RETURN n

Cypher Query Language

162

15.6. Updating the graph
Cypher can be used for both querying and updating your graph.

15.6.1. The Structure of Updating Queries

Quick info

• A Cypher query part can’t both match and update the graph at the same time.
• Every part can either read and match on the graph, or make updates on it.

If you read from the graph, and then update the graph, your query implicitly has two parts — the
reading is the first part, and the writing is the second. If your query is read-only, Cypher will be lazy,
and not actually pattern match until you ask for the results. Here, the semantics are that all the reading
will be done before any writing actually happens. This is very important — without this it’s easy to
find cases where the pattern matcher runs into data that is being created by the very same query, and
all bets are off. That road leads to Heisenbugs, Brownian motion and cats that are dead and alive at the
same time.

First reading, and then writing, is the only pattern where the query parts are implicit — any other order
and you have to be explicit about your query parts. The parts are separated using the WITH statement.
WITH is like the event horizon — it’s a barrier between a plan and the finished execution of that plan.

When you want to filter using aggregated data, you have to chain together two reading query
parts — the first one does the aggregating, and the second query filters on the results coming from the
first one.
START n=node(...)

MATCH n-[:friend]-friend

WITH n, count(friend) as friendsCount

WHERE friendsCount > 3

RETURN n, friendsCount

Using WITH, you specify how you want the aggregation to happen, and that the aggregation has to be
finished before Cypher can start filtering.

You can chain together as many query parts as you have JVM heap for.

15.6.2. Returning data
Any query can return data. If your query only reads, it has to return data — it serves no purpose if it
doesn’t, and it is not a valid Cypher query. Queries that update the graph don’t have to return anything,
but they can.

After all the parts of the query comes one final RETURN statement. RETURN is not part of any query
part — it is a period symbol after an eloquent statement. When RETURN is legal, it’s also legal to use
SKIP/LIMIT and ORDER BY.

If you return graph elements from a query that has just deleted them — beware, you are holding a
pointer that is no longer valid. Operations on that node might fail mysteriously and unpredictably.

Cypher Query Language

163

15.7. Transactions
Any query that updates the graph will run in a transaction. An updating query will always either fully
succeed, or not succeed at all.

Cypher will either create a new transaction, and commit it once the query finishes. Or if a transaction
already exists in the running context, the query will run inside it, and nothing will be persisted to disk
until the transaction is successfully committed.

This can be used to have multiple queries be committed as a single transaction:

1. Open a transaction,
2. run multiple updating Cypher queries,
3. and commit all of them in one go.

Note that a query will hold the changes in heap until the whole query has finished executing. A large
query will consequently need a JVM with lots of heap space.

Cypher Query Language

164

15.8. Patterns
Patterns are at the very core of Cypher, and are used in a lot of different places. Using patterns, you
describe the shape of the data that you are looking for. Patterns are used in the MATCH clause. Path
patterns are expressions. Since these expressions are collections, they can also be used as predicates (a
non-empty collection signifies true). They are also used to CREATE/CREATE UNIQUE the graph.

So, understanding patterns is important, to be able to be effective with Cypher.

You describe the pattern, and Cypher will figure out how to get that data for you. The idea is for you
to draw your query on a whiteboard, naming the interesting parts of the pattern, so you can then use
values from these parts to create the result set you are looking for.

Patterns have bound points, or starting points. They are the parts of the pattern that are already
“bound” to a set of graph nodes or relationships. All parts of the pattern must be directly or indirectly
connected to a starting point — a pattern where parts of the pattern are not reachable from any starting
point will be rejected.

Clause Optional Multiple
rel. types

Varlength Paths Maps

Match Yes Yes Yes Yes -
Create - - - Yes Yes

Create Unique - - - Yes Yes
Expressions - Yes Yes - -

15.8.1. Patterns for related nodes
The description of the pattern is made up of one or more paths, separated by commas. A path is a
sequence of nodes and relationships that always start and end in nodes. An example path would be:

(a)-->(b)

This is a path starting from the pattern node a, with an outgoing relationship from it to pattern node b.

Paths can be of arbitrary length, and the same node may appear in multiple places in the path.

Node identifiers can be used with or without surrounding parenthesis. The following match is
semantically identical to the one we saw above — the difference is purely aesthetic.

a-->b

If you don’t care about a node, you don’t need to name it. Empty parenthesis are used for these nodes,
like so:

a-->()<--b

15.8.2. Working with relationships
If you need to work with the relationship between two nodes, you can name it.

a-[r]->b

If you don’t care about the direction of the relationship, you can omit the arrow at either end of the
relationship, like this:

a--b

Cypher Query Language

165

Relationships have types. When you are only interested in a specific relationship type, you can specify
this like so:

a-[:REL_TYPE]->b

If multiple relationship types are acceptable, you can list them, separating them with the pipe symbol |
like this:

a-[r:TYPE1|TYPE2]->b

This pattern matches a relationship of type TYPE1 or TYPE2, going from a to b. The relationship is named
r. Multiple relationship types can not be used with CREATE or CREATE UNIQUE.

15.8.3. Optional relationships
An optional relationship is matched when it is found, but replaced by a null otherwise. Normally,
if no matching relationship is found, that sub-graph is not matched. Optional relationships could be
called the Cypher equivalent of the outer join in SQL.

They can only be used in MATCH.

Optional relationships are marked with a question mark. They allow you to write queries like this one:

Query.

START me=node(*)

MATCH me-->friend-[?]->friend_of_friend

RETURN friend, friend_of_friend

The query above says “for every person, give me all their friends, and their friends friends, if they
have any.”

Optionality is transitive — if a part of the pattern can only be reached from a bound point through
an optional relationship, that part is also optional. In the pattern above, the only bound point in the
pattern is me. Since the relationship between friend and children is optional, children is an optional
part of the graph.

Also, named paths that contain optional parts are also optional — if any part of the path is null, the
whole path is null.

In the following examples, b and p are all optional and can contain null:

Query.

START a=node(4)

MATCH p = a-[?]->b

RETURN b

Query.

START a=node(4)

MATCH p = a-[?*]->b

RETURN b

Query.

START a=node(4)

MATCH p = a-[?]->x-->b

RETURN b

Query.

START a=node(4), x=node(3)

MATCH p = shortestPath(a-[?*]->x)

Cypher Query Language

166

RETURN p

15.8.4. Controlling depth
A pattern relationship can span multiple graph relationships. These are called variable length
relationships, and are marked as such using an asterisk (*):

(a)-[*]->(b)

This signifies a path starting on the pattern node a, following only outgoing relationships, until it
reaches pattern node b. Any number of relationships can be followed searching for a path to b, so this
can be a very expensive query, depending on what your graph looks like.

You can set a minimum set of steps that can be taken, and/or the maximum number of steps:

(a)-[*3..5]->(b)

This is a variable length relationship containing at least three graph relationships, and at most five.

Variable length relationships can not be used with CREATE and CREATE UNIQUE.

As a simple example, let’s take the query below:

Query.

START me=node(3)

MATCH me-[:KNOWS*1..2]-remote_friend

RETURN remote_friend

Result
remote_friend

(empty result)

0 row

0 ms

This query starts from one node, and follows KNOWS relationships two or three steps out, and then stops.

15.8.5. Assigning to path identifiers
In a graph database, a path is a very important concept. A path is a collection of nodes and
relationships, that describe a path in the graph. To assign a path to a path identifier, you simply assign
a path pattern to an identifier, like so:

p = (a)-[*3..5]->(b)

You can do this in MATCH, CREATE and CREATE UNIQUE, but not when using patterns as expressions.
Example of the three in a single query:

Query.

START me=node(3)

MATCH p1 = me-[*2]-friendOfFriend

CREATE p2 = me-[:MARRIED_TO]-(wife {name:"Gunhild"})

CREATE UNIQUE p3 = wife-[:KNOWS]-friendOfFriend

RETURN p1,p2,p3

15.8.6. Setting properties
Nodes and relationships are important, but Neo4j uses properties on both of these to allow for far
denser graphs models.

Cypher Query Language

167

Properties are expressed in patterns using the map-construct, which is simply curly brackets
surrounding a number of key-expression pairs, separated by commas, e.g. { name: "Andres", sport:
"BJJ" }. If the map is supplied through a parameter, the normal parameter expression is used:
{ paramName }.

Maps are only used by CREATE and CREATE UNIQUE. In CREATE they are used to set the properties on the
newly created nodes and relationships.

When used with CREATE UNIQUE, they are used to try to match a pattern element with the corresponding
graph element. The match is successful if the properties on the pattern element can be matched exactly
against properties on the graph elements. The graph element can have additional properties, and they
do not affect the match. If Neo4j fails to find matching graph elements, the maps is used to set the
properties on the newly created elements.

Cypher Query Language

168

15.9. Start
Every query describes a pattern, and in that pattern one can have multiple starting points. A starting
point is a relationship or a node where a pattern is anchored. You can either introduce starting points
by id, or by index lookups. Note that trying to use an index that doesn’t exist will throw an exception.

Figure 15.2. Graph

Node[1]

nam e = 'A'

Node[2]

nam e = 'B'

KNOWS

Node[3]

nam e = 'C'

KNOWS

15.9.1. Node by id
Binding a node as a starting point is done with the node(*) function.

Note
Neo4j reuses its internal ids when nodes and relationships are deleted, which means it’s
bad practice to refer to them this way. Instead, use application generated ids.

Query.

START n=node(1)

RETURN n

The corresponding node is returned.

Result

n

Node[1]{name:"A"}

1 row

0 ms

15.9.2. Relationship by id
Binding a relationship as a starting point is done with the relationship(*) function, which can also be
abbreviated rel(*). See Section 15.9.1, “Node by id” for more information on Neo4j ids.

Query.

START r=relationship(0)

RETURN r

The relationship with id 0 is returned.

Cypher Query Language

169

Result
r

:KNOWS[0] {}

1 row

0 ms

15.9.3. Multiple nodes by id
Multiple nodes are selected by listing them separated by commas.

Query.

START n=node(1, 2, 3)

RETURN n

This returns the nodes listed in the START statement.

Result
n

Node[1]{name:"A"}

Node[2]{name:"B"}

Node[3]{name:"C"}

3 rows

1 ms

15.9.4. All nodes
To get all the nodes, use an asterisk. This can be done with relationships as well.

Query.

START n=node(*)

RETURN n

This query returns all the nodes in the graph.

Result
n

Node[1]{name:"A"}

Node[2]{name:"B"}

Node[3]{name:"C"}

3 rows

0 ms

15.9.5. Node by index lookup
When the starting point can be found by using index lookups, it can be done like this: node:index-
name(key = "value"). In this example, there exists a node index named nodes.

Query.

Cypher Query Language

170

START n=node:nodes(name = "A")

RETURN n

The query returns the node indexed with the name "A".

Result
n

Node[1]{name:"A"}

1 row

1 ms

15.9.6. Relationship by index lookup
When the starting point can be found by using index lookups, it can be done like this:
relationship:index-name(key = "value").

Query.

START r=relationship:rels(name = "Andrés")

RETURN r

The relationship indexed with the name property set to "Andrés" is returned by the query.

Result
r

:KNOWS[0] {name:"Andrés"

1 row

1 ms

15.9.7. Node by index query
When the starting point can be found by more complex Lucene queries, this is the syntax to use:
node:index-name("query").This allows you to write more advanced index queries.

Query.

START n=node:nodes("name:A")

RETURN n

The node indexed with name "A" is returned by the query.

Result
n

Node[1]{name:"A"}

1 row

1 ms

15.9.8. Multiple starting points
Sometimes you want to bind multiple starting points. Just list them separated by commas.

Query.

START a=node(1), b=node(2)

Cypher Query Language

171

RETURN a,b

Both the nodes A and the B are returned.

Result
a b

Node[1]{name:"A"} Node[2]{name:"B"}

1 row

0 ms

Cypher Query Language

172

15.10. Match
15.10.1. Introduction

Tip
In the MATCH clause, patterns are used a lot. Read Section 15.8, “Patterns” for an
introduction.

The following graph is used for the examples below:

Figure 15.3. Graph

Node[1]

nam e = 'David'

Node[3]

nam e = 'Anders'

KNOWS

Node[4]

nam e = 'Bossm an'

KNOWS

Node[5]

nam e = 'Cesar'

BLOCKS

Node[2]

nam e = 'Em il'

BLOCKS

KNOWSKNOWS

15.10.2. Related nodes
The symbol -- means related to, without regard to type or direction.

Query.

START n=node(3)

MATCH (n)--(x)

RETURN x

All nodes related to A (Anders) are returned by the query.

Result
x

Node[4]{name:"Bossman"}

Node[1]{name:"David"}

3 rows

1 ms

Cypher Query Language

173

x

Node[5]{name:"Cesar"}

3 rows

1 ms

15.10.3. Outgoing relationships
When the direction of a relationship is interesting, it is shown by using --> or <--, like this:

Query.

START n=node(3)

MATCH (n)-->(x)

RETURN x

All nodes that A has outgoing relationships to are returned.

Result
x

Node[4]{name:"Bossman"}

Node[5]{name:"Cesar"}

2 rows

0 ms

15.10.4. Directed relationships and identifier
If an identifier is needed, either for filtering on properties of the relationship, or to return the
relationship, this is how you introduce the identifier.

Query.

START n=node(3)

MATCH (n)-[r]->()

RETURN r

The query returns all outgoing relationships from node A.

Result
r

:KNOWS[0] {}

:BLOCKS[1] {}

2 rows

0 ms

15.10.5. Match by relationship type
When you know the relationship type you want to match on, you can specify it by using a colon
together with the relationship type.

Query.

START n=node(3)

MATCH (n)-[:BLOCKS]->(x)

Cypher Query Language

174

RETURN x

All nodes that are BLOCKed by A are returned by this query.

Result
x

Node[5]{name:"Cesar"}

1 row

0 ms

15.10.6. Match by multiple relationship types
To match on one of multiple types, you can specify this by chaining them together with the pipe
symbol |.

Query.

START n=node(3)

MATCH (n)-[:BLOCKS|KNOWS]->(x)

RETURN x

All nodes with a BLOCK or KNOWS relationship to A are returned.

Result
x

Node[5]{name:"Cesar"}

Node[4]{name:"Bossman"}

2 rows

0 ms

15.10.7. Match by relationship type and use an identifier
If you both want to introduce an identifier to hold the relationship, and specify the relationship type
you want, just add them both, like this.

Query.

START n=node(3)

MATCH (n)-[r:BLOCKS]->()

RETURN r

All BLOCKS relationships going out from A are returned.

Result
r

:BLOCKS[1] {}

1 row

0 ms

15.10.8. Relationship types with uncommon characters
Sometime your database will have types with non-letter characters, or with spaces in them. Use `
(backtick) to quote these.

Cypher Query Language

175

Query.

START n=node(3)

MATCH (n)-[r:`TYPE THAT HAS SPACE IN IT`]->()

RETURN r

This query returns a relationship of a type with spaces in it.

Result
r

:TYPE THAT HAS SPACE IN IT[6] {}

1 row

1 ms

15.10.9. Multiple relationships
Relationships can be expressed by using multiple statements in the form of ()--(), or they can be
strung together, like this:

Query.

START a=node(3)

MATCH (a)-[:KNOWS]->(b)-[:KNOWS]->(c)

RETURN a,b,c

The three nodes in the path are returned by the query.

Result
a b c

Node[3]{name:"Anders"} Node[4]{name:"Bossman"} Node[2]{name:"Emil"}

1 row

0 ms

15.10.10. Variable length relationships
Nodes that are a variable number of relationship→node hops away can be found using the following
syntax: -[:TYPE*minHops..maxHops]->. minHops and maxHops are optional and default to 1 and infinity
respectively. When no bounds are given the dots may be omitted.

Query.

START a=node(3), x=node(2, 4)

MATCH a-[:KNOWS*1..3]->x

RETURN a,x

This query returns the start and end point, if there is a path between 1 and 3 relationships away.

Result
a x

Node[3]{name:"Anders"} Node[2]{name:"Emil"}

2 rows

1 ms

Cypher Query Language

176

a x

Node[3]{name:"Anders"} Node[4]{name:"Bossman"}

2 rows

1 ms

15.10.11. Relationship identifier in variable length relationships
When the connection between two nodes is of variable length, a relationship identifier becomes an
collection of relationships.

Query.

START a=node(3), x=node(2, 4)

MATCH a-[r:KNOWS*1..3]->x

RETURN r

The query returns the relationships, if there is a path between 1 and 3 relationships away.

Result
r

[:KNOWS[0] {}, :KNOWS[3] {}]

[:KNOWS[0] {}]

2 rows

1 ms

15.10.12. Zero length paths
Using variable length paths that have the lower bound zero means that two identifiers can point
to the same node. If the distance between two nodes is zero, they are by definition the same node.
Note that when matching zero length paths the result may contain a match even when matching on a
relationship type not in use.

Query.

START a=node(3)

MATCH p1=a-[:KNOWS*0..1]->b, p2=b-[:BLOCKS*0..1]->c

RETURN a,b,c, length(p1), length(p2)

This query will return four paths, some of which have length zero.

Result
a b c length(p1) length(p2)

Node[3]

{name:"Anders"}

Node[3]

{name:"Anders"}

Node[3]

{name:"Anders"}

0 0

Node[3]

{name:"Anders"}

Node[3]

{name:"Anders"}

Node[5]

{name:"Cesar"}

0 1

Node[3]

{name:"Anders"}

Node[4]

{name:"Bossman"}

Node[4]

{name:"Bossman"}

1 0

4 rows

2 ms

Cypher Query Language

177

a b c length(p1) length(p2)

Node[3]

{name:"Anders"}

Node[4]

{name:"Bossman"}

Node[1]

{name:"David"}

1 1

4 rows

2 ms

15.10.13. Optional relationship
If a relationship is optional, it can be marked with a question mark. This is similar to how a SQL
outer join works. If the relationship is there, it is returned. If it’s not, null is returned in it’s place.
Remember that anything hanging off an optional relationship, is in turn optional, unless it is connected
with a bound node through some other path.
Query.

START a=node(2)

MATCH a-[?]->x

RETURN a,x

A node, and null are returned, since the node has no outgoing relationships.

Result
a x

Node[2]{name:"Emil"} <null>

1 row

0 ms

15.10.14. Optional typed and named relationship
Just as with a normal relationship, you can decide which identifier it goes into, and what relationship
type you need.
Query.

START a=node(3)

MATCH a-[r?:LOVES]->()

RETURN a,r

This returns a node, and null, since the node has no outgoing LOVES relationships.

Result
a r

Node[3]{name:"Anders"} <null>

1 row

0 ms

15.10.15. Properties on optional elements
Returning a property from an optional element that is null will also return null.
Query.

START a=node(2)

MATCH a-[?]->x

RETURN x, x.name

Cypher Query Language

178

This returns the element x (null in this query), and null as it’s name.

Result
x x.name

<null> <null>

1 row

0 ms

15.10.16. Complex matching
Using Cypher, you can also express more complex patterns to match on, like a diamond shape pattern.
Query.

START a=node(3)

MATCH (a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:BLOCKS]-(d)-[:KNOWS]-(c)

RETURN a,b,c,d

This returns the four nodes in the paths.

Result
a b c d

Node[3]{name:"Anders"} Node[4]{name:"Bossman"} Node[2]{name:"Emil"} Node[5]{name:"Cesar"}

1 row

1 ms

15.10.17. Shortest path
Finding a single shortest path between two nodes is as easy as using the shortestPath function. It’s
done like this:
Query.

START d=node(1), e=node(2)

MATCH p = shortestPath(d-[*..15]->e)

RETURN p

This means: find a single shortest path between two nodes, as long as the path is max 15 relationships
long. Inside of the parenthesis you define a single link of a path — the starting node, the connecting
relationship and the end node. Characteristics describing the relationship like relationship type, max
hops and direction are all used when finding the shortest path. You can also mark the path as optional.

Result
p

[Node[1]{name:"David"}, :KNOWS[2] {}, Node[3]{name:"Anders"}, :KNOWS[0] {}, Node[4]

{name:"Bossman"}, :KNOWS[3] {}, Node[2]{name:"Emil"}]

1 row

0 ms

15.10.18. All shortest paths
Finds all the shortest paths between two nodes.
Query.

Cypher Query Language

179

START d=node(1), e=node(2)

MATCH p = allShortestPaths(d-[*..15]->e)

RETURN p

This example will find the two directed paths between David and Emil.

Result
p

[Node[1]{name:"David"}, :KNOWS[2] {}, Node[3]{name:"Anders"}, :KNOWS[0] {}, Node[4]

{name:"Bossman"}, :KNOWS[3] {}, Node[2]{name:"Emil"}]

[Node[1]{name:"David"}, :KNOWS[2] {}, Node[3]{name:"Anders"}, :BLOCKS[1] {}, Node[5]

{name:"Cesar"}, :KNOWS[4] {}, Node[2]{name:"Emil"}]

2 rows

1 ms

15.10.19. Named path
If you want to return or filter on a path in your pattern graph, you can a introduce a named path.

Query.

START a=node(3)

MATCH p = a-->b

RETURN p

This returns the two paths starting from the first node.

Result
p

[Node[3]{name:"Anders"}, :KNOWS[0] {}, Node[4]{name:"Bossman"}]

[Node[3]{name:"Anders"}, :BLOCKS[1] {}, Node[5]{name:"Cesar"}]

2 rows

1 ms

15.10.20. Matching on a bound relationship
When your pattern contains a bound relationship, and that relationship pattern doesn’t specify
direction, Cypher will try to match the relationship where the connected nodes switch sides.

Query.

START r=rel(0)

MATCH a-[r]-b

RETURN a,b

This returns the two connected nodes, once as the start node, and once as the end node.

Result
a b

Node[3]{name:"Anders"} Node[4]{name:"Bossman"}

2 rows

1 ms

Cypher Query Language

180

a b

Node[4]{name:"Bossman"} Node[3]{name:"Anders"}

2 rows

1 ms

15.10.21. Match with OR
Strictly speaking, you can’t do OR in your MATCH. It’s still possible to form a query that works a lot like
OR.

Query.

START a=node(3), b=node(2)

MATCH a-[?:KNOWS]-x-[?:KNOWS]-b

RETURN x

This query is saying: give me the nodes that are connected to a, or b, or both.

Result
x

Node[4]{name:"Bossman"}

Node[5]{name:"Cesar"}

Node[1]{name:"David"}

3 rows

2 ms

Cypher Query Language

181

15.11. Where
If you need filtering apart from the pattern of the data that you are looking for, you can add clauses in
the WHERE part of the query.

Figure 15.4. Graph

Node[1]

nam e = 'Tobias'
age = 25

Node[2]

nam e = 'Peter'
age = 34

Node[3]

nam e = 'Andres'
age = 36
belt = 'white'

KNOWS KNOWS

15.11.1. Boolean operations
You can use the expected boolean operators AND and OR, and also the boolean function NOT().

Query.

START n=node(3, 1)

WHERE (n.age < 30 and n.name = "Tobias") or not(n.name = "Tobias")

RETURN n

This will return both nodes in the start clause.

Result

n

Node[3]{name:"Andres", age:36, belt:"white"}

Node[1]{name:"Tobias", age:25}

2 rows

0 ms

15.11.2. Filter on node property
To filter on a property, write your clause after the WHERE keyword. Filtering on relationship properties
works just the same way.

Query.

START n=node(3, 1)

WHERE n.age < 30

RETURN n

The "Tobias" node will be returned.

Cypher Query Language

182

Result
n

Node[1]{name:"Tobias", age:25}

1 row

1 ms

15.11.3. Regular expressions
You can match on regular expressions by using =~ "regexp", like this:

Query.

START n=node(3, 1)

WHERE n.name =~ 'Tob.*'

RETURN n

The "Tobias" node will be returned.

Result
n

Node[1]{name:"Tobias", age:25}

1 row

1 ms

15.11.4. Escaping in regular expressions
If you need a forward slash inside of your regular expression, escape it. Remember that back slash
needs to be escaped in string literals

Query.

START n=node(3, 1)

WHERE n.name =~ 'Some\\/thing'

RETURN n

No nodes match this regular expression.

Result
n

(empty result)

0 row

0 ms

15.11.5. Case insensitive regular expressions
By pre-pending a regular expression with (?i), the whole expression becomes case insensitive.

Query.

START n=node(3, 1)

WHERE n.name =~ '(?i)ANDR.*'

RETURN n

The node with name "Andres" is returned.

Cypher Query Language

183

Result
n

Node[3]{name:"Andres", age:36, belt:"white"}

1 row

0 ms

15.11.6. Filtering on relationship type
You can put the exact relationship type in the MATCH pattern, but sometimes you want to be able to do
more advanced filtering on the type. You can use the special property TYPE to compare the type with
something else. In this example, the query does a regular expression comparison with the name of the
relationship type.

Query.

START n=node(3)

MATCH (n)-[r]->()

WHERE type(r) =~ 'K.*'

RETURN r

This returns relationships that has a type whose name starts with K.

Result
r

:KNOWS[0] {}

:KNOWS[1] {}

2 rows

1 ms

15.11.7. Property exists
To only include nodes/relationships that have a property, use the HAS() function and just write out the
identifier and the property you expect it to have.

Query.

START n=node(3, 1)

WHERE has(n.belt)

RETURN n

The node named "Andres" is returned.

Result
n

Node[3]{name:"Andres", age:36, belt:"white"}

1 row

1 ms

15.11.8. Default true if property is missing
If you want to compare a property on a graph element, but only if it exists, use the nullable property
syntax. You can use a question mark if you want missing property to return true, like:

Cypher Query Language

184

Query.

START n=node(3, 1)

WHERE n.belt? = 'white'

RETURN n

This returns all nodes, even those without the belt property.

Result
n

Node[3]{name:"Andres", age:36, belt:"white"}

Node[1]{name:"Tobias", age:25}

2 rows

1 ms

15.11.9. Default false if property is missing
When you need missing property to evaluate to false, use the exclamation mark.

Query.

START n=node(3, 1)

WHERE n.belt! = 'white'

RETURN n

No nodes without the belt property are returned.

Result
n

Node[3]{name:"Andres", age:36, belt:"white"}

1 row

1 ms

15.11.10. Filter on null values
Sometimes you might want to test if a value or an identifier is null. This is done just like SQL does it,
with IS NULL. Also like SQL, the negative is IS NOT NULL, although NOT(IS NULL x) also works.

Query.

START a=node(1), b=node(3, 2)

MATCH a<-[r?]-b

WHERE r is null

RETURN b

Nodes that Tobias is not connected to are returned.

Result
b

Node[2]{name:"Peter", age:34}

1 row

1 ms

Cypher Query Language

185

15.11.11. Filter on patterns
Patterns are expressions in Cypher, expressions that return a collection of paths. Collection
expressions are also predicates — an empty collection represents false, and a non-empty represents
true.

So, patterns are not only expressions, they are also predicates. The only limitation to your pattern is
that you must be able to express it in a single path. You can not use commas between multiple paths
like you do in MATCH. You can achieve the same effect by combining multiple patterns with AND.

Note that you can not introduce new identifiers here. Although it might look very similar to the MATCH
patterns, the WHERE clause is all about eliminating matched subgraphs. MATCH a-[*]->b is very different
from WHERE a-[*]->b; the first will produce a subgraph for every path it can find between a and b, and
the latter will eliminate any matched subgraphs where a and b do not have a directed relationship
chain between them.

Query.

START tobias=node(1), others=node(3, 2)

WHERE tobias<--others

RETURN others

Nodes that have an outgoing relationship to the "Tobias" node are returned.

Result
others

Node[3]{name:"Andres", age:36, belt:"white"}

1 row

1 ms

15.11.12. Filter on patterns using NOT
The NOT() function can be used to exclude a pattern.

Query.

START persons=node(*), peter=node(2)

WHERE not(persons-->peter)

RETURN persons

Nodes that do not have an outgoing relationship to the "Peter" node are returned.

Result
persons

Node[1]{name:"Tobias", age:25}

Node[2]{name:"Peter", age:34}

2 rows

1 ms

15.11.13. IN operator
To check if an element exists in a collection, you can use the IN operator.

Query.

START a=node(3, 1, 2)

Cypher Query Language

186

WHERE a.name IN ["Peter", "Tobias"]

RETURN a

This query shows how to check if a property exists in a literal collection.

Result
a

Node[1]{name:"Tobias", age:25}

Node[2]{name:"Peter", age:34}

2 rows

0 ms

Cypher Query Language

187

15.12. Return
In the RETURN part of your query, you define which parts of the pattern you are interested in. It can be
nodes, relationships, or properties on these.

Figure 15.5. Graph

Node[1]

nam e = 'A'
happy = 'Yes! '
age = 55

Node[2]

nam e = 'B'

KNOWS BLOCKS

15.12.1. Return nodes
To return a node, list it in the RETURN statemenet.

Query.

START n=node(2)

RETURN n

The example will return the node.

Result
n

Node[2]{name:"B"}

1 row

0 ms

15.12.2. Return relationships
To return a relationship, just include it in the RETURN list.

Query.

START n=node(1)

MATCH (n)-[r:KNOWS]->(c)

RETURN r

The relationship is returned by the example.

Result
r

:KNOWS[0] {}

1 row

1 ms

Cypher Query Language

188

15.12.3. Return property
To return a property, use the dot separator, like this:

Query.

START n=node(1)

RETURN n.name

The value of the property name gets returned.

Result
n.name

"A"

1 row

0 ms

15.12.4. Return all elements
When you want to return all nodes, relationships and paths found in a query, you can use the *
symbol.

Query.

START a=node(1)

MATCH p=a-[r]->b

RETURN *

This returns the two nodes, the relationship and the path used in the query.

Result
b a r p

Node[2]{name:"B"} Node[1]{name:"A",

 happy:"Yes!", age:55}

:KNOWS[0] {} [Node[1]{name:"A",

 happy:"Yes!",

 age:55}, :KNOWS[0] {},

 Node[2]{name:"B"}]

Node[2]{name:"B"} Node[1]{name:"A",

 happy:"Yes!", age:55}

:BLOCKS[1] {} [Node[1]{name:"A",

 happy:"Yes!",

 age:55}, :BLOCKS[1] {},

 Node[2]{name:"B"}]

2 rows

0 ms

15.12.5. Identifier with uncommon characters
To introduce a placeholder that is made up of characters that are outside of the english alphabet, you
can use the ` to enclose the identifier, like this:

Query.

START `This isn't a common identifier`=node(1)

RETURN `This isn't a common identifier`.happy

The node indexed with name "A" is returned

Cypher Query Language

189

Result
This isn't a common identifier.happy

"Yes!"

1 row

0 ms

15.12.6. Column alias
If the name of the column should be different from the expression used, you can rename it by using AS
<new name>.

Query.

START a=node(1)

RETURN a.age AS SomethingTotallyDifferent

Returns the age property of a node, but renames the column.

Result
SomethingTotallyDifferent

55

1 row

1 ms

15.12.7. Optional properties
If a property might or might not be there, you can select it optionally by adding a questionmark to the
identifier, like this:

Query.

START n=node(1, 2)

RETURN n.age?

This example returns the age when the node has that property, or null if the property is not there.

Result
n.age?

55

<null>

2 rows

0 ms

15.12.8. Other expressions
Any expression can be used as a return iterm - literals, predicates, properties, functions, and
everything else.

Query.

START a=node(1)

RETURN a.age > 30, "I'm a literal", length(a-->())

Cypher Query Language

190

Returns a predicate, a literal and function call with a pattern expression parameter.

Result
a.age > 30 "I'm a literal" length(a-->())

true "I'm a literal" 2

1 row

0 ms

15.12.9. Unique results
DISTINCT retrieves only unique rows depending on the columns that have been selected to output.

Query.

START a=node(1)

MATCH (a)-->(b)

RETURN distinct b

The node named B is returned by the query, but only once.

Result
b

Node[2]{name:"B"}

1 row

0 ms

Cypher Query Language

191

15.13. Aggregation
15.13.1. Introduction

To calculate aggregated data, Cypher offers aggregation, much like SQL’s GROUP BY.

Aggregate functions take multiple input values and calculate an aggregated value from them.
Examples are AVG that calculate the average of multiple numeric values, or MIN that finds the smallest
numeric value in a set of values.

Aggregation can be done over all the matching sub graphs, or it can be further divided by introducing
key values. These are non-aggregate expressions, that are used to group the values going into the
aggregate functions.

So, if the return statement looks something like this:

RETURN n, count(*)

We have two return expressions — n, and count(*). The first, n, is no aggregate function, and so it will
be the grouping key. The latter, count(*) is an aggregate expression. So the matching subgraphs will
be divided into different buckets, depending on the grouping key. The aggregate function will then run
on these buckets, calculating the aggregate values.

If you want to use aggregations to sort your result set, the aggregation must be included in the RETURN
to be used in your ORDER BY.

The last piece of the puzzle is the DISTINCT keyword. It is used to make all values unique before
running them through an aggregate function.

An example might be helpful:

Query.

START me=node(1)

MATCH me-->friend-->friend_of_friend

RETURN count(distinct friend_of_friend), count(friend_of_friend)

In this example we are trying to find all our friends of friends, and count them. The first aggregate
function, count(distinct friend_of_friend), will only see a friend_of_friend once — DISTINCT removes
the duplicates. The latter aggregate function, count(friend_of_friend), might very well see the same
friend_of_friend multiple times. Since there is no real data in this case, an empty result is returned.
See the sections below for real data.

Result

count(distinct friend_of_friend) count(friend_of_friend)

0 0

1 row

0 ms

The following examples are assuming the example graph structure below.

Cypher Query Language

192

Figure 15.6. Graph

Node[1]

nam e = 'D'
eyes = 'brown'

Node[2]

nam e = 'A'
property = 13

KNOWS

Node[3]

nam e = 'B'
property = 33
eyes = 'blue'

KNOWS

Node[4]

nam e = 'C'
property = 44
eyes = 'blue'

KNOWS

15.13.2. COUNT
COUNT is used to count the number of rows. COUNT can be used in two forms — COUNT(*) which just
counts the number of matching rows, and COUNT(<identifier>), which counts the number of non-null
values in <identifier>.

15.13.3. Count nodes
To count the number of nodes, for example the number of nodes connected to one node, you can use
count(*).

Query.

START n=node(2)

MATCH (n)-->(x)

RETURN n, count(*)

This returns the start node and the count of related nodes.

Result

n count(*)

Node[2]{name:"A", property:13} 3

1 row

0 ms

15.13.4. Group Count Relationship Types
To count the groups of relationship types, return the types and count them with count(*).

Query.

START n=node(2)

MATCH (n)-[r]->()

RETURN type(r), count(*)

The relationship types and their group count is returned by the query.

Cypher Query Language

193

Result
type(r) count(*)

"KNOWS" 3

1 row

0 ms

15.13.5. Count entities
Instead of counting the number of results with count(*), it might be more expressive to include the
name of the identifier you care about.

Query.

START n=node(2)

MATCH (n)-->(x)

RETURN count(x)

The example query returns the number of connected nodes from the start node.

Result
count(x)

3

1 row

0 ms

15.13.6. Count non-null values
You can count the non-null values by using count(<identifier>).

Query.

START n=node(2,3,4,1)

RETURN count(n.property?)

The count of related nodes with the property property set is returned by the query.

Result
count(n.property?)

3

1 row

0 ms

15.13.7. SUM
The SUM aggregation function simply sums all the numeric values it encounters. Nulls are silently
dropped. This is an example of how you can use SUM.

Query.

START n=node(2,3,4)

RETURN sum(n.property)

This returns the sum of all the values in the property property.

Cypher Query Language

194

Result
sum(n.property)

90

1 row

0 ms

15.13.8. AVG
AVG calculates the average of a numeric column.

Query.

START n=node(2,3,4)

RETURN avg(n.property)

The average of all the values in the property property is returned by the example query.

Result
avg(n.property)

30. 0

1 row

0 ms

15.13.9. PERCENTILE_DISC
PERCENTILE_DISC calculates the percentile of a given value over a group, with a percentile from 0.0 to
1.0. It uses a rounding method, returning the nearest value to the percentile. For interpolated values,
see PERCENTILE_CONT.

Query.

START n=node(2,3,4)

RETURN percentile_disc(n.property, 0.5)

The 50th percentile of the values in the property property is returned by the example query. In this
case, 0.5 is the median, or 50th percentile.

Result
percentile_disc(n.property, 0.5)

33

1 row

0 ms

15.13.10. PERCENTILE_CONT
PERCENTILE_CONT calculates the percentile of a given value over a group, with a percentile from
0.0 to 1.0. It uses a linear interpolation method, calculating a weighted average between two
values, if the desired percentile lies between them. For nearest values using a rounding method, see
PERCENTILE_DISC.

Query.

START n=node(2,3,4)

Cypher Query Language

195

RETURN percentile_cont(n.property, 0.4)

The 40th percentile of the values in the property property is returned by the example query, calculated
with a weighted average.

Result
percentile_cont(n.property, 0.4)

29. 0

1 row

0 ms

15.13.11. MAX
MAX find the largets value in a numeric column.

Query.

START n=node(2,3,4)

RETURN max(n.property)

The largest of all the values in the property property is returned.

Result
max(n.property)

44

1 row

0 ms

15.13.12. MIN
MIN takes a numeric property as input, and returns the smallest value in that column.

Query.

START n=node(2,3,4)

RETURN min(n.property)

This returns the smallest of all the values in the property property.

Result
min(n.property)

13

1 row

0 ms

15.13.13. COLLECT
COLLECT collects all the values into a list. It will ignore null values,

Query.

START n=node(2,3,4,1)

RETURN collect(n.property?)

Returns a single row, with all the values collected.

Cypher Query Language

196

Result
collect(n.property?)

[13, 33, 44]

1 row

0 ms

15.13.14. DISTINCT
All aggregation functions also take the DISTINCT modifier, which removes duplicates from the values.
So, to count the number of unique eye colors from nodes related to a, this query can be used:

Query.

START a=node(2)

MATCH a-->b

RETURN count(distinct b.eyes)

Returns the number of eye colors.

Result
count(distinct b.eyes)

2

1 row

0 ms

Cypher Query Language

197

15.14. Order by
To sort the output, use the ORDER BY clause. Note that you can not sort on nodes or relationships, just
on properties on these.

Figure 15.7. Graph

Node[1]

nam e = 'A'
age = 34
length = 170

Node[2]

nam e = 'B'
age = 34

KNOWS

Node[3]

nam e = 'C'
age = 32
length = 185

KNOWS

15.14.1. Order nodes by property
ORDER BY is used to sort the output.

Query.

START n=node(3,1,2)

RETURN n

ORDER BY n.name

The nodes are returned, sorted by their name.

Result
n

Node[1]{name:"A", age:34, length:170}

Node[2]{name:"B", age:34}

Node[3]{name:"C", age:32, length:185}

3 rows

1 ms

15.14.2. Order nodes by multiple properties
You can order by multiple properties by stating each identifier in the ORDER BY clause. Cypher will sort
the result by the first identifier listed, and for equals values, go to the next property in the ORDER BY
clause, and so on.

Query.

Cypher Query Language

198

START n=node(3,1,2)

RETURN n

ORDER BY n.age, n.name

This returns the nodes, sorted first by their age, and then by their name.

Result
n

Node[3]{name:"C", age:32, length:185}

Node[1]{name:"A", age:34, length:170}

Node[2]{name:"B", age:34}

3 rows

0 ms

15.14.3. Order nodes in descending order
By adding DESC[ENDING] after the identifier to sort on, the sort will be done in reverse order.
Query.

START n=node(3,1,2)

RETURN n

ORDER BY n.name DESC

The example returns the nodes, sorted by their name reversely.

Result
n

Node[3]{name:"C", age:32, length:185}

Node[2]{name:"B", age:34}

Node[1]{name:"A", age:34, length:170}

3 rows

0 ms

15.14.4. Ordering null
When sorting the result set, null will always come at the end of the result set for ascending sorting,
and first when doing descending sort.
Query.

START n=node(3,1,2)

RETURN n.length?, n

ORDER BY n.length?

The nodes are returned sorted by the length property, with a node without that property last.

Result
n.length? n

170 Node[1]{name:"A", age:34, length:170}

3 rows

0 ms

Cypher Query Language

199

n.length? n

185 Node[3]{name:"C", age:32, length:185}

<null> Node[2]{name:"B", age:34}

3 rows

0 ms

Cypher Query Language

200

15.15. Limit
LIMIT enables the return of only subsets of the total result.

Figure 15.8. Graph

Node[1]

nam e = 'D'

Node[2]

nam e = 'E'

Node[3]

nam e = 'A'

KNOWS KNOWS

Node[4]

nam e = 'B'

KNOWS

Node[5]

nam e = 'C'

KNOWS

15.15.1. Return first part
To return a subset of the result, starting from the top, use this syntax:

Query.

START n=node(3, 4, 5, 1, 2)

RETURN n

LIMIT 3

The top three items are returned by the example query.

Result
n

Node[3]{name:"A"}

Node[4]{name:"B"}

Node[5]{name:"C"}

3 rows

0 ms

Cypher Query Language

201

15.16. Skip
SKIP enables the return of only subsets of the total result. By using SKIP, the result set will get trimmed
from the top. Please note that no guarantees are made on the order of the result unless the query
specifies the ORDER BY clause.

Figure 15.9. Graph

Node[1]

nam e = 'D'

Node[2]

nam e = 'E'

Node[3]

nam e = 'A'

KNOWS KNOWS

Node[4]

nam e = 'B'

KNOWS

Node[5]

nam e = 'C'

KNOWS

15.16.1. Skip first three
To return a subset of the result, starting from the fourth result, use the following syntax:

Query.

START n=node(3, 4, 5, 1, 2)

RETURN n

ORDER BY n.name

SKIP 3

The first three nodes are skipped, and only the last two are returned in the result.

Result

n

Node[1]{name:"D"}

Node[2]{name:"E"}

2 rows

0 ms

15.16.2. Return middle two
To return a subset of the result, starting from somewhere in the middle, use this syntax:

Query.

START n=node(3, 4, 5, 1, 2)

RETURN n

ORDER BY n.name

SKIP 1

LIMIT 2

Two nodes from the middle are returned.

Cypher Query Language

202

Result
n

Node[4]{name:"B"}

Node[5]{name:"C"}

2 rows

0 ms

Cypher Query Language

203

15.17. With
The ability to chain queries together allows for powerful constructs. In Cypher, the WITH clause is used
to pipe the result from one query to the next.

WITH is also used to separate reading from updating of the graph. Every sub-query of a query must be
either read-only or write-only.

Figure 15.10. Graph

Node[1]

nam e = 'David'

Node[3]

nam e = 'Anders'

KNOWS

Node[4]

nam e = 'Bossm an'

KNOWS

Node[5]

nam e = 'Cesar'

BLOCKS

Node[2]

nam e = 'Em il'

BLOCKS

KNOWSKNOWS

15.17.1. Filter on aggregate function results
Aggregated results have to pass through a WITH clause to be able to filter on.

Query.

START david=node(1)

MATCH david--otherPerson-->()

WITH otherPerson, count(*) as foaf

WHERE foaf > 1

RETURN otherPerson

The person connected to David with the at least more than one outgoing relationship will be returned
by the query.

Result

otherPerson

Node[3]{name:"Anders"}

1 row

1 ms

Cypher Query Language

204

15.17.2. Sort results before using collect on them
You can sort your results before passing them to collect, thus sorting the resulting collection.

Query.

START n=node(*)

WITH n

ORDER BY n.name desc

LIMIT 3

RETURN collect(n.name)

A list of the names of people in reverse order, limited to 3, in a collection.

Result
collect(n.name)

["Emil", "David", "Cesar"]

1 row

0 ms

15.17.3. Limit branching of your path search
You can match paths, limit to a certain number, and then match again using those paths as a base As
well as any number of similar limited searches.

Query.

START n=node(3)

MATCH n--m

WITH m

ORDER BY m.name desc

LIMIT 1

MATCH m--o

RETURN o.name

Starting at Anders, find all matching nodes, order by name descending and get the top result, then find
all the nodes connected to that top result, and return their names.

Result
o.name

"Anders"

"Bossman"

2 rows

0 ms

15.17.4. Alternative syntax of WITH
If you prefer a more visual way of writing your query, you can use equal-signs as delimiters before
and after the column list. Use at least three before the column list, and at least three after.

Query.

START david=node(1)

MATCH david--otherPerson-->()

========== otherPerson, count(*) as foaf ==========

SET otherPerson.connection_count = foaf

Cypher Query Language

205

For persons connected to David, the connection_count property is set to their number of outgoing
relationships.

Result
(empty result)

Properties set: 2

0 ms

Cypher Query Language

206

15.18. Create
Creating graph elements — nodes and relationships, is done with CREATE.

Tip
In the CREATE clause, patterns are used a lot. Read Section 15.8, “Patterns” for an
introduction.

15.18.1. Create single node
Creating a single node is done by issuing the following query.

Query.

CREATE n

Nothing is returned from this query, except the count of affected nodes.

Result

(empty result)

Nodes created: 1

0 ms

15.18.2. Create single node and set properties
The values for the properties can be any scalar expressions.

Query.

CREATE n = {name : 'Andres', title : 'Developer'}

Nothing is returned from this query.

Result

(empty result)

Nodes created: 1

Properties set: 2

2 ms

15.18.3. Return created node
Creating a single node is done by issuing the following query.

Query.

CREATE (a {name : 'Andres'})

RETURN a

The newly created node is returned. This query uses the alternative syntax for single node creation.

Cypher Query Language

207

Result

a

Node[2]{name:"Andres"}

1 row

Nodes created: 1

Properties set: 1

2 ms

15.18.4. Create a relationship between two nodes
To create a relationship between two nodes, we first get the two nodes. Once the nodes are loaded, we
simply create a relationship between them.

Query.

START a=node(1), b=node(2)

CREATE a-[r:RELTYPE]->b

RETURN r

The created relationship is returned by the query.

Result

r

:RELTYPE[1] {}

1 row

Relationships created: 1

1 ms

15.18.5. Create a relationship and set properties
Setting properties on relationships is done in a similar manner to how it’s done when creating nodes.
Note that the values can be any expression.

Query.

START a=node(1), b=node(2)

CREATE a-[r:RELTYPE {name : a.name + '<->' + b.name }]->b

RETURN r

The newly created relationship is returned by the example query.

Result

r

:RELTYPE[1] {name:"Andres<->Michael"}

1 row

Relationships created: 1

Properties set: 1

2 ms

Cypher Query Language

208

15.18.6. Create a full path
When you use CREATE and a pattern, all parts of the pattern that are not already in scope at this time
will be created.

Query.

CREATE p = (andres {name:'Andres'})-[:WORKS_AT]->neo<-[:WORKS_AT]-(michael {name:'Michael'})

RETURN p

This query creates three nodes and two relationships in one go, assigns it to a path identifier, and
returns it.

Result
p

[Node[4]{name:"Andres"}, :WORKS_AT[2] {}, Node[5]{}, :WORKS_AT[3] {}, Node[6]{name:"Michael"}]

1 row

Nodes created: 3

Relationships created: 2

Properties set: 2

3 ms

15.18.7. Create single node from map
You can also create a graph entity from a Map<String,Object> map. All the key/value pairs in the map
will be set as properties on the created relationship or node.

Query.

create ({props})

This query can be used in the following fashion:
Map<String, Object> props = new HashMap<String, Object>();

props.put("name", "Andres");

props.put("position", "Developer");

Map<String, Object> params = new HashMap<String, Object>();

params.put("props", props);

engine.execute("create ({props})", params);

15.18.8. Create multiple nodes from maps
By providing an iterable of maps (Iterable<Map<String,Object>>), Cypher will create a node for each
map in the iterable. When you do this, you can’t create anything else in the same create statement.

Query.

create (n {props}) return n

This query can be used in the following fashion:
Map<String, Object> n1 = new HashMap<String, Object>();

n1.put("name", "Andres");

n1.put("position", "Developer");

Map<String, Object> n2 = new HashMap<String, Object>();

n2.put("name", "Michael");

n2.put("position", "Developer");

Cypher Query Language

209

Map<String, Object> params = new HashMap<String, Object>();

List<Map<String, Object>> maps = Arrays.asList(n1, n2);

params.put("props", maps);

engine.execute("create (n {props}) return n", params);

Cypher Query Language

210

15.19. Create Unique
CREATE UNIQUE is in the middle of MATCH and CREATE — it will match what it can, and create what is
missing. CREATE UNIQUE will always make the least change possible to the graph — if it can use parts of
the existing graph, it will.

Another difference to MATCH is that CREATE UNIQUE assumes the pattern to be unique. If multiple
matching subgraphs are found an exception will be thrown.

Tip
In the CREATE UNIQUE clause, patterns are used a lot. Read Section 15.8, “Patterns” for an
introduction.

The examples start out with the following data set:

Node[1]

nam e = 'A'

Node[4]

nam e = 'C'

KNOWS

Node[2]

nam e = 'root '

X

X
Node[3]

nam e = 'B'

X

15.19.1. Create relationship if it is missing
CREATE UNIQUE is used to describe the pattern that should be found or created.

Query.

START left=node(1), right=node(3,4)

CREATE UNIQUE left-[r:KNOWS]->right

RETURN r

The left node is matched agains the two right nodes. One relationship already exists and can be
matched, and the other relationship is created before it is returned.

Result
r

:KNOWS[5] {}

:KNOWS[3] {}

2 rows

Relationships created: 1

2 ms

Cypher Query Language

211

15.19.2. Create node if missing
If the pattern described needs a node, and it can’t be matched, a new node will be created.

Query.

START root=node(2)

CREATE UNIQUE root-[:LOVES]-someone

RETURN someone

The root node doesn’t have any LOVES relationships, and so a node is created, and also a relationship to
that node.

Result
someone

Node[6]{}

1 row

Nodes created: 1

Relationships created: 1

1 ms

15.19.3. Create nodes with values
The pattern described can also contain values on the node. These are given using the following syntax:
prop : <expression>.

Query.

START root=node(2)

CREATE UNIQUE root-[:X]-(leaf {name:'D'})

RETURN leaf

No node connected with the root node has the name D, and so a new node is created to match the
pattern.

Result
leaf

Node[6]{name:"D"}

1 row

Nodes created: 1

Relationships created: 1

Properties set: 1

3 ms

15.19.4. Create relationship with values
Relationships to be created can also be matched on values.

Query.

START root=node(2)

CREATE UNIQUE root-[r:X {since:'forever'}]-()

RETURN r

Cypher Query Language

212

In this example, we want the relationship to have a value, and since no such relationship can be found,
a new node and relationship are created. Note that since we are not interested in the created node, we
don’t name it.

Result
r

:X[5] {since:"forever"}

1 row

Nodes created: 1

Relationships created: 1

Properties set: 1

1 ms

15.19.5. Describe complex pattern
The pattern described by CREATE UNIQUE can be separated by commas, just like in MATCH and CREATE.

Query.

START root=node(2)

CREATE UNIQUE root-[:FOO]->x, root-[:BAR]->x

RETURN x

This example pattern uses two paths, separated by a comma.

Result
x

Node[6]{}

1 row

Nodes created: 1

Relationships created: 2

1 ms

Cypher Query Language

213

15.20. Set
Updating properties on nodes and relationships is done with the SET clause. SET can also be used with
maps from parameters.

The examples use this graph as a starting point:

Node[1]

nam e = 'Peter'
age = 34

Node[2]

nam e = 'Andres'
age = 36
awesom e = t rue

KNOWS

15.20.1. Set a property
To set a property on a node or relationship, use SET.

Query.

START n = node(2)

SET n.surname = 'Taylor'

RETURN n

The newly changed node is returned by the query.

Result

n

Node[2]{name:"Andres", age:36, awesome:true, surname:"Taylor"}

1 row

Properties set: 1

1 ms

15.20.2. Remove a property
Normally you remove a property by using delete, but it’s sometimes handy to do it using the SET
command. One example is if the property comes from a parameter.

Query.

START n = node(2)

SET n.name = null

RETURN n

The node is returned by the query, and the name property is now missing.

Cypher Query Language

214

Result
n

Node[2]{age:36, awesome:true}

1 row

Properties set: 1

2 ms

15.20.3. Copying properties between nodes and relationships
You can also use SET to copy all properties from one graph element to another. Remember that doing
this will remove all other properties on the receiving graph element.

Query.

START at = node(2), pn = node(1)

SET at = pn

RETURN at, pn

The Andres node has had all it’s properties replaced by the properties in the Peter node.

Result
at pn

Node[2]{name:"Peter", age:34} Node[1]{name:"Peter", age:34}

1 row

Properties set: 3

3 ms

Cypher Query Language

215

15.21. Delete
Removing graph elements — nodes, relationships and properties, is done with DELETE.
The examples start out with the following database:

Node[1]

nam e = 'Tobias'
age = 25

Node[2]

nam e = 'Peter'
age = 34

Node[3]

nam e = 'Andres'
age = 36

KNOWS KNOWS

15.21.1. Delete single node
To remove a node from the graph, you can delete it with the DELETE clause.
Query.

START n = node(4)

DELETE n

Nothing is returned from this query, except the count of affected nodes.

Result
(empty result)

Nodes deleted: 1

0 ms

15.21.2. Remove a node and connected relationships
If you are trying to remove a node with relationships on it, you have to remove these as well.
Query.

START n = node(3)

MATCH n-[r]-()

DELETE n, r

Nothing is returned from this query, except the count of affected nodes.

Result
(empty result)

Nodes deleted: 1

Relationships deleted: 2

2 ms

15.21.3. Remove a property
Neo4j doesn’t allow storing null in properties. Instead, if no value exists, the property is just not there.
So, to remove a property value on a node or a relationship, is also done with DELETE.

Cypher Query Language

216

Query.

START andres = node(3)

DELETE andres.age

RETURN andres

The node is returned, and no property age exists on it.

Result
andres

Node[3]{name:"Andres"}

1 row

Properties set: 1

2 ms

Cypher Query Language

217

15.22. Foreach
Collections and paths are key concepts in Cypher. To use them for updating data, you can use the
FOREACH construct. It allows you to do updating commands on elements in a collection — a path, or a
collection created by aggregation.

The identifier context inside of the foreach parenthesis is separate from the one outside it, i.e. if
you CREATE a node identifier inside of a FOREACH, you will not be able to use it outside of the foreach
statement, unless you match to find it.

Inside of the FOREACH parentheses, you can do any updating commands — CREATE, CREATE UNIQUE, DELETE,
and FOREACH.

15.22.1. Mark all nodes along a path
This query will set the property marked to true on all nodes along a path.

Query.

START begin = node(2), end = node(1)

MATCH p = begin -[*]-> end foreach(n in nodes(p) :

SET n.marked = true)

Nothing is returned from this query.

Result
(empty result)

Properties set: 4

0 ms

Cypher Query Language

218

15.23. Functions
Most functions in Cypher will return null if the input parameter is null.

Here is a list of the functions in Cypher, seperated into three different sections: Predicates, Scalar
functions and Aggregated functions

Figure 15.11. Graph

Node[1]

nam e = 'D'
age = 54
eyes = 'brown'

Node[2]

nam e = 'E'
age = 41
eyes = 'blue'
array = ['one', ' two', ' three']

Node[3]

nam e = 'A'
age = 38
eyes = 'brown'

Node[4]

nam e = 'B'
age = 25
eyes = 'blue'

KNOWS

Node[5]

nam e = 'C'
age = 53
eyes = 'green'

KNOWS

KNOWSMARRIED KNOWS

15.23.1. Predicates
Predicates are boolean functions that return true or false for a given set of input. They are most
commonly used to filter out subgraphs in the WHERE part of a query.

ALL
Tests whether a predicate holds for all element of this collection collection.

Syntax: ALL(identifier in collection WHERE predicate)

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query.

START a=node(3), b=node(1)

MATCH p=a-[*1..3]->b

WHERE all(x in nodes(p)

WHERE x.age > 30)

RETURN p

All nodes in the returned paths will have an age property of at least 30.

Cypher Query Language

219

Result
p

[Node[3]{name:"A", age:38, eyes:"brown"}, :KNOWS[1] {}, Node[5]{name:"C", age:53,

 eyes:"green"}, :KNOWS[3] {}, Node[1]{name:"D", age:54, eyes:"brown"}]

1 row

1 ms

ANY
Tests whether a predicate holds for at least one element in the collection.

Syntax: ANY(identifier in collection WHERE predicate)

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query.

START a=node(2)

WHERE any(x in a.array

WHERE x = "one")

RETURN a

All nodes in the returned paths has at least one one value set in the array property named array.

Result
a

Node[2]{name:"E", age:41, eyes:"blue", array:["one", "two", "three"]}

1 row

0 ms

NONE
Returns true if the predicate holds for no element in the collection.

Syntax: NONE(identifier in collection WHERE predicate)

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query.

START n=node(3)

MATCH p=n-[*1..3]->b

WHERE NONE(x in nodes(p)

WHERE x.age = 25)

RETURN p

No nodes in the returned paths has a age property set to 25.

Cypher Query Language

220

Result
p

[Node[3]{name:"A", age:38, eyes:"brown"}, :KNOWS[1] {}, Node[5]{name:"C", age:53, eyes:"green"}]

[Node[3]{name:"A", age:38, eyes:"brown"}, :KNOWS[1] {}, Node[5]{name:"C", age:53,

 eyes:"green"}, :KNOWS[3] {}, Node[1]{name:"D", age:54, eyes:"brown"}]

2 rows

2 ms

SINGLE
Returns true if the predicate holds for exactly one of the elements in the collection.

Syntax: SINGLE(identifier in collection WHERE predicate)

Arguments:

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query.

START n=node(3)

MATCH p=n-->b

WHERE SINGLE(var in nodes(p)

WHERE var.eyes = "blue")

RETURN p

Exactly one node in every returned path will have the eyes property set to "blue".

Result
p

[Node[3]{name:"A", age:38, eyes:"brown"}, :KNOWS[0] {}, Node[4]{name:"B", age:25, eyes:"blue"}]

1 row

0 ms

15.23.2. Scalar functions
Scalar functions return a single value.

LENGTH
To return or filter on the length of a collection, use the LENGTH() function.

Syntax: LENGTH(collection)

Arguments:

• collection: An expression that returns a collection

Query.

START a=node(3)

MATCH p=a-->b-->c

Cypher Query Language

221

RETURN length(p)

The length of the path p is returned by the query.

Result
length(p)

2

2

2

3 rows

1 ms

TYPE
Returns a string representation of the relationship type.

Syntax: TYPE(relationship)

Arguments:

• relationship: A relationship.

Query.

START n=node(3)

MATCH (n)-[r]->()

RETURN type(r)

The relationship type of r is returned by the query.

Result
type(r)

"KNOWS"

"KNOWS"

2 rows

0 ms

ID
Returns the id of the relationship or node.

Syntax: ID(property-container)

Arguments:

• property-container: A node or a relationship.

Query.

START a=node(3, 4, 5)

RETURN ID(a)

This returns the node id for three nodes.

Cypher Query Language

222

Result
ID(a)

3

4

5

3 rows

0 ms

COALESCE
Returns the first non-null value in the list of expressions passed to it.

Syntax: COALESCE(expression [, expression]*)

Arguments:

• expression: The expression that might return null.

Query.

START a=node(3)

RETURN coalesce(a.hairColour?, a.eyes?)

Result
coalesce(a.hairColour?, a.eyes?)

"brown"

1 row

1 ms

HEAD
HEAD returns the first element in a collection.

Syntax: HEAD(expression)

Arguments:

• expression: This expression should return a collection of some kind.

Query.

START a=node(2)

RETURN a.array, head(a.array)

The first node in the path is returned.

Result
a.array head(a.array)

["one", "two", "three"] "one"

1 row

0 ms

Cypher Query Language

223

LAST
LAST returns the last element in a collection.
Syntax: LAST(expression)
Arguments:

• expression: This expression should return a collection of some kind.

Query.

START a=node(2)

RETURN a.array, last(a.array)

The last node in the path is returned.

Result
a.array last(a.array)

["one", "two", "three"] "three"

1 row

1 ms

15.23.3. Collection functions
Collection functions return collections of things — nodes in a path, and so on.

NODES
Returns all nodes in a path.
Syntax: NODES(path)
Arguments:

• path: A path.

Query.

START a=node(3), c=node(2)

MATCH p=a-->b-->c

RETURN NODES(p)

All the nodes in the path p are returned by the example query.

Result
NODES(p)

[Node[3]{name:"A", age:38, eyes:"brown"}, Node[4]{name:"B", age:25, eyes:"blue"}, Node[2]{name:"E",

 age:41, eyes:"blue", array:["one", "two", "three"]}]

1 row

0 ms

RELATIONSHIPS
Returns all relationships in a path.
Syntax: RELATIONSHIPS(path)
Arguments:

Cypher Query Language

224

• path: A path.

Query.

START a=node(3), c=node(2)

MATCH p=a-->b-->c

RETURN RELATIONSHIPS(p)

All the relationships in the path p are returned.

Result
RELATIONSHIPS(p)

[:KNOWS[0] {}, :MARRIED[4] {}]

1 row

1 ms

EXTRACT
To return a single property, or the value of a function from a collection of nodes or relationships, you
can use EXTRACT. It will go through a collection, run an expression on every element, and return the
results in an collection with these values. It works like the map method in functional languages such as
Lisp and Scala.

Syntax: EXTRACT(identifier in collection : expression)

Arguments:

• collection: An expression that returns a collection
• identifier: The closure will have an identifier introduced in it’s context. Here you decide which

identifier to use.
• expression: This expression will run once per value in the collection, and produces the result

collection.

Query.

START a=node(3), b=node(4), c=node(1)

MATCH p=a-->b-->c

RETURN extract(n in nodes(p) : n.age)

The age property of all nodes in the path are returned.

Result
extract(n in nodes(p) : n.age)

[38, 25, 54]

1 row

1 ms

FILTER
FILTER returns all the elements in a collection that comply to a predicate.

Syntax: FILTER(identifier in collection : predicate)

Arguments:

Cypher Query Language

225

• collection: An expression that returns a collection
• identifier: This is the identifier that can be used from the predicate.
• predicate: A predicate that is tested against all items in the collection.

Query.

START a=node(2)

RETURN a.array, filter(x in a.array : length(x) = 3)

This returns the property named array and a list of values in it, which have the length 3.

Result
a.array filter(x in a.array : length(x) = 3)

["one", "two", "three"] ["one", "two"]

1 row

1 ms

TAIL
TAIL returns all but the first element in a collection.

Syntax: TAIL(expression)

Arguments:

• expression: This expression should return a collection of some kind.

Query.

START a=node(2)

RETURN a.array, tail(a.array)

This returns the property named array and all elements of that property except the first one.

Result
a.array tail(a.array)

["one", "two", "three"] ["two", "three"]

1 row

0 ms

RANGE
Returns numerical values in a range with a non-zero step value step. Range is inclusive in both ends.

Syntax: RANGE(start, end [, step])

Arguments:

• start: A numerical expression.
• end: A numerical expression.
• step: A numerical expression.

Query.

START n=node(1)

RETURN range(0,10), range(2,18,3)

Cypher Query Language

226

Two lists of numbers are returned.

Result
range(0,10) range(2,18,3)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [2, 5, 8, 11, 14, 17]

1 row

1 ms

REDUCE
To run an expression against individual elements of a collection, and store the result of the expression
in an accumulator, you can use REDUCE. It will go through a collection, run an expression on every
element, storing the partial result in the accumulator. It works like the fold or reduce method in
functional languages such as Lisp and Scala.

Syntax: REDUCE(accumulator = initial, identifier in collection : expression)

Arguments:

• accumulator: An identifier that will hold the result and the partial results as the collection is iterated
• initial: An expression that runs once to give a starting value to the accumulator
• collection: An expression that returns a collection
• identifier: The closure will have an identifier introduced in it’s context. Here you decide which

identifier to use.
• expression: This expression will run once per value in the collection, and produces the result value.

Query.

START a=node(3), b=node(4), c=node(1)

MATCH p=a-->b-->c

RETURN reduce(totalAge = 0, n in nodes(p) : totalAge + n.age)

The age property of all nodes in the path are summed and returned as a single value.

Result
reduce(totalAge = 0, n in nodes(p) : totalAge + n.age)

117

1 row

1 ms

15.23.4. Mathematical functions
These functions all operate on numerical expressions only, and will return an error if used on any
other values.

ABS
ABS returns the absolute value of a number.

Syntax: ABS(expression)

Arguments:

• expression: A numeric expression.

Cypher Query Language

227

Query.

START a=node(3), c=node(2)

RETURN a.age, c.age, abs(a.age - c.age)

The absolute value of the age difference is returned.

Result
a.age c.age abs(a.age - c.age)

38 41 3. 0

1 row

1 ms

ROUND
ROUND returns the numerical expression, rounded to the nearest integer.

Syntax: ROUND(expression)

Arguments:

• expression: A numerical expression.

Query.

START a=node(1)

RETURN round(3.141592)

Result
round(3.141592)

3

1 row

0 ms

SQRT
SQRT returns the square root of a number.

Syntax: SQRT(expression)

Arguments:

• expression: A numerical expression

Query.

START a=node(1)

RETURN sqrt(256)

Result
sqrt(256)

16. 0

1 row

1 ms

Cypher Query Language

228

SIGN
SIGN returns the signum of a number — zero if the expression is zero, -1 for any negative number, and
1 for any positive number.

Syntax: SIGN(expression)

Arguments:

• expression: A numerical expression

Query.

START n=node(1)

RETURN sign(-17), sign(0.1)

Result
sign(-17) sign(0.1)

-1. 0 1. 0

1 row

1 ms

String functions
These functions all operate on string expressions only, and will return an error if used on any other
values. Except STR(), which converts to strings.

STR
STR returns a string representation of the expression.

Syntax: STR(expression)

Arguments:

• expression: An expression that returns anything

Query.

START n=node(1)

RETURN str(1)

A string.

Result
str(1)

"1"

1 row

1 ms

REPLACE
REPLACE returns a string with the search string replaced by the replace string. It replaces all
occurrences.

Syntax: REPLACE(original, search, replace)

Cypher Query Language

229

Arguments:

• original: An expression that returns a string
• search: An expression that returns a string to search for
• replace: An expression that returns the string to replace the search string with

Query.

START n=node(1)

RETURN replace("hello", "l", "w")

A string.

Result
replace("hello", "l", "w")

"hewwo"

1 row

1 ms

SUBSTRING
SUBSTRING returns a substring of the original, with a 0-based index start and length. If length is omitted,
it returns a substring from start until the end of the string.

Syntax: SUBSTRING(original, start [, length])

Arguments:

• original: An expression that returns a string
• start: An expression that returns a positive number
• length: An expression that returns a positive number

Query.

START n=node(1)

RETURN substring("hello", 1, 3), substring("hello", 2)

A string.

Result
substring("hello", 1, 3) substring("hello", 2)

"ell" "llo"

1 row

0 ms

LEFT
LEFT returns a string containing the left n characters of the original string.

Syntax: LEFT(original, length)

Arguments:

• original: An expression that returns a string

Cypher Query Language

230

• n: An expression that returns a positive number

Query.

START n=node(1)

RETURN left("hello", 3)

A String.

Result
left("hello", 3)

"hel"

1 row

0 ms

RIGHT
RIGHT returns a string containing the right n characters of the original string.

Syntax: RIGHT(original, length)

Arguments:

• original: An expression that returns a string
• n: An expression that returns a positive number

Query.

START n=node(1)

RETURN right("hello", 3)

A string.

Result
right("hello", 3)

"llo"

1 row

0 ms

LTRIM
LTRIM returns the original string with whitespace removed from the left side.

Syntax: LTRIM(original)

Arguments:

• original: An expression that returns a string

Query.

START n=node(1)

RETURN ltrim(" hello")

A string.

Cypher Query Language

231

Result
ltrim(" hello")

"hello"

1 row

0 ms

RTRIM
RTRIM returns the original string with whitespace removed from the right side.
Syntax: RTRIM(original)
Arguments:

• original: An expression that returns a string

Query.

START n=node(1)

RETURN rtrim("hello ")

A string.

Result
rtrim("hello ")

"hello"

1 row

0 ms

TRIM
TRIM returns the original string with whitespace removed from both sides.
Syntax: TRIM(original)
Arguments:

• original: An expression that returns a string

Query.

START n=node(1)

RETURN trim(" hello ")

A string.

Result
trim(" hello ")

"hello"

1 row

1 ms

LOWER
LOWER returns the original string in lowercase.

Cypher Query Language

232

Syntax: LOWER(original)

Arguments:

• original: An expression that returns a string

Query.

START n=node(1)

RETURN lower("HELLO")

A string.

Result
lower("HELLO")

"hello"

1 row

0 ms

UPPER
UPPER returns the original string in uppercase.

Syntax: UPPER(original)

Arguments:

• original: An expression that returns a string

Query.

START n=node(1)

RETURN upper("hello")

A string.

Result
upper("hello")

"HELLO"

1 row

0 ms

Cypher Query Language

233

15.24. Compatibility
Cypher is still changing rather rapidly. Parts of the changes are internal — we add new pattern
matchers, aggregators and other optimizations, which hopefully makes your queries run faster.

Other changes are directly visible to our users — the syntax is still changing. New concepts are being
added and old ones changed to fit into new possibilities. To guard you from having to keep up with
our syntax changes, Cypher allows you to use an older parser, but still gain the speed from new
optimizations.

There are two ways you can select which parser to use. You can configure your database with the
configuration parameter cypher_parser_version, and enter which parser you’d like to use (1.7, 1.8 and
1.9 are supported now). Any Cypher query that doesn’t explicitly say anything else, will get the parser
you have configured.

The other way is on a query by query basis. By simply pre-pending your query with "CYPHER 1.7", that
particular query will be parsed with the 1.7 version of the parser. Example:
CYPHER 1.7 START n=node(0)

WHERE n.foo = "bar"

RETURN n

Cypher Query Language

234

15.25. From SQL to Cypher
This guide is for people who understand SQL. You can use that prior knowledge to quickly get going
with Cypher and start exploring Neo4j.

15.25.1. Start
SQL starts with the result you want — we SELECT what we want and then declare how to source it. In
Cypher, the START clause is quite a different concept which specifies starting points in the graph from
which the query will execute.

From a SQL point of view, the identifiers in START are like table names that point to a set of nodes
or relationships. The set can be listed literally, come via parameters, or as I show in the following
example, be defined by an index look-up.

So in fact rather than being SELECT-like, the START clause is somewhere between the FROM and the WHERE
clause in SQL.

SQL Query.

SELECT *

FROM "Person"

WHERE name = 'Anakin'

NAME ID AGE HAIR

Anakin 1 20 blonde

1 rows

Cypher Query.

START person=node:Person(name = 'Anakin')

RETURN person

person

Node[1]{name:"Anakin", id:1, age:20, hair:"blonde"}

1 row

1 ms

Cypher allows multiple starting points. This should not be strange from a SQL perspective — every
table in the FROM clause is another starting point.

15.25.2. Match
Unlike SQL which operates on sets, Cypher predominantly works on sub-graphs. The relational
equivalent is the current set of tuples being evaluated during a SELECT query.

The shape of the sub-graph is specified in the MATCH clause. The MATCH clause is analogous to the JOIN in
SQL. A normal a→b relationship is an inner join between nodes a and b — both sides have to have at
least one match, or nothing is returned.

We’ll start with a simple example, where we find all email addresses that are connected to the person
“Anakin”. This is an ordinary one-to-many relationship.

SQL Query.

Cypher Query Language

235

SELECT "Email".*

FROM "Person"

JOIN "Email" ON "Person".id = "Email".person_id

WHERE "Person".name = 'Anakin'

ADDRESS COMMENT PERSON_ID

anakin@example. com home 1

anakin@example. org work 1

2 rows

Cypher Query.

START person=node:Person(name = 'Anakin')

MATCH person-[:email]->email

RETURN email

email

Node[7]{address:"anakin@example. com", comment:"home"}

Node[8]{address:"anakin@example. org", comment:"work"}

2 rows

0 ms

There is no join table here, but if one is necessary the next example will show how to do that, writing
the pattern relationship like so: -[r:belongs_to]-> will introduce (the equivalent of) join table available
as the variable r. In reality this is a named relationship in Cypher, so we’re saying “join Person to Group
via belongs_to.” To illustrate this, consider this image, comparing the SQL model and Neo4j/Cypher.

And here are example queries:

SQL Query.

SELECT "Group".*, "Person_Group".*

FROM "Person"

JOIN "Person_Group" ON "Person".id = "Person_Group".person_id

JOIN "Group" ON "Person_Group".Group_id="Group".id

Cypher Query Language

236

WHERE "Person".name = 'Bridget'

NAME ID BELONGS_TO_GROUP_IDPERSON_ID GROUP_ID

Admin 4 3 2 4

1 rows

Cypher Query.

START person=node:Person(name = 'Bridget')

MATCH person-[r:belongs_to]->group

RETURN group, r

group r

Node[6]{name:"Admin", id:4} :belongs_to[0] {}

1 row

0 ms

An outer join <http://www.codinghorror.com/blog/2007/10/a-visual-explanation-of-sql-joins.html> is
just as easy. Add a question mark -[?:KNOWS]-> and it’s an optional relationship between nodes — the
outer join of Cypher.

Whether it’s a left outer join, or a right outer join is defined by which side of the pattern has a starting
point. This example is a left outer join, because the bound node is on the left side:

SQL Query.

SELECT "Person".name, "Email".address

FROM "Person" LEFT

JOIN "Email" ON "Person".id = "Email".person_id

NAME ADDRESS

Anakin anakin@example. com

Anakin anakin@example. org

Bridget <null>

3 rows

Cypher Query.

START person=node:Person('name: *')

MATCH person-[?:email]->email

RETURN person.name, email.address?

person.name email.address?

"Anakin" "anakin@example. com"

"Anakin" "anakin@example. org"

"Bridget" <null>

3 rows

33 ms

http://www.codinghorror.com/blog/2007/10/a-visual-explanation-of-sql-joins.html
http://www.codinghorror.com/blog/2007/10/a-visual-explanation-of-sql-joins.html

Cypher Query Language

237

Relationships in Neo4j are first class citizens — it’s like the SQL tables are pre-joined with each other.
So, naturally, Cypher is designed to be able to handle highly connected data easily.

One such domain is tree structures — anyone that has tried storing tree structures in SQL knows that
you have to work hard to get around the limitations of the relational model. There are even books on
the subject.

To find all the groups and sub-groups that Bridget belongs to, this query is enough in Cypher:

Cypher Query.

START person=node:Person('name: Bridget')

MATCH person-[:belongs_to*]->group

RETURN person.name, group.name

person.name group.name

"Bridget" "Admin"

"Bridget" "Technichian"

"Bridget" "User"

3 rows

5 ms

The * after the relationship type means that there can be multiple hops across belongs_to relationships
between group and user. Some SQL dialects have recursive abilities, that allow the expression
of queries like this, but you may have a hard time wrapping your head around those. Expressing
something like this in SQL is hugely impractical if not practically impossible.

15.25.3. Where
This is the easiest thing to understand — it’s the same animal in both languages. It filters out result
sets/subgraphs. Not all predicates have an equivalent in the other language, but the concept is the
same.

SQL Query.

SELECT *

FROM "Person"

WHERE "Person".age > 35 AND "Person".hair = 'blonde'

NAME ID AGE HAIR

Bridget 2 40 blonde

1 rows

Cypher Query.

START person=node:Person('name: *')

WHERE person.age > 35 AND person.hair = 'blonde'

RETURN person

person

Node[2]{name:"Bridget", id:2, age:40, hair:"blonde"}

1 row

1 ms

Cypher Query Language

238

15.25.4. Return
This is SQL’s SELECT. We just put it in the end because it felt better to have it there — you do a lot of
matching and filtering, and finally, you return something.

Aggregate queries work just like they do in SQL, apart from the fact that there is no explicit GROUP BY
clause. Everything in the return clause that is not an aggregate function will be used as the grouping
columns.

SQL Query.

SELECT "Person".name, count(*)

FROM "Person"

GROUP BY "Person".name

ORDER BY "Person".name

NAME C2

Anakin 1

Bridget 1

2 rows

Cypher Query.

START person=node:Person('name: *')

RETURN person.name, count(*)

ORDER BY person.name

person.name count(*)

"Anakin" 1

"Bridget" 1

2 rows

0 ms

Order by is the same in both languages — ORDER BY expression ASC/DESC. Nothing weird here.

239

Chapter 16. Graph Algorithms

Neo4j graph algorithms is a component that contains Neo4j implementations of some common
algorithms for graphs. It includes algorithms like:

• Shortest paths,
• all paths,
• all simple paths,
• Dijkstra and
• A*.

Graph Algorithms

240

16.1. Introduction
The graph algorithms are found in the neo4j-graph-algo component, which is included in the standard
Neo4j download.

• Javadocs <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/package-
summary.html>

• Download <http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND
%20a%3A%22neo4j-graph-algo%22>

• Source code <https://github.com/neo4j/neo4j/tree/1.9.M04/community/graph-algo>

For information on how to use neo4j-graph-algo as a dependency with Maven and other dependency
management tools, see org.neo4j:neo4j-graph-algo <http://search.maven.org/#search%7Cgav%7C1%7Cg
%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22> Note that it should be used with the same
version of org.neo4j:neo4j-kernel <http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j
%22%20AND%20a%3A%22neo4j-kernel%22>. Different versions of the graph-algo and kernel components are
not compatible in the general case. Both components are included transitively by the org.neo4j:neo4j
<http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22> artifact
which makes it simple to keep the versions in sync.

The starting point to find and use graph algorithms is GraphAlgoFactory <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html>.

For examples, see Section 4.7, “Graph Algorithm examples” (embedded database) and Section 18.15,
“Built-in Graph Algorithms” (REST API).

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/package-summary.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/package-summary.html
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
https://github.com/neo4j/neo4j/tree/1.9.M04/community/graph-algo
https://github.com/neo4j/neo4j/tree/1.9.M04/community/graph-algo
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html

241

Chapter 17. Neo4j Server

Neo4j Server

242

17.1. Server Installation
Neo4j can be installed as a server, running either as a headless application or system service.

1. Download the latest release from http://neo4j.org/download
• select the appropriate version for your platform

2. Extract the contents of the archive
• refer to the top-level extracted directory as NEO4J_HOME

3. Use the scripts in the bin directory
• for Linux/MacOS, run $NEO4J_HOME/bin/neo4j start
• for Windows, double-click on %NEO4J_HOME%\bin\Neo4j.bat

4. Refer to the packaged information in the doc directory for details

For information on High Availability, please refer to Chapter 22, High Availability.

17.1.1. As a Windows service
With administrative rights, Neo4j can be installed as a Windows service.

1. Click Start → All Programs → Accessories
2. Right click Command Prompt → Run as Administrator
3. Provide authorization and/or the Administrator password
4. Navigate to %NEO4J_HOME%
5. Run bin\Neo4j.bat install

To uninstall, run bin\Neo4j.bat remove as Administrator.

To query the status of the service, run bin\Neo4j.bat status

To start the service from the command prompt, run bin\Neo4j.bat start

To stop the service from the command prompt, run bin\Neo4j.bat stop

Note
Some users have reported problems on Windows when using the ZoneAlarm firewall. If
you are having problems getting large responses from the server, or if Webadmin does not
work, try disabling ZoneAlarm. Contact ZoneAlarm support to get information on how to
resolve this.

17.1.2. Linux Service
Neo4j can participate in the normal system startup and shutdown process. The following procedure
should work on most popular Linux distributions:

1. cd $NEO4J_HOME

2. sudo ./bin/neo4j install

if asked, enter your password to gain super-user privileges
3. service neo4j-service status

should indicate that the server is not running
4. service neo4j-service start

will start the server

http://neo4j.org/download

Neo4j Server

243

During installation you will be given the option to select the user Neo4j will run as. You will be
asked to supply a username (defaulting to neo4j) and if that user is not present on the system it will be
created as a system account and the $NEO4J_HOME/data directory will be chown'ed to that user.

You are encouraged to create a dedicated user for running the service and for that reason it is
suggested that you unpack the distribution package under /opt or your site specific optional packages
directory.

After installation you may have to do some platform specific configuration and performance tuning.
For that, refer to Section 21.11, “Linux specific notes”.

To remove the server from the set of startup services, the proper command is

service neo4j-service remove

+ which will stop the server, if running, and remove it.

Note that if you chose to create a new user account, on uninstall you will be prompted to remove it
from the system.

17.1.3. Mac OSX

via Homebrew
Using Homebrew <http://mxcl.github.com/homebrew/>, to install the latest stable version of Neo4j
Server, issue the following command:
brew install neo4j && neo4j start

This will get a Neo4j instance running on http://localhost:7474. The installation files will reside in
ls /usr/local/Cellar/neo4j/community-{NEO4J_VERSION}/libexec/ — to tweak settings and symlink the
database directory if desired.

as a Service
Neo4j can be installed as a Mac launchd job:

1. cd $NEO4J_HOME

2. ./bin/neo4j install

3. launchctl list | grep neo

should reveal the launchd "org.neo4j.server.7474" job for running the Neo4j Server
4. ./bin/neo4j status

should indicate that the server is running
5. launchctl stop org.neo4j.server.7474

should stop the server.
6. launchctl start org.neo4j.server.7474

should start the server again.

To remove the launchctl service, issue the command

./bin/neo4j remove

17.1.4. Multiple Server instances on one machine
Neo4j can be set up to run as several instances on one machine, providing for instance several
databases for development. To configure, install two instances of the Neo4j Server in two different
directories following the steps outlined below.

http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/
http://localhost:7474

Neo4j Server

244

First instance
First, create a directory to hold both database instances, and unpack the development instance:

1. cd $INSTANCE_ROOT

2. mkdir -p neo4j

3. cd neo4j

4. tar -xvzf /path/to/neo4j-community.tar.gz

5. mv neo4j-community dev

Next, configure the instance by changing the following values in dev/conf/neo4j-server.properties, see
even Section 24.1, “Securing access to the Neo4j Server”:
org.neo4j.server.webserver.port=7474

Uncomment the following if the instance will be accessed from a host other than localhost.

org.neo4j.server.webserver.address=0.0.0.0

Before running the Windows install or startup, change in dev/conf/neo4j-wrapper.properties
Name of the service for the first instance

wrapper.name=neo4j_1

Start the instance:
dev/bin/neo4j start

Check that instance is available by browsing to http://localhost:7474/webadmin/

Second instance (testing, development)
In many cases during application development, it is desirable to have one development database set
up, and another against which to run unit tests. For the following example, we are assuming that both
databases will run on the same host.
Now create the unit testing second instance:

1. cd $INSTANCE_ROOT/neo4j

2. tar -xvzf /path/to/neo4j-community.tar.gz

3. mv neo4j-community test

Next, configure the instance by changing the following values in test/conf/neo4j-server.properties to

• change the server port for HTTP to 7475 (and HTTPS to a port other than default if you are using it)

Note the different HTTP port number from the development instance

org.neo4j.server.webserver.port=7475

Assign a different port number for HTTPS

org.neo4j.server.webserver.https.port=7464

Uncomment the following if the instance will be accessed from a host other than localhost

org.neo4j.server.webserver.address=0.0.0.0

Differentiate the instance from the development instance by modifying test/conf/neo4j-
wrapper.properties.
wrapper.name=neo4j-test

On Windows, you even need to change the name of the service in bin\neo4j.bat to be able to run it
together with the first instance.

http://localhost:7474/webadmin/

Neo4j Server

245

set serviceName=Neo4j-Server-test

set serviceDisplayName=Neo4j-Server-test

Start the instance:

test/bin/neo4j start

Check that instance is available by browsing to http://localhost:7475/webadmin/

http://localhost:7475/webadmin/

Neo4j Server

246

17.2. Server Configuration
Quick info

• The server’s primary configuration file is found under conf/neo4j-server.properties
• The conf/log4j.properties file contains the default server logging configuration
• Low-level performance tuning parameters are found in conf/neo4j.properties
• Configuraion of the deamonizing wrapper are found in conf/neo4j-wrapper.properties
• HTTP logging configuration is found in conf/neo4j-http-logging.xml

17.2.1. Important server configurations parameters
The main configuration file for the server can be found at conf/neo4j-server.properties. This file
contains several important settings, and although the defaults are sensible administrators might choose
to make changes (especially to the port settings).

Set the location on disk of the database directory like this:
org.neo4j.server.database.location=data/graph.db

Note
On Windows systems, absolute locations including drive letters need to read "c:/data/db".

Specify the HTTP server port supporting data, administrative, and UI access:
org.neo4j.server.webserver.port=7474

Specify the client accept pattern for the webserver (default is 127.0.0.1, localhost only):
#allow any client to connect

org.neo4j.server.webserver.address=0.0.0.0

For securing the Neo4j Server, see also Section 24.1, “Securing access to the Neo4j Server”

Set the location of the round-robin database directory which gathers metrics on the running server
instance:
org.neo4j.server.webadmin.rrdb.location=data/graph.db/../rrd

Set the URI path for the REST data API through which the database is accessed. This should be a
relative path.
org.neo4j.server.webadmin.data.uri=/db/data/

Setting the management URI for the administration API that the Webadmin tool uses. This should be
a relative path.
org.neo4j.server.webadmin.management.uri=/db/manage

Force the server to use IPv4 network addresses, in conf/neo4j-wrapper.conf under the section Java
Additional Parameters add a new paramter:
wrapper.java.additional.3=-Djava.net.preferIPv4Stack=true

Low-level performance tuning parameters can be explicitly set by referring to the following property:
org.neo4j.server.db.tuning.properties=neo4j.properties

Neo4j Server

247

If this property isn’t set, the server will look for a file called neo4j.properties in the same directory as
the neo4j-server.properties file.

If this property isn’t set, and there is no neo4j.properties file in the default configuration directory,
then the server will log a warning. Subsequently at runtime the database engine will attempt tune itself
based on the prevailing conditions.

17.2.2. Neo4j Database performance configuration
The fine-tuning of the low-level Neo4j graph database engine is specified in a separate properties file,
conf/neo4j.properties.

The graph database engine has a range of performance tuning options which are enumerated in
Section 17.5, “Server Performance Tuning”. Note that other factors than Neo4j tuning should be
considered when performance tuning a server, including general server load, memory and file
contention, and even garbage collection penalties on the JVM, though such considerations are beyond
the scope of this configuration document.

17.2.3. Server logging configuration
Application events within Neo4j server are processed with java.util.logging <http://
download.oracle.com/javase/6/docs/technotes/guides/logging/overview.html> and configured in the file
conf/logging.properties.

By default it is setup to print INFO level messages both on screen and in a rolling file in data/log.
Most deployments will choose to use their own configuration here to meet local standards. During
development, much useful information can be found in the logs so some form of logging to disk is
well worth keeping. On the other hand, if you want to completely silence the console output, set:

java.util.logging.ConsoleHandler.level=OFF

By default log files are rotated at approximately 10Mb and named consecutively neo4j.<id>.<rotation
sequence #>.log To change the naming scheme, rotation frequency and backlog size modify

java.util.logging.FileHandler.pattern

java.util.logging.FileHandler.limit

java.util.logging.FileHandler.count

respectively to your needs. Details are available at the Javadoc for java.util.logging.FileHandler
<http://download.oracle.com/javase/6/docs/api/java/util/logging/FileHandler.html>.

Apart from log statements originating from the Neo4j server, other libraries report their messages
through various frameworks.

Zookeeper is hardwired to use the log4j logging framework. The bundled conf/log4j.properties applies
for this use only and uses a rolling appender and outputs logs by default to the data/log directory.

17.2.4. HTTP logging configuration
As well as logging events happening within the Neo4j server, it is possible to log the HTTP requests
and responses that the server consumes and produces. Configuring HTTP logging requires operators
to enable and configure the logger and where it will log; and then to optionally configure the log
format.

Warning
By default the HTTP logger uses Common Log Format <http://en.wikipedia.org/wiki/
Common_Log_Format> meaning that most Web server tooling can automtically consume such

http://download.oracle.com/javase/6/docs/technotes/guides/logging/overview.html
http://download.oracle.com/javase/6/docs/technotes/guides/logging/overview.html
http://download.oracle.com/javase/6/docs/technotes/guides/logging/overview.html
http://download.oracle.com/javase/6/docs/api/java/util/logging/FileHandler.html
http://download.oracle.com/javase/6/docs/api/java/util/logging/FileHandler.html
http://en.wikipedia.org/wiki/Common_Log_Format
http://en.wikipedia.org/wiki/Common_Log_Format
http://en.wikipedia.org/wiki/Common_Log_Format

Neo4j Server

248

logs. In general users should only enable HTTP logging, select an output directory, and if
necessary alter the rollover and retention policies.

To enable HTTP logging, edit the conf/neo4j-server.properties file resemble the following:
org.neo4j.server.http.log.enabled=true

org.neo4j.server.http.log.config=conf/neo4j-http-logging.xml

org.neo4j.server.http.log.enabled=true tells the server that HTTP logging is enabled. HTTP logging
can be totally disabled by setting this property to false. org.neo4j.server.http.log.config=conf/neo4j-
http-logging.xml specifies the logging format and rollover policy file that governs how HTTP log
output is presented and archived. The defaults provided with Neo4j server uses an hourly log rotation
and Common Log Format <http://en.wikipedia.org/wiki/Common_Log_Format>.

If logging is set up to use log files then the server will check that the log file directory exists and is
writable. If this check fails, then the server will not startup and wil report the failure another available
channel like standard out.

17.2.5. Other configuration options

Enabling logging from the garbage collector
To get garbage collection logging output you have to pass the corresponding option to the server JVM
executable by setting in conf/neo4j-wrapper.conf the value
wrapper.java.additional.3=-Xloggc:data/log/neo4j-gc.log

This line is already present and needs uncommenting. Note also that logging is not directed to
console ; You will find the logging statements in data/log/ne4j-gc.log or whatever directory you set at
the option.

Disabling console types in Webadmin
You may, for security reasons, want to disable the the Neo4j Shell in Webadmin. Shells allow
arbitrary code execution, and so they could constitute a security risk if you do not trust all users of
your Neo4j Server.

In the conf/neo4j-server.properties file:
To disable all shells:

org.neo4j.server.manage.console_engines=

To enable only the Neo4j Shell:

org.neo4j.server.manage.console_engines=shell

http://en.wikipedia.org/wiki/Common_Log_Format
http://en.wikipedia.org/wiki/Common_Log_Format

Neo4j Server

249

17.3. Setup for remote debugging
In order to configure the Neo4j server for remote debugging sessions, the Java debugging parameters
need to be passed to the Java process through the configuration. They live in the conf/neo4j-
wrapper.properties file.

In order to specify the parameters, add a line for the additional Java arguments like this:
Java Additional Parameters

wrapper.java.additional.1=-Dorg.neo4j.server.properties=conf/neo4j-server.properties

wrapper.java.additional.2=-Dlog4j.configuration=file:conf/log4j.properties

wrapper.java.additional.3=-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005 -Xdebug-Xnoagent-Djava.compiler=NONE-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

This configuration will start a Neo4j server ready for remote debugging attachement at localhost and
port 5005. Use these parameters to attach to the process from Eclipse, IntelliJ or your remote debugger
of choice after starting the server.

Neo4j Server

250

17.4. Using the server (with web interface) with an
embedded database

Even if you are using the Neo4j Java API directly, for instance via EmbeddedGraphDatabase or
HighlyAvailableGraphDatabase, you can still use the features the server provides.

17.4.1. Getting the libraries

From the Neo4j Server installation
To run the server all the libraries you need are in the system/lib/ directory of the download package
<http://neo4j.org/download/>. For further instructions, see Section 4.1, “Include Neo4j in your
project”. The only difference to the embedded setup is that system/lib/ should be added as well, not
only the lib/ directory.

Via Maven
For users of dependency management, an example for Apache Maven <http://maven.apache.org>
follows. Note that the web resources are in a different artifact.

Maven pom.xml snippet.

<dependencies>

 <dependency>

 <groupId>org.neo4j.app</groupId>

 <artifactId>neo4j-server</artifactId>

 <version>1.9.M04</version>

 </dependency>

 <dependency>

 <groupId>org.neo4j.app</groupId>

 <artifactId>neo4j-server</artifactId>

 <classifier>static-web</classifier>

 <version>1.9.M04</version>

 </dependency>

</dependencies>

<repositories>

 <repository>

 <id>neo4j-snapshot-repository</id>

 <name>Neo4j Maven 2 snapshot repository</name>

 <url>http://m2.neo4j.org/content/repositories/snapshots/</url>

 <releases>

 <enabled>false</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

</repositories>

Via Scala SBT / Ivy
In order to pull in the dependencys with SBT <https://github.com/harrah/xsbt/wiki> and configure
the underlying Ivy <http://ant.apache.org/ivy/> dependency manager, you can use a setup like the
following in your build.sbt:

organization := "your.org"

name := "your.name"

version := "your.version"

http://neo4j.org/download/
http://neo4j.org/download/
http://maven.apache.org
http://maven.apache.org
https://github.com/harrah/xsbt/wiki
https://github.com/harrah/xsbt/wiki
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

Neo4j Server

251

/** Deps for Embedding the Neo4j Admin server. */

libraryDependencies ++= Seq(

 "org.neo4j.app" % "neo4j-server" % "1.9.M04" classifier "static-web" classifier "",

 "com.sun.jersey" % "jersey-core" % "1.9"

)

/** Repos for Neo4j Admin server dep */

resolvers ++= Seq(

 "maven-central" at "http://repo1.maven.org/maven2",

 "neo4j-public-repository" at "http://m2.neo4j.org/content/groups/public"

)

17.4.2. Starting the Server from Java
The Neo4j server exposes a class called WrappingNeoServerBootstrapper
<http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/
WrappingNeoServerBootstrapper.html>, which is capable of starting a Neo4j server in the same
process as your application. It uses an AbstractGraphDatabase <http://components.neo4j.org/neo4j-
kernel/1.9.M04/apidocs/org/neo4j/kernel/AbstractGraphDatabase.html> instance that you provide.

This gives your application, among other things, the REST API, statistics gathering and the web
interface that comes with the server.

Usage example.

// You provide the database, which must implement GraphDatabaseAPI.

// Both EmbeddedGraphDatabase and HighlyAvailableGraphDatabase do this.

GraphDatabaseAPI graphdb = getGraphDb();

WrappingNeoServerBootstrapper srv;

srv = new WrappingNeoServerBootstrapper(graphdb);

srv.start();

// The server is now running

// until we stop it:

srv.stop();

Once you have the server up and running, see Chapter 26, Web Administration and Chapter 18, REST
API for how to use it!

17.4.3. Providing custom configuration
You can modify the server settings programmatically and, within reason, the same settings are
available to you here as those outlined in Section 17.2, “Server Configuration”.

The settings that are not available (or rather, that are ignored) are those that concern the underlying
database, such as database location and database configuration path.

Custom configuration example.

// let the database accept remote neo4j-shell connections

GraphDatabaseAPI graphdb = (GraphDatabaseAPI) new GraphDatabaseFactory()

 .newEmbeddedDatabaseBuilder("target/configDb")

 .setConfig(ShellSettings.remote_shell_enabled, Settings.TRUE)

 .newGraphDatabase();

ServerConfigurator config;

config = new ServerConfigurator(graphdb);

// let the server endpoint be on a custom port

config.configuration().setProperty(

 Configurator.WEBSERVER_PORT_PROPERTY_KEY, 7575);

WrappingNeoServerBootstrapper srv;

srv = new WrappingNeoServerBootstrapper(graphdb, config);

srv.start();

http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/WrappingNeoServerBootstrapper.html
http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/WrappingNeoServerBootstrapper.html
http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/WrappingNeoServerBootstrapper.html
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/AbstractGraphDatabase.html
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/AbstractGraphDatabase.html
http://components.neo4j.org/neo4j-kernel/1.9.M04/apidocs/org/neo4j/kernel/AbstractGraphDatabase.html

Neo4j Server

252

17.5. Server Performance Tuning
At the heart of the Neo4j server is a regular Neo4j storage engine instance. That engine can be tuned
in the same way as the other embedded configurations, using the same file format. The only difference
is that the server must be told where to find the fine-tuning configuration.

Quick info

• The neo4j.properties file is a standard configuration file that databases load in order to tune
their memory use and caching strategies.

• See Section 21.4, “Caches in Neo4j” for more information.

17.5.1. Specifying Neo4j tuning properties
The conf/neo4j-server.properties file in the server distribution, is the main configuration file for
the server. In this file we can specify a second properties file that contains the database tuning
settings (that is, the neo4j.properties file). This is done by setting a single property to point to a valid
neo4j.properties file:
org.neo4j.server.db.tuning.properties={neo4j.properties file}

On restarting the server the tuning enhancements specified in the neo4j.properties file will be loaded
and configured into the underlying database engine.

17.5.2. Specifying JVM tuning properties
Tuning the standalone server is achieved by editing the neo4j-wrapper.conf file in the conf directory of
NEO4J_HOME.

Edit the following properties:

neo4j-wrapper.conf JVM tuning properties
Property Name Meaning

wrapper. java. initmemory initial heap size (in MB)
wrapper. java. maxmemory maximum heap size (in MB)
wrapper. java. additional. N additional literal JVM parameter, where N is a

number for each

For more information on the tuning properties, see Section 21.6, “JVM Settings”.

Neo4j Server

253

17.6. Server Installation in the Cloud
Neo4j on various cloud services either by a user, or as a managed instance on the Neo Technology
cloud fabric. Below are instructions for some of these.

17.6.1. Heroku
For the basic setup, please see the Heroku Quickstart tutorial <https://devcenter.heroku.com/articles/
quickstart>.

To add Neo4j to your Heroku app, do:
heroku addons:add neo4j

https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/quickstart

254

Chapter 18. REST API

The Neo4j REST API is designed with discoverability in mind, so that you can start with a GET on the
Section 18.1, “Service root” and from there discover URIs to perform other requests. The examples
below uses URIs in the examples; they are subject to change in the future, so for future-proofness
discover URIs where possible, instead of relying on the current layout. The default representation is
json <http://www.json.org/>, both for responses and for data sent with POST/PUT requests.

Below follows a listing of ways to interact with the REST API. For language bindings to the REST
API, see Chapter 5, Neo4j Remote Client Libraries.

To interact with the JSON interface you must explicitly set the request header Accept:application/json
for those requests that responds with data. You should also set the header Content-Type:application/
json if your request sends data, for example when you’re creating a relationship. The examples include
the relevant request and response headers.

The server supports streaming results, with better performance and lower memory overhead. See
Section 18.2, “Streaming” for more information.

http://www.json.org/
http://www.json.org/

REST API

255

18.1. Service root
18.1.1. Get service root

The service root is your starting point to discover the REST API. It contains the basic starting points
for the database, and some version and extension information. The reference_node entry will only be
present if there is a reference node set and that node actually exists in the database.

Figure 18.1. Final Graph

Node[228]

nam e = 'you'

Node[229]

nam e = 'I'

know

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

{

 "extensions" : {

 },

 "node" : "http://localhost:7474/db/data/node",

 "reference_node" : "http://localhost:7474/db/data/node/229",

 "node_index" : "http://localhost:7474/db/data/index/node",

 "relationship_index" : "http://localhost:7474/db/data/index/relationship",

 "extensions_info" : "http://localhost:7474/db/data/ext",

 "relationship_types" : "http://localhost:7474/db/data/relationship/types",

 "batch" : "http://localhost:7474/db/data/batch",

 "cypher" : "http://localhost:7474/db/data/cypher",

 "neo4j_version" : "1.9.M04"

}

REST API

256

18.2. Streaming
The whole REST API can be transmitted as JSON streams, resulting in better performance and lower
memory overhead on the server side. To use it, adjust the request headers for every call, see the
example below for details.

Caution
This feature is new, and you should make yourself comfortable with the streamed response
style versus the non-streamed API where results are delivered in a single large response.
Expect future releases to have streaming enabled by default since it is a far more efficient
mechanism for both client and server.

Figure 18.2. Final Graph

Node[230]

nam e = 'you'

Node[231]

nam e = 'I'

know

Example request

• GET http://localhost:7474/db/data/
• Accept: application/json
• X-Stream: true

Example response

• 200: OK
• Content-Type: application/json; stream=true

{

 "extensions" : {

 },

 "node" : "http://localhost:7474/db/data/node",

 "reference_node" : "http://localhost:7474/db/data/node/231",

 "node_index" : "http://localhost:7474/db/data/index/node",

 "relationship_index" : "http://localhost:7474/db/data/index/relationship",

 "extensions_info" : "http://localhost:7474/db/data/ext",

 "relationship_types" : "http://localhost:7474/db/data/relationship/types",

 "batch" : "http://localhost:7474/db/data/batch",

 "cypher" : "http://localhost:7474/db/data/cypher",

 "neo4j_version" : "1.9.M04"

}

REST API

257

18.3. Cypher queries
The Neo4j REST API allows querying with Cypher, see Chapter 15, Cypher Query Language. The
results are returned as a list of string headers (columns), and a data part, consisting of a list of all rows,
every row consisting of a list of REST representations of the field value — Node, Relationship, Path or
any simple value like String.

Tip
In order to speed up queries in repeated scenarios, try not to use literals but replace
them with parameters wherever possible in order to let the server cache query plans, see
Section 18.3.1, “Send queries with parameters” for details.

18.3.1. Send queries with parameters
Cypher supports queries with parameters which are submitted as a JSON map.

START x = node:node_auto_index(name={startName})

MATCH path = (x-[r]-friend)

WHERE friend.name = {name}

RETURN TYPE(r)

Figure 18.3. Final Graph

Node[330]

nam e = 'you'

Node[331]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json
• Content-Type: application/json

{

 "query" : "start x = node:node_auto_index(name={startName}) match path = (x-[r]-friend) where friend.name = {name} return TYPE(r)",

 "params" : {

 "startName" : "I",

 "name" : "you"

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "columns" : ["TYPE(r)"],

 "data" : [["know"]]

}

REST API

258

18.3.2. Send a Query
A simple query returning all nodes connected to node 1, returning the node and the name property, if
it exists, otherwise null:

START x = node(322)

MATCH x -[r]-> n

RETURN type(r), n.name?, n.age?

Figure 18.4. Final Graph

Node[320]

nam e = 'you'

Node[321]

nam e = 'him '
age = 25

Node[322]

nam e = 'I'

know know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json
• Content-Type: application/json

{

 "query" : "start x = node(322) match x -[r]-> n return type(r), n.name?, n.age?",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "columns" : ["type(r)", "n.name?", "n.age?"],

 "data" : [["know", "him", 25], ["know", "you", null]]

}

18.3.3. Return paths
Paths can be returned together with other return types by just specifying returns.

START x = node(329)

MATCH path = (x--friend)

RETURN path, friend.name

REST API

259

Figure 18.5. Final Graph

Node[328]

nam e = 'you'

Node[329]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json
• Content-Type: application/json

{

 "query" : "start x = node(329) match path = (x--friend) return path, friend.name",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "columns" : ["path", "friend.name"],

 "data" : [[{

 "start" : "http://localhost:7474/db/data/node/329",

 "nodes" : ["http://localhost:7474/db/data/node/329", "http://localhost:7474/db/data/node/328"],

 "length" : 1,

 "relationships" : ["http://localhost:7474/db/data/relationship/253"],

 "end" : "http://localhost:7474/db/data/node/328"

 }, "you"]]

}

18.3.4. Nested results
When sending queries that return nested results like list and maps, these will get serialized into nested
JSON representations according to their types.

START n = node(338,337)

RETURN collect(n.name)

REST API

260

Figure 18.6. Final Graph

Node[337]

nam e = 'you'

Node[338]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json
• Content-Type: application/json

{

 "query" : "start n = node(338,337) return collect(n.name)",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "columns" : ["collect(n.name)"],

 "data" : [[["I", "you"]]]

}

18.3.5. Server errors
Errors on the server will be reported as a JSON-formatted stacktrace and message.
START x = node(327)

RETURN x.dummy

Figure 18.7. Final Graph

Node[326]

nam e = 'you'

Node[327]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/cypher
• Accept: application/json

REST API

261

• Content-Type: application/json

{

 "query" : "start x = node(327) return x.dummy",

 "params" : {

 }

}

Example response

• 400: Bad Request
• Content-Type: application/json

{

 "message" : "The property 'dummy' does not exist on Node[327]",

 "exception" : "BadInputException",

 "stacktrace" : ["org.neo4j.server.rest.repr.RepresentationExceptionHandlingIterable.exceptionOnNext(RepresentationExceptionHandlingIterable.java:39)", "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:69)", "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)", "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:58)", "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)", "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)", "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:50)", "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:42)", "org.neo4j.server.rest.repr.OutputFormat.format(OutputFormat.java:182)", "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:132)", "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:119)", "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:55)", "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:65)", "java.lang.reflect.Method.invoke(Method.java:597)"],

 "cause" : {

 "message" : "The property 'dummy' does not exist on Node[327]",

 "exception" : "EntityNotFoundException",

 "stacktrace" : ["org.neo4j.cypher.internal.helpers.MapSupport$PropertyContainerMap.apply(MapSupport.scala:69)", "org.neo4j.cypher.internal.helpers.MapSupport$PropertyContainerMap.apply(MapSupport.scala:52)", "org.neo4j.cypher.internal.commands.expressions.Property.apply(Property.scala:30)", "org.neo4j.cypher.internal.commands.expressions.Property.apply(Property.scala:27)", "org.neo4j.cypher.internal.pipes.ExtractPipe$$anonfun$createResults$1$$anonfun$apply$1.apply(ExtractPipe.scala:37)", "org.neo4j.cypher.internal.pipes.ExtractPipe$$anonfun$createResults$1$$anonfun$apply$1.apply(ExtractPipe.scala:35)", "scala.collection.immutable.Map$Map1.foreach(Map.scala:109)", "org.neo4j.cypher.internal.pipes.ExtractPipe$$anonfun$createResults$1.apply(ExtractPipe.scala:35)", "org.neo4j.cypher.internal.pipes.ExtractPipe$$anonfun$createResults$1.apply(ExtractPipe.scala:34)", "scala.collection.Iterator$$anon$11.next(Iterator.scala:328)", "scala.collection.Iterator$$anon$11.next(Iterator.scala:328)", "org.neo4j.cypher.internal.ClosingIterator$$anonfun$next$1.apply(ClosingIterator.scala:45)", "org.neo4j.cypher.internal.ClosingIterator.failIfThrows(ClosingIterator.scala:87)", "org.neo4j.cypher.internal.ClosingIterator.next(ClosingIterator.scala:44)", "org.neo4j.cypher.PipeExecutionResult.next(PipeExecutionResult.scala:141)", "org.neo4j.cypher.PipeExecutionResult.next(PipeExecutionResult.scala:31)", "scala.collection.Iterator$$anon$11.next(Iterator.scala:328)", "scala.collection.convert.Wrappers$IteratorWrapper.next(Wrappers.scala:30)", "org.neo4j.helpers.collection.ExceptionHandlingIterable$1.next(ExceptionHandlingIterable.java:67)", "org.neo4j.helpers.collection.IteratorWrapper.next(IteratorWrapper.java:47)", "org.neo4j.server.rest.repr.ListRepresentation.serialize(ListRepresentation.java:58)", "org.neo4j.server.rest.repr.Serializer.serialize(Serializer.java:75)", "org.neo4j.server.rest.repr.MappingSerializer.putList(MappingSerializer.java:61)", "org.neo4j.server.rest.repr.CypherResultRepresentation.serialize(CypherResultRepresentation.java:50)", "org.neo4j.server.rest.repr.MappingRepresentation.serialize(MappingRepresentation.java:42)", "org.neo4j.server.rest.repr.OutputFormat.format(OutputFormat.java:182)", "org.neo4j.server.rest.repr.OutputFormat.formatRepresentation(OutputFormat.java:132)", "org.neo4j.server.rest.repr.OutputFormat.response(OutputFormat.java:119)", "org.neo4j.server.rest.repr.OutputFormat.ok(OutputFormat.java:55)", "org.neo4j.server.rest.web.CypherService.cypher(CypherService.java:65)", "java.lang.reflect.Method.invoke(Method.java:597)"]

 }

}

REST API

262

18.4. Property values
The REST API allows setting properties on nodes and relationships through direct RESTful
operations. However, there are restrictions as to what types of values can be used as property values.
Allowed value types are as follows:

• Numbers: Both integer values, with capacity as Java’s Long type, and floating points, with capacity
as Java’s Double.

• Booleans
• Strings
• Arrays: Of the above basic types

18.4.1. Arrays
There are two important points to be made about array values. First, all values in the array must be of
the same type. That means either all integers, all floats, all booleans or all strings. Mixing types is not
currently supported.

Second, storing empty arrays is only possible given certain preconditions. Because the JSON transfer
format does not contain type information for arrays, type is inferred from the values in the array. If the
array is empty, the Neo4j Server cannot determine the type. In these cases, it will check if an array is
already stored for the given property, and will use the stored arrays type when storing the empty array.
If no array exists already, the server will reject the request.

REST API

263

18.5. Nodes
18.5.1. Create node

Figure 18.8. Final Graph

Node[122]

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/node/122

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/122/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/122/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/122/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/122/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/122/relationships/all",

 "property" : "http://localhost:7474/db/data/node/122/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/122",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/122/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/122/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/122/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/122/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/122/relationships",

 "data" : {

 }

}

18.5.2. Create node with properties

Figure 18.9. Final Graph

Node[123]

foo = 'bar'

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json
• Content-Type: application/json

{

REST API

264

 "foo" : "bar"

}

Example response

• 201: Created
• Content-Length: 1120
• Content-Type: application/json
• Location: http://localhost:7474/db/data/node/123

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/123/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/123/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/123/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/123/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/123/relationships/all",

 "property" : "http://localhost:7474/db/data/node/123/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/123",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/123/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/123/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/123/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/123/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/123/relationships",

 "data" : {

 "foo" : "bar"

 }

}

18.5.3. Get node
Note that the response contains URI/templates for the available operations for getting properties and
relationships.

Figure 18.10. Final Graph

Node[346]

Example request

• GET http://localhost:7474/db/data/node/346
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/346/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/346/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/346/traverse/{returnType}",

REST API

265

 "all_typed_relationships" : "http://localhost:7474/db/data/node/346/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/346/relationships/all",

 "property" : "http://localhost:7474/db/data/node/346/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/346",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/346/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/346/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/346/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/346/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/346/relationships",

 "data" : {

 }

}

18.5.4. Get non-existent node

Figure 18.11. Final Graph

Node[350]

Example request

• GET http://localhost:7474/db/data/node/35000000
• Accept: application/json

Example response

• 404: Not Found
• Content-Type: application/json

{

 "message" : "Cannot find node with id [35000000] in database.",

 "exception" : "NodeNotFoundException",

 "stacktrace" : ["org.neo4j.server.rest.web.DatabaseActions.node(DatabaseActions.java:154)", "org.neo4j.server.rest.web.DatabaseActions.getNode(DatabaseActions.java:210)", "org.neo4j.server.rest.web.RestfulGraphDatabase.getNode(RestfulGraphDatabase.java:234)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

18.5.5. Delete node

Figure 18.12. Final Graph

Example request

• DELETE http://localhost:7474/db/data/node/131
• Accept: application/json

Example response

• 204: No Content

18.5.6. Nodes with relationships can not be deleted
The relationships on a node has to be deleted before the node can be deleted.

REST API

266

Figure 18.13. Final Graph

Node[132]

Node[133]

LOVES

Example request

• DELETE http://localhost:7474/db/data/node/132
• Accept: application/json

Example response

• 409: Conflict
• Content-Type: application/json

{

 "message" : "The node with id 132 cannot be deleted. Check that the node is orphaned before deletion.",

 "exception" : "OperationFailureException",

 "stacktrace" : ["org.neo4j.server.rest.web.DatabaseActions.deleteNode(DatabaseActions.java:231)", "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteNode(RestfulGraphDatabase.java:248)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

REST API

267

18.6. Relationships
Relationships are a first class citizen in the Neo4j REST API. They can be accessed either stand-alone
or through the nodes they are attached to.

The general pattern to get relationships from a node is:

GET http://localhost:7474/db/data/node/123/relationships/{dir}/{-list|&|types}

Where dir is one of all, in, out and types is an ampersand-separated list of types. See the examples
below for more information.

18.6.1. Get Relationship by ID

Figure 18.14. Final Graph

Node[6]

nam e = 'you'

Node[7]

nam e = 'I'

know

Example request

• GET http://localhost:7474/db/data/relationship/5
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/7",

 "property" : "http://localhost:7474/db/data/relationship/5/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/5",

 "properties" : "http://localhost:7474/db/data/relationship/5/properties",

 "type" : "know",

 "end" : "http://localhost:7474/db/data/node/6",

 "data" : {

 }

}

18.6.2. Create relationship
Upon successful creation of a relationship, the new relationship is returned.

REST API

268

Figure 18.15. Final Graph

Node[24]

nam e = 'Sara'

Node[25]

nam e = 'Joe'

LOVES knows

Example request

• POST http://localhost:7474/db/data/node/25/relationships
• Accept: application/json
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/24",

 "type" : "LOVES"

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/relationship/31

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/25",

 "property" : "http://localhost:7474/db/data/relationship/31/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/31",

 "properties" : "http://localhost:7474/db/data/relationship/31/properties",

 "type" : "LOVES",

 "end" : "http://localhost:7474/db/data/node/24",

 "data" : {

 }

}

18.6.3. Create a relationship with properties
Upon successful creation of a relationship, the new relationship is returned.

Figure 18.16. Starting Graph

Node[0]

Node[22]

nam e = 'Sara'

Node[23]

nam e = 'Joe'

knows

REST API

269

Figure 18.17. Final Graph

Node[0]

Node[22]

nam e = 'Sara'

Node[23]

nam e = 'Joe'

LOVES
foo = 'bar'

knows

Example request

• POST http://localhost:7474/db/data/node/23/relationships
• Accept: application/json
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/22",

 "type" : "LOVES",

 "data" : {

 "foo" : "bar"

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/relationship/29

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/23",

 "property" : "http://localhost:7474/db/data/relationship/29/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/29",

 "properties" : "http://localhost:7474/db/data/relationship/29/properties",

 "type" : "LOVES",

 "end" : "http://localhost:7474/db/data/node/22",

 "data" : {

 "foo" : "bar"

 }

}

REST API

270

18.6.4. Delete relationship

Figure 18.18. Starting Graph

Node[18]

nam e = 'Juliet '

Node[19]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 18.19. Final Graph

Node[18]

nam e = 'Juliet '

Node[19]

nam e = 'Rom eo'

Example request

• DELETE http://localhost:7474/db/data/relationship/11
• Accept: application/json

Example response

• 204: No Content

18.6.5. Get all properties on a relationship

Figure 18.20. Final Graph

Node[26]

nam e = 'Juliet '

Node[27]

nam e = 'Rom eo'

LOVES
cost = 'high'
since = '1day'

Example request

• GET http://localhost:7474/db/data/relationship/15/properties
• Accept: application/json

Example response

REST API

271

• 200: OK
• Content-Type: application/json

{

 "since" : "1day",

 "cost" : "high"

}

18.6.6. Set all properties on a relationship

Figure 18.21. Starting Graph

Node[22]

nam e = 'Juliet '

Node[23]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 18.22. Final Graph

Node[24]

nam e = 'Juliet '

Node[25]

nam e = 'Rom eo'

LOVES
happy = false

Example request

• PUT http://localhost:7474/db/data/relationship/14/properties
• Accept: application/json
• Content-Type: application/json

{

 "happy" : false

}

Example response

• 204: No Content

REST API

272

18.6.7. Get single property on a relationship

Figure 18.23. Final Graph

Node[20]

nam e = 'Juliet '

Node[21]

nam e = 'Rom eo'

LOVES
cost = 'high'

Example request

• GET http://localhost:7474/db/data/relationship/12/properties/cost
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

"high"

18.6.8. Set single property on a relationship

Figure 18.24. Starting Graph

Node[22]

nam e = 'Juliet '

Node[23]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 18.25. Final Graph

Node[22]

nam e = 'Juliet '

Node[23]

nam e = 'Rom eo'

LOVES
cost = 'deadly'

REST API

273

Example request

• PUT http://localhost:7474/db/data/relationship/13/properties/cost
• Accept: application/json
• Content-Type: application/json

"deadly"

Example response

• 204: No Content

18.6.9. Get all relationships

Figure 18.26. Final Graph

Node[38]

Node[39]

LIKES

Node[41]

HATES

Node[40]

LIKES

Node[42]

Example request

• GET http://localhost:7474/db/data/node/38/relationships/all
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/38",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/22",

 "property" : "http://localhost:7474/db/data/relationship/22/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/22/properties",

 "type" : "LIKES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/39"

}, {

REST API

274

 "start" : "http://localhost:7474/db/data/node/40",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/23",

 "property" : "http://localhost:7474/db/data/relationship/23/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/23/properties",

 "type" : "LIKES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/38"

}, {

 "start" : "http://localhost:7474/db/data/node/38",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/24",

 "property" : "http://localhost:7474/db/data/relationship/24/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/24/properties",

 "type" : "HATES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/41"

}]

18.6.10. Get incoming relationships

Figure 18.27. Final Graph

Node[48]

Node[49]

LIKES

Node[51]

HATES

Node[50]

LIKES

Node[52]

Example request

• GET http://localhost:7474/db/data/node/48/relationships/in
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/50",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/29",

REST API

275

 "property" : "http://localhost:7474/db/data/relationship/29/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/29/properties",

 "type" : "LIKES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/48"

}]

18.6.11. Get outgoing relationships

Figure 18.28. Final Graph

Node[53]

Node[54]

LIKES

Node[56]

HATES

Node[55]

LIKES

Node[57]

Example request

• GET http://localhost:7474/db/data/node/53/relationships/out
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/53",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/31",

 "property" : "http://localhost:7474/db/data/relationship/31/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/31/properties",

 "type" : "LIKES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/54"

}, {

 "start" : "http://localhost:7474/db/data/node/53",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/33",

 "property" : "http://localhost:7474/db/data/relationship/33/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/33/properties",

 "type" : "HATES",

 "extensions" : {

REST API

276

 },

 "end" : "http://localhost:7474/db/data/node/56"

}]

18.6.12. Get typed relationships
Note that the "&" needs to be encoded like "%26" for example when using cURL <http://curl.haxx.se/>
from the terminal.

Figure 18.29. Final Graph

Node[58]

Node[59]

LIKES

Node[61]

HATES

Node[60]

LIKES

Node[62]

Example request

• GET http://localhost:7474/db/data/node/58/relationships/all/LIKES&HATES
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/58",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/34",

 "property" : "http://localhost:7474/db/data/relationship/34/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/34/properties",

 "type" : "LIKES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/59"

}, {

 "start" : "http://localhost:7474/db/data/node/60",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/35",

 "property" : "http://localhost:7474/db/data/relationship/35/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/35/properties",

 "type" : "LIKES",

 "extensions" : {

 },

http://curl.haxx.se/
http://curl.haxx.se/

REST API

277

 "end" : "http://localhost:7474/db/data/node/58"

}, {

 "start" : "http://localhost:7474/db/data/node/58",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/36",

 "property" : "http://localhost:7474/db/data/relationship/36/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/36/properties",

 "type" : "HATES",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/61"

}]

18.6.13. Get relationships on a node without relationships

Figure 18.30. Final Graph

Node[73]

Node[74]

LIKES

Node[76]

HATES

Node[75]

LIKES

Node[77]

Example request

• GET http://localhost:7474/db/data/node/77/relationships/all
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[]

REST API

278

18.7. Relationship types
18.7.1. Get relationship types

Figure 18.31. Final Graph

Node[245]

Node[246]

foo

Node[247]

Node[248]

bar

Example request

• GET http://localhost:7474/db/data/relationship/types
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

["to", "is_a", "foo", "eats", "know", "has", "LOVES", "knows", "FRIENDS", "likes", "KNOWS", "own", "bar", "hates", "loves"]

REST API

279

18.8. Node properties
18.8.1. Set property on node

Setting different properties will retain the existing ones for this node. Note that a single value are
submitted not as a map but just as a value (which is valid JSON) like in the example below.

Figure 18.32. Final Graph

Node[208]

foo = 'bar'
foo2 = 'bar2'

Example request

• PUT http://localhost:7474/db/data/node/208/properties/foo
• Accept: application/json
• Content-Type: application/json

"bar"

Example response

• 204: No Content

18.8.2. Update node properties
This will replace all existing properties on the node with the new set of attributes.

Figure 18.33. Final Graph

Node[200]

age = '18'

Node[201]

nam e = ' joe'

knows

Example request

• PUT http://localhost:7474/db/data/node/200/properties
• Accept: application/json
• Content-Type: application/json

{

 "age" : "18"

}

Example response

• 204: No Content

REST API

280

18.8.3. Get properties for node

Figure 18.34. Final Graph

Node[192]

foo = 'bar'

Example request

• GET http://localhost:7474/db/data/node/192/properties
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

{

 "foo" : "bar"

}

18.8.4. Property values can not be null
This example shows the response you get when trying to set a property to null.

Figure 18.35. Final Graph

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json
• Content-Type: application/json

{

 "foo" : null

}

Example response

• 400: Bad Request
• Content-Type: application/json

{

 "message" : "Could not set property \"foo\", unsupported type: null",

 "exception" : "PropertyValueException",

 "stacktrace" : ["org.neo4j.server.rest.domain.PropertySettingStrategy.setProperty(PropertySettingStrategy.java:151)", "org.neo4j.server.rest.domain.PropertySettingStrategy.setProperties(PropertySettingStrategy.java:92)", "org.neo4j.server.rest.web.DatabaseActions.createNode(DatabaseActions.java:189)", "org.neo4j.server.rest.web.RestfulGraphDatabase.createNode(RestfulGraphDatabase.java:204)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

18.8.5. Property values can not be nested
Nesting properties is not supported. You could for example store the nested JSON as a string instead.

Figure 18.36. Final Graph

REST API

281

Example request

• POST http://localhost:7474/db/data/node/
• Accept: application/json
• Content-Type: application/json

{

 "foo" : {

 "bar" : "baz"

 }

}

Example response

• 400: Bad Request
• Content-Type: application/json

{

 "message" : "Could not set property \"foo\", unsupported type: {bar=baz}",

 "exception" : "PropertyValueException",

 "stacktrace" : ["org.neo4j.server.rest.domain.PropertySettingStrategy.setProperty(PropertySettingStrategy.java:151)", "org.neo4j.server.rest.domain.PropertySettingStrategy.setProperties(PropertySettingStrategy.java:92)", "org.neo4j.server.rest.web.DatabaseActions.createNode(DatabaseActions.java:189)", "org.neo4j.server.rest.web.RestfulGraphDatabase.createNode(RestfulGraphDatabase.java:204)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

18.8.6. Delete all properties from node

Figure 18.37. Final Graph

Node[206]

Example request

• DELETE http://localhost:7474/db/data/node/206/properties
• Accept: application/json

Example response

• 204: No Content

18.8.7. Delete a named property from a node
To delete a single property from a node, see the example below.

Figure 18.38. Starting Graph

Node[207]

nam e = 'tobias'

Figure 18.39. Final Graph

Node[207]

REST API

282

Example request

• DELETE http://localhost:7474/db/data/node/207/properties/name
• Accept: application/json

Example response

• 204: No Content

REST API

283

18.9. Relationship properties
18.9.1. Update relationship properties

Figure 18.40. Final Graph

Node[137]

Node[138]

KNOWS
jim = 'tobias'

Example request

• PUT http://localhost:7474/db/data/relationship/73/properties
• Accept: application/json
• Content-Type: application/json

{

 "jim" : "tobias"

}

Example response

• 204: No Content

18.9.2. Remove properties from a relationship

Figure 18.41. Final Graph

Node[0] Node[4]

nam e = 'Juliet '

Node[5]

nam e = 'Rom eo'

Example request

• DELETE http://localhost:7474/db/data/relationship/4
• Accept: application/json

Example response

• 204: No Content

18.9.3. Remove property from a relationship
See the example request below.

REST API

284

Figure 18.42. Starting Graph

Node[8]

nam e = 'Juliet '

Node[9]

nam e = 'Rom eo'

LOVES
cost = 'high'

Figure 18.43. Final Graph

Node[8]

nam e = 'Juliet '

Node[9]

nam e = 'Rom eo'

LOVES

Example request

• DELETE http://localhost:7474/db/data/relationship/6/properties/cost
• Accept: application/json

Example response

• 204: No Content

18.9.4. Remove non-existent property from a relationship
Attempting to remove a property that doesn’t exist results in an error.

Figure 18.44. Final Graph

Node[10]

nam e = 'Juliet '

Node[11]

nam e = 'Rom eo'

LOVES
cost = 'high'

Example request

• DELETE http://localhost:7474/db/data/relationship/7/properties/non-existent
• Accept: application/json

REST API

285

Example response

• 404: Not Found
• Content-Type: application/json

{

 "message" : "Relationship[7] does not have a property \"non-existent\"",

 "exception" : "NoSuchPropertyException",

 "stacktrace" : ["org.neo4j.server.rest.web.DatabaseActions.removeRelationshipProperty(DatabaseActions.java:643)", "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteRelationshipProperty(RestfulGraphDatabase.java:612)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

18.9.5. Remove properties from a non-existing relationship
Attempting to remove all properties from a relationship which doesn’t exist results in an error.

Figure 18.45. Final Graph

Node[14]

nam e = 'you'

Node[15]

nam e = 'I'

know

Example request

• DELETE http://localhost:7474/db/data/relationship/1234/properties
• Accept: application/json

Example response

• 404: Not Found
• Content-Type: application/json

{

 "exception" : "RelationshipNotFoundException",

 "stacktrace" : ["org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:168)", "org.neo4j.server.rest.web.DatabaseActions.removeAllRelationshipProperties(DatabaseActions.java:631)", "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteAllRelationshipProperties(RestfulGraphDatabase.java:592)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

18.9.6. Remove property from a non-existing relationship
Attempting to remove a property from a relationship which doesn’t exist results in an error.

Figure 18.46. Final Graph

Node[16]

nam e = 'you'

Node[17]

nam e = 'I'

know

REST API

286

Example request

• DELETE http://localhost:7474/db/data/relationship/1234/properties/cost
• Accept: application/json

Example response

• 404: Not Found
• Content-Type: application/json

{

 "exception" : "RelationshipNotFoundException",

 "stacktrace" : ["org.neo4j.server.rest.web.DatabaseActions.relationship(DatabaseActions.java:168)", "org.neo4j.server.rest.web.DatabaseActions.removeRelationshipProperty(DatabaseActions.java:637)", "org.neo4j.server.rest.web.RestfulGraphDatabase.deleteRelationshipProperty(RestfulGraphDatabase.java:612)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

REST API

287

18.10. Indexes
An index can contain either nodes or relationships.

Note
To create an index with default configuration, simply start using it by adding nodes/
relationships to it. It will then be automatically created for you.

What default configuration means depends on how you have configured your database. If you haven’t
changed any indexing configuration, it means the indexes will be using a Lucene-based backend.

All the examples below show you how to do operations on node indexes, but all of them are just as
applicable to relationship indexes. Simple change the "node" part of the URL to "relationship".

If you want to customize the index settings, see Section 18.10.2, “Create node index with
configuration”.

18.10.1. Create node index

Note
Instead of creating the index this way, you can simply start to use it, and it will be created
automatically with default configuration.

Figure 18.47. Final Graph

Example request

• POST http://localhost:7474/db/data/index/node/
• Accept: application/json
• Content-Type: application/json

{

 "name" : "favorites"

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/favorites/

{

 "template" : "http://localhost:7474/db/data/index/node/favorites/{key}/{value}"

}

18.10.2. Create node index with configuration
This request is only necessary if you want to customize the index settings. If you are happy with the
defaults, you can just start indexing nodes/relationships, as non-existent indexes will automatically be
created as you do. See Section 14.10, “Configuration and fulltext indexes” for more information on
index configuration.

Figure 18.48. Final Graph

REST API

288

Example request

• POST http://localhost:7474/db/data/index/node/
• Accept: application/json
• Content-Type: application/json

{

 "name" : "fulltext",

 "config" : {

 "type" : "fulltext",

 "provider" : "lucene"

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/fulltext/

{

 "template" : "http://localhost:7474/db/data/index/node/fulltext/{key}/{value}",

 "type" : "fulltext",

 "provider" : "lucene"

}

18.10.3. Delete node index

Figure 18.49. Final Graph

Example request

• DELETE http://localhost:7474/db/data/index/node/kvnode
• Accept: application/json

Example response

• 204: No Content

18.10.4. List node indexes

Figure 18.50. Final Graph

Example request

• GET http://localhost:7474/db/data/index/node/
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

REST API

289

{

 "favorites" : {

 "template" : "http://localhost:7474/db/data/index/node/favorites/{key}/{value}",

 "provider" : "lucene",

 "type" : "exact"

 }

}

18.10.5. Add node to index
Associates a node with the given key/value pair in the given index.

Note
Spaces in the URI have to be encoded as %20.

Caution
This does not overwrite previous entries. If you index the same key/value/item
combination twice, two index entries are created. To do update-type operations, you need
to delete the old entry before adding a new one.

Figure 18.51. Final Graph

Node[209]

Example request

• POST http://localhost:7474/db/data/index/node/favorites
• Accept: application/json
• Content-Type: application/json

{

 "value" : "some value",

 "uri" : "http://localhost:7474/db/data/node/209",

 "key" : "some-key"

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/favorites/some-key/some%20value/209

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/209/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/209/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/209/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/209/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/209/relationships/all",

 "property" : "http://localhost:7474/db/data/node/209/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/209",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/209/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/209/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/209/relationships/in",

REST API

290

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/209/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/209/relationships",

 "data" : {

 },

 "indexed" : "http://localhost:7474/db/data/index/node/favorites/some-key/some%20value/209"

}

18.10.6. Remove all entries with a given node from an index

Figure 18.52. Final Graph

Node[219]

kvkey2 = 'value2'
kvkey1 = 'value2'

Example request

• DELETE http://localhost:7474/db/data/index/node/kvnode/219
• Accept: application/json

Example response

• 204: No Content

18.10.7. Remove all entries with a given node and key from an index

Figure 18.53. Final Graph

Node[220]

kvkey2 = 'value2'
kvkey1 = 'value2'

Example request

• DELETE http://localhost:7474/db/data/index/node/kvnode/kvkey2/220
• Accept: application/json

Example response

• 204: No Content

18.10.8. Remove all entries with a given node, key and value from an index

Figure 18.54. Final Graph

Node[221]

kvkey2 = 'value2'
kvkey1 = 'value2'

Example request

• DELETE http://localhost:7474/db/data/index/node/kvnode/kvkey1/value1/221

REST API

291

• Accept: application/json

Example response

• 204: No Content

18.10.9. Find node by exact match

Note
Spaces in the URI have to be encoded as %20.

Figure 18.55. Final Graph

Node[210]

Example request

• GET http://localhost:7474/db/data/index/node/favorites/key/the%2520value
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "indexed" : "http://localhost:7474/db/data/index/node/favorites/key/the%2520value/210",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/210/relationships/out",

 "data" : {

 },

 "traverse" : "http://localhost:7474/db/data/node/210/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/210/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/210/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/210",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/210/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/210/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/210/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/210/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/210/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/210/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/210/relationships/in/{-list|&|types}"

}]

18.10.10. Find node by query
The query language used here depends on what type of index you are querying. The default index
type is Lucene, in which case you should use the Lucene query language here. Below an example of a
fuzzy search over multiple keys.

See: http://lucene.apache.org/java/3_5_0/queryparsersyntax.html

Getting the results with a predefined ordering requires adding the parameter

http://lucene.apache.org/java/3_5_0/queryparsersyntax.html

REST API

292

order=ordering

where ordering is one of index, relevance or score. In this case an additional field will be added to
each result, named score, that holds the float value that is the score reported by the query result.

Figure 18.56. Final Graph

Node[211]

Nam e = 'Builder'

Example request

• GET http://localhost:7474/db/data/index/node/bobTheIndex?query=Name:Build~0.1%20AND
%20Gender:Male

• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/211/relationships/out",

 "data" : {

 "Name" : "Builder"

 },

 "traverse" : "http://localhost:7474/db/data/node/211/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/211/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/211/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/211",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/211/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/211/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/211/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/211/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/211/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/211/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/211/relationships/in/{-list|&|types}"

}]

REST API

293

18.11. Unique Indexes
For uniqueness enforcements, there are two modes:

• URL Parameter unique=get_or_create: Create a new node/relationship and index it if no existing one
can be found. If an existing node/relationship is found, discard the sent data and return the existing
node/relationship.

• URL Parameter unique=create_or_fail: Create a new node/relationship if no existing one can be
found in the index. If an existing node/relationship is found, return a conflict error.

For more information, see Section 12.6, “Creating unique nodes”.

18.11.1. Get or create unique node (create)
Node are created if they don’t exist in the unique index already.

Figure 18.57. Final Graph

Node[223]

nam e = 'Tobias'
sequence = 1

Example request

• POST http://localhost:7474/db/data/index/node/people?uniqueness=get_or_create
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "properties" : {

 "name" : "Tobias",

 "sequence" : 1

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/people/name/Tobias/223

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/223/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/223/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/223/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/223/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/223/relationships/all",

 "property" : "http://localhost:7474/db/data/node/223/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/223",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/223/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/223/properties",

REST API

294

 "incoming_relationships" : "http://localhost:7474/db/data/node/223/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/223/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/223/relationships",

 "data" : {

 "sequence" : 1,

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/people/name/Tobias/223"

}

18.11.2. Get or create unique node (existing)
Here, a node is not created but the existing unique node returned, since another node is indexed with
the same data already. The node data returned is then that of the already existing node.

Figure 18.58. Final Graph

Node[224]

nam e = 'Peter'
sequence = 1

Example request

• POST http://localhost:7474/db/data/index/node/people?uniqueness=get_or_create
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "properties" : {

 "name" : "Peter",

 "sequence" : 2

 }

}

Example response

• 200: OK
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/people/name/Peter/224

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/224/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/224/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/224/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/224/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/224/relationships/all",

 "property" : "http://localhost:7474/db/data/node/224/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/224",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/224/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/224/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/224/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/224/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/224/relationships",

 "data" : {

REST API

295

 "sequence" : 1,

 "name" : "Peter"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/people/name/Peter/224"

}

18.11.3. Create a unique node or return fail (create)
Here, in case of an already existing node, an error should be returned. In this example, no existing
indexed node is found and a new node is created.

Figure 18.59. Final Graph

Node[225]

nam e = 'Tobias'
sequence = 1

Example request

• POST http://localhost:7474/db/data/index/node/people?uniqueness=create_or_fail
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "properties" : {

 "name" : "Tobias",

 "sequence" : 1

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/people/name/Tobias/225

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/225/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/225/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/225/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/225/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/225/relationships/all",

 "property" : "http://localhost:7474/db/data/node/225/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/225",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/225/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/225/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/225/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/225/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/225/relationships",

 "data" : {

 "sequence" : 1,

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/people/name/Tobias/225"

REST API

296

}

18.11.4. Create a unique node or return fail (fail)
Here, in case of an already existing node, an error should be returned. In this example, an existing
node indexed with the same data is found and an error is returned.

Figure 18.60. Final Graph

Node[226]

nam e = 'Peter'
sequence = 1

Example request

• POST http://localhost:7474/db/data/index/node/people?uniqueness=create_or_fail
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "properties" : {

 "name" : "Peter",

 "sequence" : 2

 }

}

Example response

• 409: Conflict
• Content-Type: application/json

{

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/226/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/226/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/226/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/226/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/226/relationships/all",

 "property" : "http://localhost:7474/db/data/node/226/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/226",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/226/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/226/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/226/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/226/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/226/relationships",

 "data" : {

 "sequence" : 1,

 "name" : "Peter"

 },

 "indexed" : "http://localhost:7474/db/data/index/node/people/name/Peter/226"

}

18.11.5. Get or create unique relationship (create)
Add a relationship to an index unless a relationship already exists for the given mapping. Here, no
previous relationship is found in the index, a new one is created and indexed.

REST API

297

Figure 18.61. Final Graph

Node[185]

Node[186]

knowledge

Example request

• POST http://localhost:7474/db/data/index/relationship/knowledge/?uniqueness=get_or_create
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Mattias",

 "uri" : "http://localhost:7474/db/data/relationship/98"

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/relationship/knowledge/name/Mattias/98

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/185",

 "property" : "http://localhost:7474/db/data/relationship/98/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/98",

 "properties" : "http://localhost:7474/db/data/relationship/98/properties",

 "type" : "knowledge",

 "end" : "http://localhost:7474/db/data/node/186",

 "data" : {

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/knowledge/name/Mattias/98"

}

18.11.6. Get or create unique relationship (existing)
Here, in case of an already existing relationship, the sent data is ignored and the existing relationship
returned.

REST API

298

Figure 18.62. Final Graph

Node[187]

Node[188]

KNOWS

Node[189] Node[190]

Example request

• POST http://localhost:7474/db/data/index/relationship/rels?uniqueness=get_or_create
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "start" : "http://localhost:7474/db/data/node/189",

 "end" : "http://localhost:7474/db/data/node/190",

 "type" : "KNOWS"

}

Example response

• 200: OK
• Content-Type: application/json

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/187",

 "property" : "http://localhost:7474/db/data/relationship/99/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/99",

 "properties" : "http://localhost:7474/db/data/relationship/99/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/188",

 "data" : {

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/rels/name/Peter/99"

}

18.11.7. Create a unique relationship or return fail (create)
Here, in case of an already existing relationship, an error should be returned. In this example, no
existing relationship is found and a new relationship is created.

REST API

299

Figure 18.63. Final Graph

Node[191]

Node[192]

KNOWS
nam e = 'Tobias'

Example request

• POST http://localhost:7474/db/data/index/relationship/rels?uniqueness=create_or_fail
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Tobias",

 "start" : "http://localhost:7474/db/data/node/191",

 "end" : "http://localhost:7474/db/data/node/192",

 "type" : "KNOWS"

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/relationship/rels/name/Tobias/100

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/191",

 "property" : "http://localhost:7474/db/data/relationship/100/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/100",

 "properties" : "http://localhost:7474/db/data/relationship/100/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/192",

 "data" : {

 "name" : "Tobias"

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/rels/name/Tobias/100"

}

18.11.8. Create a unique relationship or return fail (fail)
Here, in case of an already existing relationship, an error should be returned. In this example, an
existing relationship is found and an error is returned.

REST API

300

Figure 18.64. Final Graph

Node[193]

Node[194]

KNOWS

Node[195] Node[196]

Example request

• POST http://localhost:7474/db/data/index/relationship/rels?uniqueness=create_or_fail
• Accept: application/json
• Content-Type: application/json

{

 "key" : "name",

 "value" : "Peter",

 "start" : "http://localhost:7474/db/data/node/195",

 "end" : "http://localhost:7474/db/data/node/196",

 "type" : "KNOWS"

}

Example response

• 409: Conflict
• Content-Type: application/json

{

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/193",

 "property" : "http://localhost:7474/db/data/relationship/101/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/101",

 "properties" : "http://localhost:7474/db/data/relationship/101/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/194",

 "data" : {

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/rels/name/Peter/101"

}

REST API

301

18.12. Automatic Indexes
To enable automatic indexes in neo4j, set up the database for that, see Section 14.12.1,
“Configuration”. With this feature enabled, you can then index and query nodes in these indexes.

18.12.1. Find node by exact match from an automatic index
Automatic index nodes can be found via exact lookups with normal Index REST syntax.

Figure 18.65. Final Graph

Node[269]

nam e = 'I'

Example request

• GET http://localhost:7474/db/data/index/auto/node/name/I
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/269/relationships/out",

 "data" : {

 "name" : "I"

 },

 "traverse" : "http://localhost:7474/db/data/node/269/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/269/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/269/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/269",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/269/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/269/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/269/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/269/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/269/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/269/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/269/relationships/in/{-list|&|types}"

}]

18.12.2. Find node by query from an automatic index
See Find node by query for the actual query syntax.

Figure 18.66. Final Graph

Node[268]

nam e = 'I'

Example request

• GET http://localhost:7474/db/data/index/auto/node/?query=name:I
• Accept: application/json

REST API

302

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/268/relationships/out",

 "data" : {

 "name" : "I"

 },

 "traverse" : "http://localhost:7474/db/data/node/268/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/268/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/268/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/268",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/268/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/268/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/268/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/268/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/268/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/268/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/268/relationships/in/{-list|&|types}"

}]

REST API

303

18.13. Configurable Automatic Indexing
Out of the box auto-indexing supports exact matches since they are created with the default
configuration (see Section 14.12, “Automatic Indexing”) the first time you access them. However it is
possible to intervene in the lifecycle of the server before any auto indexes are created to change their
configuration.

Warning
This approach cannot be used on databases that already have auto-indexes established. To
change the auto-index configuration existing indexes would have to be deleted first, so be
careful!

Caution
This technique works, but it is not particularly pleasant. Future versions of Neo4j may
remove this loophole in favour of a better structured feature for managing auto-indexing
configurations.

Auto-indexing must be enabled through configuration before we can create or configure them. Firstly
ensure that you’ve added some config like this into your server’s neo4j.properties file:
node_auto_indexing=true

relationship_auto_indexing=true

node_keys_indexable=name,phone

relationship_keys_indexable=since

The node_auto_indexing and relationship_auto_indexing settings turn auto-indexing on for nodes and
relationships respectively. The node_keys_indexable key allows you to specify a comma-separated list
of node property keys to be indexed. The relationship_keys_indexable does the same for relationship
property keys.

Next start the server as usual by invoking the start script as described in Section 17.1, “Server
Installation”.

Next we have to pre-empt the creation of an auto-index, by telling the server to create an apparently
manual index which has the same name as the node (or relationship) auto-index. For example, in this
case we’ll create a node auto index whose name is node_auto_index, like so:

18.13.1. Create an auto index for nodes with specific configuration
Example request

• POST http://localhost:7474/db/data/index/node/
• Accept: application/json
• Content-Type: application/json

{

 "name" : "node_auto_index",

 "config" : {

 "type" : "fulltext",

 "provider" : "lucene"

 }

}

Example response

• 201: Created

REST API

304

• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/node/node_auto_index/

{

 "template" : "http://localhost:7474/db/data/index/node/node_auto_index/{key}/{value}",

 "type" : "fulltext",

 "provider" : "lucene"

}

If you require configured auto-indexes for relationships, the approach is similar:

18.13.2. Create an auto index for relationships with specific configuration
Example request

• POST http://localhost:7474/db/data/index/relationship/
• Accept: application/json
• Content-Type: application/json

{

 "name" : "relationship_auto_index",

 "config" : {

 "type" : "fulltext",

 "provider" : "lucene"

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/index/relationship/relationship_auto_index/

{

 "template" : "http://localhost:7474/db/data/index/relationship/relationship_auto_index/{key}/{value}",

 "type" : "fulltext",

 "provider" : "lucene"

}

In case you’re curious how this works, on the server side it triggers the creation of an index which
happens to have the same name as the auto index that the database would create for itself. Now when
we interact with the database, the index thinks the index is already created so the state machine skips
over that step and just gets on with normal day-to-day auto-indexing.

Caution
You have to do this early in your server lifecycle, before any normal auto indexes are
created.

There are a few REST calls providing a REST interface to the AutoIndexer <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/AutoIndexer.html>
component. The following REST calls work both, for node and relationship by simply changing the
respective part of the URL.

18.13.3. Get current status for autoindexing on nodes

Figure 18.67. Final Graph

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/AutoIndexer.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/AutoIndexer.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/index/AutoIndexer.html

REST API

305

Example request

• GET http://localhost:7474/db/data/index/auto/node/status
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

false

18.13.4. Enable node autoindexing

Figure 18.68. Final Graph

Example request

• PUT http://localhost:7474/db/data/index/auto/node/status
• Accept: application/json
• Content-Type: application/json

true

Example response

• 204: No Content

18.13.5. Lookup list of properties being autoindexed

Figure 18.69. Final Graph

Example request

• GET http://localhost:7474/db/data/index/auto/node/properties
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

["some-property"]

18.13.6. Add a property for autoindexing on nodes

Figure 18.70. Final Graph

Example request

REST API

306

• POST http://localhost:7474/db/data/index/auto/node/properties
• Accept: application/json
• Content-Type: application/json

myProperty1

Example response

• 204: No Content

18.13.7. Remove a property for autoindexing on nodes

Figure 18.71. Final Graph

Example request

• DELETE http://localhost:7474/db/data/index/auto/node/properties/myProperty1
• Accept: application/json

Example response

• 204: No Content

REST API

307

18.14. Traversals
Warning
The Traversal REST Endpoint executes arbitrary Groovy code under the hood as part of
the evaluators definitions. In hosted and open environments, this can constitute a security
risk. In these case, consider using declarative approaches like Chapter 15, Cypher Query
Language or write your own server side plugin executing the interesting traversals with
the Java API (see Section 10.1, “Server Plugins”) or secure your server, see Section 24.1,
“Securing access to the Neo4j Server”.

Traversals are performed from a start node. The traversal is controlled by the URI and the body sent
with the request.

returnType
The kind of objects in the response is determined by traverse/{returnType} in the URL. returnType
can have one of these values:
• node

• relationship

• path: contains full representations of start and end node, the rest are URIs.
• fullpath: contains full representations of all nodes and relationships.

To decide how the graph should be traversed you can use these parameters in the request body:

order
Decides in which order to visit nodes. Possible values:
• breadth_first: see Breadth-first search <http://en.wikipedia.org/wiki/Breadth-first_search>.
• depth_first: see Depth-first search <http://en.wikipedia.org/wiki/Depth-first_search>

relationships
Decides which relationship types and directions should be followed. The direction can be one of:
• all

• in

• out

uniqueness
Decides how uniqueness should be calculated. For details on different uniqueness values see the
Java API on Uniqueness <http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/
Uniqueness.html>. Possible values:
• node_global

• none

• relationship_global

• node_path

• relationship_path

prune_evaluator
Decides whether the traverser should continue down that path or if it should be pruned so that
the traverser won’t continue down that path. You can write your own prune evaluator as (see
Section 18.14.1, “Traversal using a return filter” or use the built-in none prune evaluator.

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/Uniqueness.html

REST API

308

return_filter
Decides whether the current position should be included in the result. You can provide your own
code for this (see Section 18.14.1, “Traversal using a return filter”), or use one of the built-in
filters:
• all

• all_but_start_node

max_depth
Is a short-hand way of specifying a prune evaluator which prunes after a certain depth. If not
specified a max depth of 1 is used and if a prune_evaluator is specified instead of a max_depth, no
max depth limit is set.

The position object in the body of the return_filter and prune_evaluator is a Path <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html> object representing the path
from the start node to the current traversal position.

Out of the box, the REST API supports JavaScript code in filters and evaluators. The script
body will be executed in a Java context which has access to the full Neo4j Java API <http://
components.neo4j.org/neo4j/1.9.M04/apidocs/>. See the examples for the exact syntax of the request.

18.14.1. Traversal using a return filter
In this example, the none prune evaluator is used and a return filter is supplied in order to return all
names containing "t". The result is to be returned as nodes and the max depth is set to 3.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/Path.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/
http://components.neo4j.org/neo4j/1.9.M04/apidocs/
http://components.neo4j.org/neo4j/1.9.M04/apidocs/

REST API

309

Figure 18.72. Final Graph

Node[221]

nam e = 'Sara'

Node[222]

nam e = 'Johan'

Node[223]

nam e = 'Em il'

knows

Node[226]

nam e = 'Peter'

knows

Node[225]

nam e = 'Tobias'

knows

loves

Node[224]

nam e = 'Root '

knows

Node[227]

nam e = 'Mat t ias'

knows

Example request

• POST http://localhost:7474/db/data/node/224/traverse/node
• Accept: application/json
• Content-Type: application/json

{

 "order" : "breadth_first",

 "return_filter" : {

 "body" : "position.endNode().getProperty('name').toLowerCase().contains('t')",

 "language" : "javascript"

 },

 "prune_evaluator" : {

 "body" : "position.length() > 10",

 "language" : "javascript"

 },

 "uniqueness" : "node_global",

 "relationships" : [{

 "direction" : "all",

 "type" : "knows"

 }, {

 "direction" : "all",

 "type" : "loves"

 }],

 "max_depth" : 3

}

REST API

310

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/224/relationships/out",

 "data" : {

 "name" : "Root"

 },

 "traverse" : "http://localhost:7474/db/data/node/224/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/224/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/224/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/224",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/224/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/224/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/224/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/224/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/224/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/224/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/224/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/227/relationships/out",

 "data" : {

 "name" : "Mattias"

 },

 "traverse" : "http://localhost:7474/db/data/node/227/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/227/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/227/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/227",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/227/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/227/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/227/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/227/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/227/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/227/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/227/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/226/relationships/out",

 "data" : {

 "name" : "Peter"

 },

 "traverse" : "http://localhost:7474/db/data/node/226/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/226/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/226/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/226",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/226/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/226/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/226/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/226/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/226/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/226/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/226/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/225/relationships/out",

 "data" : {

 "name" : "Tobias"

 },

REST API

311

 "traverse" : "http://localhost:7474/db/data/node/225/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/225/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/225/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/225",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/225/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/225/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/225/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/225/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/225/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/225/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/225/relationships/in/{-list|&|types}"

}]

18.14.2. Return relationships from a traversal

Figure 18.73. Final Graph

Node[213]

nam e = 'car'

Node[214]

nam e = 'you'

Node[215]

nam e = 'I'

own know

Example request

• POST http://localhost:7474/db/data/node/215/traverse/relationship
• Accept: application/json
• Content-Type: application/json

{

 "order" : "breadth_first",

 "uniqueness" : "none",

 "return_filter" : {

 "language" : "builtin",

 "name" : "all"

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/215",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/154",

 "property" : "http://localhost:7474/db/data/relationship/154/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/154/properties",

 "type" : "know",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/214"

REST API

312

}, {

 "start" : "http://localhost:7474/db/data/node/215",

 "data" : {

 },

 "self" : "http://localhost:7474/db/data/relationship/155",

 "property" : "http://localhost:7474/db/data/relationship/155/properties/{key}",

 "properties" : "http://localhost:7474/db/data/relationship/155/properties",

 "type" : "own",

 "extensions" : {

 },

 "end" : "http://localhost:7474/db/data/node/213"

}]

18.14.3. Return paths from a traversal

Figure 18.74. Final Graph

Node[216]

nam e = 'car'

Node[217]

nam e = 'you'

Node[218]

nam e = 'I'

own know

Example request

• POST http://localhost:7474/db/data/node/218/traverse/path
• Accept: application/json
• Content-Type: application/json

{

 "order" : "breadth_first",

 "uniqueness" : "none",

 "return_filter" : {

 "language" : "builtin",

 "name" : "all"

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/218",

 "nodes" : ["http://localhost:7474/db/data/node/218"],

 "length" : 0,

 "relationships" : [],

 "end" : "http://localhost:7474/db/data/node/218"

}, {

 "start" : "http://localhost:7474/db/data/node/218",

 "nodes" : ["http://localhost:7474/db/data/node/218", "http://localhost:7474/db/data/node/217"],

 "length" : 1,

 "relationships" : ["http://localhost:7474/db/data/relationship/156"],

 "end" : "http://localhost:7474/db/data/node/217"

}, {

REST API

313

 "start" : "http://localhost:7474/db/data/node/218",

 "nodes" : ["http://localhost:7474/db/data/node/218", "http://localhost:7474/db/data/node/216"],

 "length" : 1,

 "relationships" : ["http://localhost:7474/db/data/relationship/157"],

 "end" : "http://localhost:7474/db/data/node/216"

}]

18.14.4. Traversal returning nodes below a certain depth
Here, all nodes at a traversal depth below 3 are returned.

Figure 18.75. Final Graph

Node[228]

nam e = 'Sara'

Node[229]

nam e = 'Johan'

Node[230]

nam e = 'Em il'

knows

Node[233]

nam e = 'Peter'

knows

Node[232]

nam e = 'Tobias'

knows

loves

Node[231]

nam e = 'Root '

knows

Node[234]

nam e = 'Mat t ias'

knows

Example request

• POST http://localhost:7474/db/data/node/231/traverse/node
• Accept: application/json
• Content-Type: application/json

{

 "return_filter" : {

 "body" : "position.length()<3;",

 "language" : "javascript"

 },

 "prune_evaluator" : {

 "name" : "none",

 "language" : "builtin"

 }

REST API

314

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/231/relationships/out",

 "data" : {

 "name" : "Root"

 },

 "traverse" : "http://localhost:7474/db/data/node/231/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/231/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/231/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/231",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/231/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/231/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/231/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/231/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/231/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/231/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/231/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/234/relationships/out",

 "data" : {

 "name" : "Mattias"

 },

 "traverse" : "http://localhost:7474/db/data/node/234/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/234/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/234/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/234",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/234/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/234/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/234/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/234/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/234/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/234/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/234/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/229/relationships/out",

 "data" : {

 "name" : "Johan"

 },

 "traverse" : "http://localhost:7474/db/data/node/229/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/229/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/229/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/229",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/229/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/229/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/229/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/229/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/229/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/229/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/229/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/230/relationships/out",

 "data" : {

REST API

315

 "name" : "Emil"

 },

 "traverse" : "http://localhost:7474/db/data/node/230/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/230/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/230/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/230",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/230/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/230/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/230/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/230/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/230/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/230/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/230/relationships/in/{-list|&|types}"

}]

18.14.5. Creating a paged traverser
Paged traversers are created by POST-ing a traversal description to the link identified by the
paged_traverser key in a node representation. When creating a paged traverser, the same options apply
as for a regular traverser, meaning that node, path, or fullpath, can be targeted.
Example request

• POST http://localhost:7474/db/data/node/34/paged/traverse/node
• Accept: application/json
• Content-Type: application/json

{

 "prune_evaluator" : {

 "language" : "builtin",

 "name" : "none"

 },

 "return_filter" : {

 "language" : "javascript",

 "body" : "position.endNode().getProperty('name').contains('1');"

 },

 "order" : "depth_first",

 "relationships" : {

 "type" : "NEXT",

 "direction" : "out"

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/node/34/paged/traverse/

node/48dd8b4fbd8c46cd8e737c76693bbb2b

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/35/relationships/out",

 "data" : {

 "name" : "1"

 },

 "traverse" : "http://localhost:7474/db/data/node/35/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/35/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/35/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/35",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/35/relationships/out/{-list|&|types}",

REST API

316

 "properties" : "http://localhost:7474/db/data/node/35/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/35/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/35/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/35/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/35/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/35/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/44/relationships/out",

 "data" : {

 "name" : "10"

 },

 "traverse" : "http://localhost:7474/db/data/node/44/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/44/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/44/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/44",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/44/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/44/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/44/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/44/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/44/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/44/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/44/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/45/relationships/out",

 "data" : {

 "name" : "11"

 },

 "traverse" : "http://localhost:7474/db/data/node/45/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/45/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/45/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/45",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/45/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/45/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/45/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/45/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/45/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/45/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/45/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/46/relationships/out",

 "data" : {

 "name" : "12"

 },

 "traverse" : "http://localhost:7474/db/data/node/46/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/46/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/46/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/46",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/46/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/46/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/46/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/46/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/46/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/46/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/46/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/47/relationships/out",

 "data" : {

REST API

317

 "name" : "13"

 },

 "traverse" : "http://localhost:7474/db/data/node/47/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/47/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/47/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/47",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/47/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/47/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/47/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/47/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/47/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/47/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/47/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/48/relationships/out",

 "data" : {

 "name" : "14"

 },

 "traverse" : "http://localhost:7474/db/data/node/48/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/48/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/48/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/48",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/48/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/48/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/48/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/48/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/48/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/48/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/48/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/49/relationships/out",

 "data" : {

 "name" : "15"

 },

 "traverse" : "http://localhost:7474/db/data/node/49/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/49/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/49/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/49",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/49/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/49/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/49/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/49/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/49/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/49/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/49/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/50/relationships/out",

 "data" : {

 "name" : "16"

 },

 "traverse" : "http://localhost:7474/db/data/node/50/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/50/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/50/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/50",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/50/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/50/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/50/relationships/in",

 "extensions" : {

 },

REST API

318

 "create_relationship" : "http://localhost:7474/db/data/node/50/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/50/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/50/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/50/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/51/relationships/out",

 "data" : {

 "name" : "17"

 },

 "traverse" : "http://localhost:7474/db/data/node/51/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/51/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/51/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/51",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/51/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/51/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/51/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/51/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/51/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/51/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/51/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/52/relationships/out",

 "data" : {

 "name" : "18"

 },

 "traverse" : "http://localhost:7474/db/data/node/52/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/52/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/52/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/52",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/52/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/52/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/52/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/52/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/52/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/52/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/52/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/53/relationships/out",

 "data" : {

 "name" : "19"

 },

 "traverse" : "http://localhost:7474/db/data/node/53/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/53/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/53/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/53",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/53/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/53/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/53/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/53/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/53/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/53/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/53/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/55/relationships/out",

 "data" : {

 "name" : "21"

 },

 "traverse" : "http://localhost:7474/db/data/node/55/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/55/relationships/all/{-list|&|types}",

REST API

319

 "property" : "http://localhost:7474/db/data/node/55/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/55",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/55/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/55/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/55/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/55/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/55/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/55/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/55/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/65/relationships/out",

 "data" : {

 "name" : "31"

 },

 "traverse" : "http://localhost:7474/db/data/node/65/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/65/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/65/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/65",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/65/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/65/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/65/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/65/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/65/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/65/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/65/relationships/in/{-list|&|types}"

}]

18.14.6. Paging through the results of a paged traverser
Paged traversers hold state on the server, and allow clients to page through the results of a traversal.
To progress to the next page of traversal results, the client issues a HTTP GET request on the paged
traversal URI which causes the traversal to fill the next page (or partially fill it if insufficient results
are available).
Note that if a traverser expires through inactivity it will cause a 404 response on the next GET request.
Traversers' leases are renewed on every successful access for the same amount of time as originally
specified.
When the paged traverser reaches the end of its results, the client can expect a 404 response as the
traverser is disposed by the server.
Example request

• GET http://localhost:7474/db/data/node/67/paged/traverse/node/cac6ce28c8b74b269b0d40f60a19689f
• Accept: application/json

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/398/relationships/out",

 "data" : {

 "name" : "331"

 },

 "traverse" : "http://localhost:7474/db/data/node/398/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/398/relationships/all/{-list|&|types}",

REST API

320

 "property" : "http://localhost:7474/db/data/node/398/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/398",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/398/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/398/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/398/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/398/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/398/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/398/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/398/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/408/relationships/out",

 "data" : {

 "name" : "341"

 },

 "traverse" : "http://localhost:7474/db/data/node/408/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/408/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/408/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/408",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/408/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/408/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/408/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/408/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/408/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/408/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/408/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/418/relationships/out",

 "data" : {

 "name" : "351"

 },

 "traverse" : "http://localhost:7474/db/data/node/418/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/418/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/418/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/418",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/418/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/418/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/418/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/418/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/418/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/418/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/418/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/428/relationships/out",

 "data" : {

 "name" : "361"

 },

 "traverse" : "http://localhost:7474/db/data/node/428/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/428/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/428/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/428",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/428/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/428/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/428/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/428/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/428/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/428/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/428/relationships/in/{-list|&|types}"

REST API

321

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/438/relationships/out",

 "data" : {

 "name" : "371"

 },

 "traverse" : "http://localhost:7474/db/data/node/438/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/438/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/438/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/438",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/438/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/438/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/438/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/438/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/438/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/438/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/438/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/448/relationships/out",

 "data" : {

 "name" : "381"

 },

 "traverse" : "http://localhost:7474/db/data/node/448/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/448/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/448/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/448",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/448/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/448/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/448/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/448/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/448/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/448/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/448/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/458/relationships/out",

 "data" : {

 "name" : "391"

 },

 "traverse" : "http://localhost:7474/db/data/node/458/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/458/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/458/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/458",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/458/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/458/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/458/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/458/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/458/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/458/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/458/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/468/relationships/out",

 "data" : {

 "name" : "401"

 },

 "traverse" : "http://localhost:7474/db/data/node/468/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/468/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/468/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/468",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/468/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/468/properties",

REST API

322

 "incoming_relationships" : "http://localhost:7474/db/data/node/468/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/468/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/468/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/468/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/468/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/477/relationships/out",

 "data" : {

 "name" : "410"

 },

 "traverse" : "http://localhost:7474/db/data/node/477/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/477/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/477/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/477",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/477/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/477/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/477/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/477/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/477/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/477/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/477/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/478/relationships/out",

 "data" : {

 "name" : "411"

 },

 "traverse" : "http://localhost:7474/db/data/node/478/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/478/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/478/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/478",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/478/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/478/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/478/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/478/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/478/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/478/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/478/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/479/relationships/out",

 "data" : {

 "name" : "412"

 },

 "traverse" : "http://localhost:7474/db/data/node/479/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/479/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/479/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/479",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/479/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/479/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/479/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/479/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/479/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/479/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/479/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/480/relationships/out",

 "data" : {

 "name" : "413"

REST API

323

 },

 "traverse" : "http://localhost:7474/db/data/node/480/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/480/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/480/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/480",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/480/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/480/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/480/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/480/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/480/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/480/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/480/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/481/relationships/out",

 "data" : {

 "name" : "414"

 },

 "traverse" : "http://localhost:7474/db/data/node/481/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/481/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/481/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/481",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/481/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/481/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/481/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/481/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/481/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/481/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/481/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/482/relationships/out",

 "data" : {

 "name" : "415"

 },

 "traverse" : "http://localhost:7474/db/data/node/482/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/482/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/482/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/482",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/482/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/482/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/482/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/482/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/482/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/482/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/482/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/483/relationships/out",

 "data" : {

 "name" : "416"

 },

 "traverse" : "http://localhost:7474/db/data/node/483/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/483/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/483/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/483",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/483/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/483/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/483/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/483/relationships",

REST API

324

 "paged_traverse" : "http://localhost:7474/db/data/node/483/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/483/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/483/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/484/relationships/out",

 "data" : {

 "name" : "417"

 },

 "traverse" : "http://localhost:7474/db/data/node/484/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/484/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/484/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/484",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/484/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/484/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/484/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/484/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/484/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/484/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/484/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/485/relationships/out",

 "data" : {

 "name" : "418"

 },

 "traverse" : "http://localhost:7474/db/data/node/485/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/485/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/485/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/485",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/485/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/485/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/485/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/485/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/485/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/485/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/485/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/486/relationships/out",

 "data" : {

 "name" : "419"

 },

 "traverse" : "http://localhost:7474/db/data/node/486/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/486/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/486/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/486",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/486/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/486/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/486/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/486/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/486/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/486/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/486/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/488/relationships/out",

 "data" : {

 "name" : "421"

 },

 "traverse" : "http://localhost:7474/db/data/node/488/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/488/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/488/properties/{key}",

REST API

325

 "self" : "http://localhost:7474/db/data/node/488",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/488/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/488/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/488/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/488/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/488/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/488/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/488/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/498/relationships/out",

 "data" : {

 "name" : "431"

 },

 "traverse" : "http://localhost:7474/db/data/node/498/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/498/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/498/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/498",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/498/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/498/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/498/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/498/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/498/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/498/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/498/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/508/relationships/out",

 "data" : {

 "name" : "441"

 },

 "traverse" : "http://localhost:7474/db/data/node/508/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/508/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/508/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/508",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/508/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/508/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/508/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/508/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/508/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/508/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/508/relationships/in/{-list|&|types}"

}]

18.14.7. Paged traverser page size
The default page size is 50 items, but depending on the application larger or smaller pages sizes might
be appropriate. This can be set by adding a pageSize query parameter.
Example request

• POST http://localhost:7474/db/data/node/544/paged/traverse/node?pageSize=1
• Accept: application/json
• Content-Type: application/json

{

 "prune_evaluator" : {

 "language" : "builtin",

 "name" : "none"

 },

REST API

326

 "return_filter" : {

 "language" : "javascript",

 "body" : "position.endNode().getProperty('name').contains('1');"

 },

 "order" : "depth_first",

 "relationships" : {

 "type" : "NEXT",

 "direction" : "out"

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/node/544/paged/traverse/node/

aaef15396ee74d8aa9315844fe0bf728

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/545/relationships/out",

 "data" : {

 "name" : "1"

 },

 "traverse" : "http://localhost:7474/db/data/node/545/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/545/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/545/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/545",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/545/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/545/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/545/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/545/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/545/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/545/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/545/relationships/in/{-list|&|types}"

}]

18.14.8. Paged traverser timeout
The default timeout for a paged traverser is 60 seconds, but depending on the application larger or
smaller timeouts might be appropriate. This can be set by adding a leaseTime query parameter with the
number of seconds the paged traverser should last.
Example request

• POST http://localhost:7474/db/data/node/577/paged/traverse/node?leaseTime=10
• Accept: application/json
• Content-Type: application/json

{

 "prune_evaluator" : {

 "language" : "builtin",

 "name" : "none"

 },

 "return_filter" : {

 "language" : "javascript",

 "body" : "position.endNode().getProperty('name').contains('1');"

 },

 "order" : "depth_first",

 "relationships" : {

 "type" : "NEXT",

REST API

327

 "direction" : "out"

 }

}

Example response

• 201: Created
• Content-Type: application/json
• Location: http://localhost:7474/db/data/node/577/paged/traverse/

node/98105ec2002b4221b05b0e879da2bfc6

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/578/relationships/out",

 "data" : {

 "name" : "1"

 },

 "traverse" : "http://localhost:7474/db/data/node/578/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/578/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/578/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/578",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/578/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/578/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/578/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/578/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/578/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/578/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/578/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/587/relationships/out",

 "data" : {

 "name" : "10"

 },

 "traverse" : "http://localhost:7474/db/data/node/587/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/587/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/587/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/587",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/587/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/587/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/587/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/587/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/587/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/587/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/587/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/588/relationships/out",

 "data" : {

 "name" : "11"

 },

 "traverse" : "http://localhost:7474/db/data/node/588/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/588/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/588/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/588",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/588/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/588/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/588/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/588/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/588/paged/traverse/{returnType}{?pageSize,leaseTime}",

REST API

328

 "all_relationships" : "http://localhost:7474/db/data/node/588/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/588/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/589/relationships/out",

 "data" : {

 "name" : "12"

 },

 "traverse" : "http://localhost:7474/db/data/node/589/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/589/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/589/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/589",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/589/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/589/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/589/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/589/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/589/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/589/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/589/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/590/relationships/out",

 "data" : {

 "name" : "13"

 },

 "traverse" : "http://localhost:7474/db/data/node/590/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/590/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/590/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/590",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/590/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/590/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/590/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/590/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/590/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/590/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/590/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/591/relationships/out",

 "data" : {

 "name" : "14"

 },

 "traverse" : "http://localhost:7474/db/data/node/591/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/591/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/591/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/591",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/591/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/591/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/591/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/591/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/591/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/591/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/591/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/592/relationships/out",

 "data" : {

 "name" : "15"

 },

 "traverse" : "http://localhost:7474/db/data/node/592/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/592/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/592/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/592",

REST API

329

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/592/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/592/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/592/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/592/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/592/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/592/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/592/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/593/relationships/out",

 "data" : {

 "name" : "16"

 },

 "traverse" : "http://localhost:7474/db/data/node/593/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/593/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/593/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/593",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/593/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/593/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/593/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/593/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/593/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/593/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/593/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/594/relationships/out",

 "data" : {

 "name" : "17"

 },

 "traverse" : "http://localhost:7474/db/data/node/594/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/594/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/594/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/594",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/594/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/594/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/594/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/594/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/594/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/594/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/594/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/595/relationships/out",

 "data" : {

 "name" : "18"

 },

 "traverse" : "http://localhost:7474/db/data/node/595/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/595/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/595/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/595",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/595/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/595/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/595/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/595/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/595/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/595/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/595/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/596/relationships/out",

REST API

330

 "data" : {

 "name" : "19"

 },

 "traverse" : "http://localhost:7474/db/data/node/596/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/596/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/596/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/596",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/596/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/596/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/596/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/596/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/596/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/596/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/596/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/598/relationships/out",

 "data" : {

 "name" : "21"

 },

 "traverse" : "http://localhost:7474/db/data/node/598/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/598/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/598/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/598",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/598/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/598/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/598/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/598/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/598/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/598/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/598/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/608/relationships/out",

 "data" : {

 "name" : "31"

 },

 "traverse" : "http://localhost:7474/db/data/node/608/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/608/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/608/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/608",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/608/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/608/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/608/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/608/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/608/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/608/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/608/relationships/in/{-list|&|types}"

}]

REST API

331

18.15. Built-in Graph Algorithms
Neo4j comes with a number of built-in graph algorithms. They are performed from a start node. The
traversal is controlled by the URI and the body sent with the request.

algorithm
The algorithm to choose. If not set, default is shortestPath. algorithm can have one of these values:
• shortestPath

• allSimplePaths

• allPaths

• dijkstra (optional with cost_property and default_cost parameters)
max_depth

The maximum depth as an integer for the algorithms like ShortestPath, where applicable. Default
is 1.

18.15.1. Find all shortest paths
The shortestPath algorithm can find multiple paths between the same nodes, like in this example.

Figure 18.76. Final Graph

Node[281]

nam e = 'f '

Node[282]

nam e = 'g'

to

Node[283]

nam e = 'd'

to
Node[284]

nam e = 'e'

to

to

Node[285]

nam e = 'b'

to

Node[286]

nam e = 'c'

to

to

to

Node[287]

nam e = 'a'

to

to

Example request

• POST http://localhost:7474/db/data/node/287/paths

REST API

332

• Accept: application/json
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/282",

 "max_depth" : 3,

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "shortestPath"

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "start" : "http://localhost:7474/db/data/node/287",

 "nodes" : ["http://localhost:7474/db/data/node/287", "http://localhost:7474/db/data/node/283", "http://localhost:7474/db/data/node/282"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/193", "http://localhost:7474/db/data/relationship/199"],

 "end" : "http://localhost:7474/db/data/node/282"

}, {

 "start" : "http://localhost:7474/db/data/node/287",

 "nodes" : ["http://localhost:7474/db/data/node/287", "http://localhost:7474/db/data/node/286", "http://localhost:7474/db/data/node/282"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/192", "http://localhost:7474/db/data/relationship/201"],

 "end" : "http://localhost:7474/db/data/node/282"

}]

18.15.2. Find one of the shortest paths between nodes
If no path algorithm is specified, a ShortestPath algorithm with a max depth of 1 will be chosen. In
this example, the max_depth is set to 3 in order to find the shortest path between 3 linked nodes.

REST API

333

Figure 18.77. Final Graph

Node[288]

nam e = 'f '

Node[289]

nam e = 'g'

to

Node[290]

nam e = 'd'

to
Node[291]

nam e = 'e'

to

to

Node[292]

nam e = 'b'

to

Node[293]

nam e = 'c'

to

to

to

Node[294]

nam e = 'a'

to

to

Example request

• POST http://localhost:7474/db/data/node/294/path
• Accept: application/json
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/289",

 "max_depth" : 3,

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "shortestPath"

}

Example response

• 200: OK
• Content-Type: application/json

{

 "start" : "http://localhost:7474/db/data/node/294",

 "nodes" : ["http://localhost:7474/db/data/node/294", "http://localhost:7474/db/data/node/290", "http://localhost:7474/db/data/node/289"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/203", "http://localhost:7474/db/data/relationship/209"],

REST API

334

 "end" : "http://localhost:7474/db/data/node/289"

}

REST API

335

18.15.3. Execute a Dijkstra algorithm with similar weights on relationships

Figure 18.78. Final Graph

Node[304]

nam e = 'f '

Node[305]

nam e = 'd'

Node[312]

nam e = 'x '

to
cost = 1

Node[306]

nam e = 'e'

to
cost = 1

Node[311]

nam e = 'y '

to
cost = 1

to
cost = 1

to
cost = 1

Node[307]

nam e = 'b'

to
cost = 1

Node[308]

nam e = 'c'

to
cost = 1

to
cost = 1

to
cost = 1

to
cost = 1

Node[309]

nam e = 'start '

Node[310]

nam e = 'a'

to
cost = 1

to
cost = 1

to
cost = 1

Example request

REST API

336

• POST http://localhost:7474/db/data/node/309/path
• Accept: application/json
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/312",

 "cost_property" : "cost",

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "dijkstra"

}

Example response

• 200: OK
• Content-Type: application/json

{

 "weight" : 2.0,

 "start" : "http://localhost:7474/db/data/node/309",

 "nodes" : ["http://localhost:7474/db/data/node/309", "http://localhost:7474/db/data/node/310", "http://localhost:7474/db/data/node/312"],

 "length" : 2,

 "relationships" : ["http://localhost:7474/db/data/relationship/225", "http://localhost:7474/db/data/relationship/226"],

 "end" : "http://localhost:7474/db/data/node/312"

}

REST API

337

18.15.4. Execute a Dijkstra algorithm with weights on relationships

Figure 18.79. Final Graph

Node[295]

nam e = 'f '

Node[296]

nam e = 'd'

Node[303]

nam e = 'x '

to
cost = 3.0

Node[297]

nam e = 'e'

to
cost = 1.0

Node[302]

nam e = 'y '

to
cost = 2.0

to
cost = 2.0

to
cost = 1.0

Node[298]

nam e = 'b'

to
cost = 7.0

Node[299]

nam e = 'c'

to
cost = 1.0

to
cost = 1.0

to
cost = 5.0

to
cost = 4.0

Node[300]

nam e = 'start '

Node[301]

nam e = 'a'

to
cost = 1.0

to
cost = 9.0

to
cost = 1.0

Example request

REST API

338

• POST http://localhost:7474/db/data/node/300/path
• Accept: application/json
• Content-Type: application/json

{

 "to" : "http://localhost:7474/db/data/node/303",

 "cost_property" : "cost",

 "relationships" : {

 "type" : "to",

 "direction" : "out"

 },

 "algorithm" : "dijkstra"

}

Example response

• 200: OK
• Content-Type: application/json

{

 "weight" : 6.0,

 "start" : "http://localhost:7474/db/data/node/300",

 "nodes" : ["http://localhost:7474/db/data/node/300", "http://localhost:7474/db/data/node/301", "http://localhost:7474/db/data/node/298", "http://localhost:7474/db/data/node/299", "http://localhost:7474/db/data/node/296", "http://localhost:7474/db/data/node/297", "http://localhost:7474/db/data/node/303"],

 "length" : 6,

 "relationships" : ["http://localhost:7474/db/data/relationship/212", "http://localhost:7474/db/data/relationship/214", "http://localhost:7474/db/data/relationship/216", "http://localhost:7474/db/data/relationship/219", "http://localhost:7474/db/data/relationship/221", "http://localhost:7474/db/data/relationship/222"],

 "end" : "http://localhost:7474/db/data/node/303"

}

REST API

339

18.16. Batch operations
18.16.1. Execute multiple operations in batch

This lets you execute multiple API calls through a single HTTP call, significantly improving
performance for large insert and update operations.
The batch service expects an array of job descriptions as input, each job description describing an
action to be performed via the normal server API.
This service is transactional. If any of the operations performed fails (returns a non-2xx HTTP status
code), the transaction will be rolled back and all changes will be undone.
Each job description should contain a to attribute, with a value relative to the data API root (so http://
localhost:7474/db/data/node becomes just /node), and a method attribute containing HTTP verb to use.
Optionally you may provide a body attribute, and an id attribute to help you keep track of responses,
although responses are guaranteed to be returned in the same order the job descriptions are received.
The following figure outlines the different parts of the job descriptions:

Figure 18.80. Final Graph

Node[262]

nam e = 'John'

Node[263]

age = 1

knows

Node[264]

age = 1

Node[265]

age = 1

Example request

• POST http://localhost:7474/db/data/batch
• Accept: application/json
• Content-Type: application/json

[{

 "method" : "PUT",

 "to" : "/node/263/properties",

 "body" : {

 "age" : 1

 },

 "id" : 0

}, {

 "method" : "GET",

http://localhost:7474/db/data/node
http://localhost:7474/db/data/node

REST API

340

 "to" : "/node/263",

 "id" : 1

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 2

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 3

}]

Example response

• 200: OK
• Content-Type: application/json

[{

 "id" : 0,

 "from" : "/node/263/properties"

}, {

 "id" : 1,

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/263/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/263/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/263/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/263/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/263/relationships/all",

 "property" : "http://localhost:7474/db/data/node/263/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/263",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/263/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/263/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/263/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/263/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/263/relationships",

 "data" : {

 "age" : 1

 }

 },

 "from" : "/node/263"

}, {

 "id" : 2,

 "location" : "http://localhost:7474/db/data/node/264",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/264/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/264/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/264/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/264/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/264/relationships/all",

 "property" : "http://localhost:7474/db/data/node/264/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/264",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/264/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/264/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/264/relationships/in",

REST API

341

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/264/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/264/relationships",

 "data" : {

 "age" : 1

 }

 },

 "from" : "/node"

}, {

 "id" : 3,

 "location" : "http://localhost:7474/db/data/node/265",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/265/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/265/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/265/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/265/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/265/relationships/all",

 "property" : "http://localhost:7474/db/data/node/265/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/265",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/265/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/265/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/265/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/265/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/265/relationships",

 "data" : {

 "age" : 1

 }

 },

 "from" : "/node"

}]

18.16.2. Refer to items created earlier in the same batch job
The batch operation API allows you to refer to the URI returned from a created resource in subsequent
job descriptions, within the same batch call.
Use the {[JOB ID]} special syntax to inject URIs from created resources into JSON strings in
subsequent job descriptions.

Figure 18.81. Final Graph

Node[266]

nam e = 'bob'

Node[267]

age = 12

KNOWS
since = '2010'

Example request

• POST http://localhost:7474/db/data/batch
• Accept: application/json
• Content-Type: application/json

[{

 "method" : "POST",

REST API

342

 "to" : "/node",

 "id" : 0,

 "body" : {

 "name" : "bob"

 }

}, {

 "method" : "POST",

 "to" : "/node",

 "id" : 1,

 "body" : {

 "age" : 12

 }

}, {

 "method" : "POST",

 "to" : "{0}/relationships",

 "id" : 3,

 "body" : {

 "to" : "{1}",

 "data" : {

 "since" : "2010"

 },

 "type" : "KNOWS"

 }

}, {

 "method" : "POST",

 "to" : "/index/relationship/my_rels",

 "id" : 4,

 "body" : {

 "key" : "since",

 "value" : "2010",

 "uri" : "{3}"

 }

}]

Example response

• 200: OK
• Content-Type: application/json

[{

 "id" : 0,

 "location" : "http://localhost:7474/db/data/node/266",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/266/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/266/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/266/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/266/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/266/relationships/all",

 "property" : "http://localhost:7474/db/data/node/266/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/266",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/266/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/266/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/266/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/266/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/266/relationships",

 "data" : {

 "name" : "bob"

 }

 },

 "from" : "/node"

}, {

 "id" : 1,

REST API

343

 "location" : "http://localhost:7474/db/data/node/267",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/267/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/267/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/267/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/267/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/267/relationships/all",

 "property" : "http://localhost:7474/db/data/node/267/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/267",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/267/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/267/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/267/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/267/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/267/relationships",

 "data" : {

 "age" : 12

 }

 },

 "from" : "/node"

}, {

 "id" : 3,

 "location" : "http://localhost:7474/db/data/relationship/187",

 "body" : {

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/266",

 "property" : "http://localhost:7474/db/data/relationship/187/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/187",

 "properties" : "http://localhost:7474/db/data/relationship/187/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/267",

 "data" : {

 "since" : "2010"

 }

 },

 "from" : "http://localhost:7474/db/data/node/266/relationships"

}, {

 "id" : 4,

 "location" : "http://localhost:7474/db/data/index/relationship/my_rels/since/2010/187",

 "body" : {

 "extensions" : {

 },

 "start" : "http://localhost:7474/db/data/node/266",

 "property" : "http://localhost:7474/db/data/relationship/187/properties/{key}",

 "self" : "http://localhost:7474/db/data/relationship/187",

 "properties" : "http://localhost:7474/db/data/relationship/187/properties",

 "type" : "KNOWS",

 "end" : "http://localhost:7474/db/data/node/267",

 "data" : {

 "since" : "2010"

 },

 "indexed" : "http://localhost:7474/db/data/index/relationship/my_rels/since/2010/187"

 },

 "from" : "/index/relationship/my_rels"

}]

REST API

344

18.16.3. Execute multiple operations in batch streaming
Figure 18.82. Final Graph

Node[77]

nam e = 'John'

Node[78]

age = 1

knows

Node[79]

age = 1

Node[80]

age = 1

Example request

• POST http://localhost:7474/db/data/batch
• Accept: application/json
• Content-Type: application/json
• X-Stream: true

[{

 "method" : "PUT",

 "to" : "/node/78/properties",

 "body" : {

 "age" : 1

 },

 "id" : 0

}, {

 "method" : "GET",

 "to" : "/node/78",

 "id" : 1

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 2

}, {

 "method" : "POST",

 "to" : "/node",

 "body" : {

 "age" : 1

 },

 "id" : 3

}]

Example response

• 200: OK
• Content-Type: application/json

[{

 "id" : 0,

 "from" : "/node/78/properties",

 "body" : null,

 "status" : 204

}, {

 "id" : 1,

REST API

345

 "from" : "/node/78",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/78/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/78/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/78/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/78/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/78/relationships/all",

 "property" : "http://localhost:7474/db/data/node/78/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/78",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/78/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/78/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/78/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/78/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/78/relationships",

 "data" : {

 "age" : 1

 }

 },

 "status" : 200

}, {

 "id" : 2,

 "from" : "/node",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/79/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/79/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/79/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/79/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/79/relationships/all",

 "property" : "http://localhost:7474/db/data/node/79/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/79",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/79/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/79/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/79/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/79/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/79/relationships",

 "data" : {

 "age" : 1

 }

 },

 "location" : "http://localhost:7474/db/data/node/79",

 "status" : 201

}, {

 "id" : 3,

 "from" : "/node",

 "body" : {

 "extensions" : {

 },

 "paged_traverse" : "http://localhost:7474/db/data/node/80/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "outgoing_relationships" : "http://localhost:7474/db/data/node/80/relationships/out",

 "traverse" : "http://localhost:7474/db/data/node/80/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/80/relationships/all/{-list|&|types}",

 "all_relationships" : "http://localhost:7474/db/data/node/80/relationships/all",

 "property" : "http://localhost:7474/db/data/node/80/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/80",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/80/relationships/out/{-list|&|types}",

 "properties" : "http://localhost:7474/db/data/node/80/properties",

 "incoming_relationships" : "http://localhost:7474/db/data/node/80/relationships/in",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/80/relationships/in/{-list|&|types}",

 "create_relationship" : "http://localhost:7474/db/data/node/80/relationships",

 "data" : {

 "age" : 1

REST API

346

 }

 },

 "location" : "http://localhost:7474/db/data/node/80",

 "status" : 201

}]

REST API

347

18.17. WADL Support
The Neo4j REST API is a truly RESTful interface relying on hypermedia controls (links) to advertise
permissible actions to users. Hypermedia is a dynamic interface style where declarative constructs
(semantic markup) are used to inform clients of their next legal choices just in time.

Caution
RESTful APIs cannot be modelled by static interface description languages like WSDL or
WADL.

However for some use cases, developers may wish to expose WADL descriptions of the Neo4j REST
API, particularly when using tooling that expects such.

In those cases WADL generation may be enabled by adding to your server’s neo4j.properties file:
unsupported_wadl_generation_enabled=true

Caution
WADL is not an officially supported part of the Neo4j server API because WADL is
insufficiently expressive to capture the set of potential interactions a client can drive
with Neo4j server. Expect the WADL description to be incomplete, and in some cases
contradictory to the real API. In any cases where the WADL description disagrees with the
REST API, the REST API should be considered authoritative. WADL generation may be
withdrawn at any point in the Neo4j release cycle.

REST API

348

18.18. Gremlin Plugin

Gremlin <http://gremlin.tinkerpop.com> is a Groovy based Graph Traversal Language. It provides a
very expressive way of explicitly scripting traversals through a Neo4j graph.
The Neo4j Gremlin Plugin provides an endpoint to send Gremlin scripts to the Neo4j Server.
The scripts are executed on the server database and the results are returned as Neo4j Node and
Relationship representations. This keeps the types throughout the REST API consistent. The results
are quite verbose when returning Neo4j Node, Relationship or Graph representations. On the other hand,
just return properties like in the Section 18.18.4, “Send a Gremlin Script - JSON encoded with table
results” example for responses tailored to specific needs.

Warning
The Gremlin plugin lets you execute arbitrary Groovy code under the hood. In hosted
and open environments, this can constitute a security risk. In these case, consider using
declarative approaches like Chapter 15, Cypher Query Language or write your own server
side plugin executing the interesting Gremlin or Java routines, see Section 10.1, “Server
Plugins” or secure your server, see Section 24.1, “Securing access to the Neo4j Server”.

Tip
When returning results from pipes like g.v(0).in(), make sure to iterate through the
results in order not to return the pipe object but its content, like g.v(0).in().iterate(). For
more caveats, see Gremlin Troubleshooting <https://github.com/tinkerpop/gremlin/wiki/
Troubleshooting>

18.18.1. Send a Gremlin Script - URL encoded
Scripts can be sent as URL-encoded In this example, the graph has been autoindexed by Neo4j, so we
can look up the name property on nodes.
Raw script source
g.idx('node_auto_index')[[name:'I']].out

Figure 18.83. Final Graph

Node[0]

Node[1]

nam e = 'you'

Node[2]

nam e = 'I'

know

Example request

http://gremlin.tinkerpop.com
http://gremlin.tinkerpop.com
https://github.com/tinkerpop/gremlin/wiki/Troubleshooting
https://github.com/tinkerpop/gremlin/wiki/Troubleshooting
https://github.com/tinkerpop/gremlin/wiki/Troubleshooting

REST API

349

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/x-www-form-urlencoded

script=g.idx%28%27node_auto_index%27%29%5B%5Bname%3A%27I%27%5D%5D.out

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/1/relationships/out",

 "data" : {

 "name" : "you"

 },

 "traverse" : "http://localhost:7474/db/data/node/1/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/1/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/1/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/1",

 "properties" : "http://localhost:7474/db/data/node/1/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/1/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/1/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/1/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/1/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/1/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/1/relationships/in/{-list|&|types}"

}]

18.18.2. Load a sample graph
Import a graph form a GraphML <http://graphml.graphdrawing.org/> file can be achieved through
the Gremlin GraphMLReader. The following script imports a small GraphML file from an URL into
Neo4j, resulting in the depicted graph. The underlying database is auto-indexed, see Section 14.12,
“Automatic Indexing” so the script can return the imported node by index lookup.
Raw script source
g.clear()

g.loadGraphML('file:/mnt/ssd/jenkins/workspace/release-candidate-master/target/gremlin-plugin/target/test-classes/graphml.xml')

g.idx('node_auto_index')[[name:'you']]

Figure 18.84. Final Graph

Node[9]

nam e = 'I'

Node[10]

nam e = 'you'

know
weight = 0.5

Node[11]

nam e = 'him '

know
weight = 0.8

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script

http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/

REST API

350

• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.clear();g.loadGraphML('file:/mnt/ssd/jenkins/workspace/release-candidate-master/target/gremlin-plugin/target/test-classes/graphml.xml');g.idx('node_auto_index')[[name:'you']];",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/10/relationships/out",

 "data" : {

 "name" : "you"

 },

 "traverse" : "http://localhost:7474/db/data/node/10/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/10/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/10/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/10",

 "properties" : "http://localhost:7474/db/data/node/10/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/10/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/10/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/10/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/10/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/10/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/10/relationships/in/{-list|&|types}"

}]

18.18.3. Sort a result using raw Groovy operations
The following script returns a sorted list of all nodes connected via outgoing relationships to node 1,
sorted by their name-property.
Raw script source
g.idx('node_auto_index')[[name:'I']].out.sort{it.name}

Figure 18.85. Final Graph

Node[15]

nam e = 'you'

Node[16]

nam e = 'him '

Node[17]

nam e = 'I'

know know

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

REST API

351

{

 "script" : "g.idx('node_auto_index')[[name:'I']].out.sort{it.name}",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/16/relationships/out",

 "data" : {

 "name" : "him"

 },

 "traverse" : "http://localhost:7474/db/data/node/16/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/16/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/16/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/16",

 "properties" : "http://localhost:7474/db/data/node/16/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/16/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/16/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/16/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/16/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/16/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/16/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/15/relationships/out",

 "data" : {

 "name" : "you"

 },

 "traverse" : "http://localhost:7474/db/data/node/15/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/15/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/15/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/15",

 "properties" : "http://localhost:7474/db/data/node/15/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/15/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/15/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/15/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/15/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/15/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/15/relationships/in/{-list|&|types}"

}]

18.18.4. Send a Gremlin Script - JSON encoded with table results
To send a Script JSON encoded, set the payload Content-Type Header. In this example, find all the
things that my friends like, and return a table listing my friends by their name, and the names of the
things they like in a table with two columns, ignoring the third named step variable I. Remember that
everything in Gremlin is an iterator - in order to populate the result table t, iterate through the pipes
with iterate().

Raw script source

t= new Table()

g.v(23).as('I').out('know').as('friend').out('like').as('likes').table(t,['friend','likes']){it.name}{it.name}.iterate()

t

REST API

352

Figure 18.86. Final Graph

Node[21]

nam e = 'cats'

Node[22]

nam e = 'dogs'

Node[23]

nam e = 'I'

like
Node[24]

nam e = 'Joe'

know

like like

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "t= new Table();g.v(23).as('I').out('know').as('friend').out('like').as('likes').table(t,['friend','likes']){it.name}{it.name}.iterate();t;",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "columns" : ["friend", "likes"],

 "data" : [["Joe", "cats"], ["Joe", "dogs"]]

}

18.18.5. Returning nested pipes
Raw script source

g.v(27).as('I').out('know').as('friend').out('like').as('likes').table(new Table()){it.name}{it.name}.cap

REST API

353

Figure 18.87. Final Graph

Node[25]

nam e = 'cats'

Node[26]

nam e = 'dogs'

Node[27]

nam e = 'I'

like
Node[28]

nam e = 'Joe'

know

like like

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.v(27).as('I').out('know').as('friend').out('like').as('likes').table(new Table()){it.name}{it.name}.cap;",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "data" : [["I", "Joe", "cats"], ["I", "Joe", "dogs"]],

 "columns" : ["I", "friend", "likes"]

}]

18.18.6. Set script variables
To set variables in the bindings for the Gremlin Script Engine on the server, you can include a params
parameter with a String representing a JSON map of variables to set to initial values. These can then
be accessed as normal variables within the script.
Raw script source
meaning_of_life

Figure 18.88. Final Graph

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

REST API

354

{

 "script" : "meaning_of_life",

 "params" : {

 "meaning_of_life" : 42.0

 }

}

Example response

• 200: OK
• Content-Type: application/json

42.0

18.18.7. Send a Gremlin Script with variables in a JSON Map
Send a Gremlin Script, as JSON payload and additional parameters
Raw script source
g.v(me).out

Figure 18.89. Final Graph

Node[5]

nam e = 'you'

Node[6]

nam e = 'I'

know

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.v(me).out",

 "params" : {

 "me" : "6"

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/5/relationships/out",

 "data" : {

 "name" : "you"

 },

 "traverse" : "http://localhost:7474/db/data/node/5/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/5/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/5/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/5",

REST API

355

 "properties" : "http://localhost:7474/db/data/node/5/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/5/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/5/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/5/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/5/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/5/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/5/relationships/in/{-list|&|types}"

}]

18.18.8. Return paths from a Gremlin script
The following script returns paths. Paths in Gremlin consist of the pipes that make up the path from
the starting pipes. The server is returning JSON representations of their content as a nested list.
Raw script source
g.v(20).out.name.paths

Figure 18.90. Final Graph

Node[18]

nam e = 'you'

Node[19]

nam e = 'him '

Node[20]

nam e = 'I'

know know

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.v(20).out.name.paths",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/20/relationships/out",

 "data" : {

 "name" : "I"

 },

 "traverse" : "http://localhost:7474/db/data/node/20/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/20/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/20/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/20",

 "properties" : "http://localhost:7474/db/data/node/20/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/20/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/20/relationships/in",

REST API

356

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/20/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/20/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/20/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/20/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/18/relationships/out",

 "data" : {

 "name" : "you"

 },

 "traverse" : "http://localhost:7474/db/data/node/18/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/18/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/18/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/18",

 "properties" : "http://localhost:7474/db/data/node/18/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/18/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/18/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/18/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/18/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/18/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/18/relationships/in/{-list|&|types}"

}, "you"], [{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/20/relationships/out",

 "data" : {

 "name" : "I"

 },

 "traverse" : "http://localhost:7474/db/data/node/20/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/20/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/20/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/20",

 "properties" : "http://localhost:7474/db/data/node/20/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/20/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/20/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/20/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/20/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/20/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/20/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/19/relationships/out",

 "data" : {

 "name" : "him"

 },

 "traverse" : "http://localhost:7474/db/data/node/19/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/19/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/19/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/19",

 "properties" : "http://localhost:7474/db/data/node/19/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/19/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/19/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/19/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/19/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/19/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/19/relationships/in/{-list|&|types}"

}, "him"]]

REST API

357

18.18.9. Send an arbitrary Groovy script - Lucene sorting
This example demonstrates that you via the Groovy runtime embedded with the server have full
access to all of the servers Java APIs. The below example creates Nodes in the database both via
the Blueprints and the Neo4j API indexes the nodes via the native Neo4j Indexing API constructs a
custom Lucene sorting and searching returns a Neo4j IndexHits result iterator.
Raw script source
'******** Additional imports *********'

import org.neo4j.graphdb.index.*

import org.neo4j.graphdb.*

import org.neo4j.index.lucene.*

import org.apache.lucene.search.*

'**** Blueprints API methods on the injected Neo4jGraph at variable g ****'

meVertex = g.addVertex([name:'me'])

meNode = meVertex.getRawVertex()

'*** get the Neo4j raw instance ***'

neo4j = g.getRawGraph()

'******** Neo4j API methods: *********'

tx = neo4j.beginTx()

 youNode = neo4j.createNode()

 youNode.setProperty('name','you')

 youNode.createRelationshipTo(meNode,DynamicRelationshipType.withName('knows'))

'*** index using Neo4j APIs ***'

 idxManager = neo4j.index()

 personIndex = idxManager.forNodes('persons')

 personIndex.add(meNode,'name',meNode.getProperty('name'))

 personIndex.add(youNode,'name',youNode.getProperty('name'))

tx.success()

tx.finish()

'*** Prepare a custom Lucene query context with Neo4j API ***'

query = new QueryContext('name:*').sort(new Sort(new SortField('name',SortField.STRING, true)))

results = personIndex.query(query)

Figure 18.91. Final Graph

Node[29]

nam e = 'm e'

Node[30]

nam e = 'you'

knows

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

REST API

358

 "script" : "'******** Additional imports *********';import org.neo4j.graphdb.index.*;import org.neo4j.graphdb.*;import org.neo4j.index.lucene.*;import org.apache.lucene.search.*;;'**** Blueprints API methods on the injected Neo4jGraph at variable g ****';meVertex = g.addVertex([name:'me']);meNode = meVertex.getRawVertex();;'*** get the Neo4j raw instance ***';neo4j = g.getRawGraph();;;'******** Neo4j API methods: *********';tx = neo4j.beginTx(); youNode = neo4j.createNode(); youNode.setProperty('name','you'); youNode.createRelationshipTo(meNode,DynamicRelationshipType.withName('knows'));;'*** index using Neo4j APIs ***'; idxManager = neo4j.index(); personIndex = idxManager.forNodes('persons'); personIndex.add(meNode,'name',meNode.getProperty('name')); personIndex.add(youNode,'name',youNode.getProperty('name'));tx.success();tx.finish();;;'*** Prepare a custom Lucene query context with Neo4j API ***';query = new QueryContext('name:*').sort(new Sort(new SortField('name',SortField.STRING, true)));results = personIndex.query(query);",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/30/relationships/out",

 "data" : {

 "name" : "you"

 },

 "traverse" : "http://localhost:7474/db/data/node/30/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/30/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/30/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/30",

 "properties" : "http://localhost:7474/db/data/node/30/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/30/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/30/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/30/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/30/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/30/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/30/relationships/in/{-list|&|types}"

}, {

 "outgoing_relationships" : "http://localhost:7474/db/data/node/29/relationships/out",

 "data" : {

 "name" : "me"

 },

 "traverse" : "http://localhost:7474/db/data/node/29/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/29/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/29/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/29",

 "properties" : "http://localhost:7474/db/data/node/29/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/29/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/29/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/29/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/29/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/29/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/29/relationships/in/{-list|&|types}"

}]

18.18.10. Emit a sample graph
Exporting a graph can be done by simple emitting the appropriate String.

Raw script source

writer = new GraphMLWriter(g)

out = new java.io.ByteArrayOutputStream()

writer.outputGraph(out)

result = out.toString()

REST API

359

Figure 18.92. Final Graph

Node[12]

nam e = 'you'

Node[13]

nam e = 'him '

Node[14]

nam e = 'I'

know know

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "writer = new GraphMLWriter(g);out = new java.io.ByteArrayOutputStream();writer.outputGraph(out);result = out.toString();",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

"<?xml version=\"1.0\" ?><graphml xmlns=\"http://graphml.graphdrawing.org/xmlns\"><key id=\"name\" for=\"node\" attr.name=\"name\" attr.type=\"string\"></key><graph id=\"G\" edgedefault=\"directed\"><node id=\"12\"><data key=\"name\">you</data></node><node id=\"13\"><data key=\"name\">him</data></node><node id=\"14\"><data key=\"name\">I</data></node><edge id=\"6\" source=\"14\" target=\"12\" label=\"know\"></edge><edge id=\"7\" source=\"14\" target=\"13\" label=\"know\"></edge></graph></graphml>"

18.18.11. HyperEdges - find user roles in groups
Imagine a user being part of different groups. A group can have different roles, and a user can be part
of different groups. He also can have different roles in different groups apart from the membership.
The association of a User, a Group and a Role can be referred to as a HyperEdge. However, it can be
easily modeled in a property graph as a node that captures this n-ary relationship, as depicted below in
the U1G2R1 node.

To find out in what roles a user is for a particular groups (here Group2), the following script can
traverse this HyperEdge node and provide answers.

Raw script source

g.v(37).out('hasRoleInGroup').as('hyperedge').out('hasGroup').filter{it.name=='Group2'}.back('hyperedge').out('hasRole').name

REST API

360

Figure 18.93. Final Graph

Node[31]

nam e = 'U1G2R1'

Node[35]

nam e = 'Role1'

hasRole
Node[34]

nam e = 'Group2'

hasGroup

Node[36]

nam e = 'Role'

isA

canHave

Node[32]

nam e = 'Role2'

canHave

Node[39]

nam e = 'Group'

isA

isA

Node[33]

nam e = 'Group1'

canHave canHaveisA

Node[37]

nam e = 'User1'

hasRoleInGroup

in in
Node[38]

nam e = 'U1G1R2'

hasRoleInGroup

hasRole

hasGroup

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.v(37).out('hasRoleInGroup').as('hyperedge').out('hasGroup').filter{it.name=='Group2'}.back('hyperedge').out('hasRole').name",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

["Role1"]

18.18.12. Group count
This example is showing a group count in Gremlin, for instance the counting of the different
relationship types connected to some the start node. The result is collected into a variable that then is
returned.

REST API

361

Raw script source

m = [:]

g.v(41).bothE().label.groupCount(m).iterate()

m

Figure 18.94. Final Graph

Node[40]

nam e = 'Ian'

Node[41]

nam e = 'Peter'

knows knows

Node[42]

nam e = 'Bikes'

likes

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "m = [:];g.v(41).bothE().label.groupCount(m).iterate();m",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "knows" : 2,

 "likes" : 1

}

18.18.13. Collect multiple traversal results
Multiple traversals can be combined into a single result, using splitting and merging pipes in a lazy
fashion.

Raw script source

g.idx('node_auto_index')[[name:'Peter']].copySplit(_().out('knows'), _().in('likes')).fairMerge.name

REST API

362

Figure 18.95. Final Graph

Node[46]

nam e = 'Marie'

Node[48]

nam e = 'Peter'

likes

Node[47]

nam e = 'Ian'

knows knows

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.idx('node_auto_index')[[name:'Peter']].copySplit(_().out('knows'), _().in('likes')).fairMerge.name",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

["Ian", "Marie"]

18.18.14. Collaborative filtering
This example demonstrates basic collaborative filtering - ordering a traversal after occurence counts
and substracting objects that are not interesting in the final result.

Here, we are finding Friends-of-Friends that are not Joes friends already. The same can be applied to
graphs of users that LIKE things and others.

Raw script source

x=[]

fof=[:]

g.v(63).out('knows').aggregate(x).out('knows').except(x).groupCount(fof).iterate()

fof.sort{a,b -> b.value <=> a.value}

REST API

363

Figure 18.96. Final Graph

Node[58]

nam e = 'Bill'

Node[60]

nam e = 'Derrick'

knows

Node[61]

nam e = 'Ian'

knows

Node[59]

nam e = 'Sara'

knows

knows
Node[62]

nam e = 'Jill'

knows

Node[63]

nam e = 'Joe'

knows

knows

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "x=[];fof=[:];g.v(63).out('knows').aggregate(x).out('knows').except(x).groupCount(fof).iterate();fof.sort{a,b -> b.value <=> a.value}",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

{

 "v[61]" : 2,

 "v[60]" : 1,

 "v[62]" : 1

}

18.18.15. Chunking and offsetting in Gremlin
Raw script source

g.v(51).out('knows').filter{it.name == 'Sara'}[0..100]

REST API

364

Figure 18.97. Final Graph

Node[49]

nam e = 'Sara'

Node[50]

nam e = 'Ian'

Node[51]

nam e = 'George'

knows knows

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.v(51).out('knows').filter{it.name == 'Sara'}[0..100]",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[{

 "outgoing_relationships" : "http://localhost:7474/db/data/node/49/relationships/out",

 "data" : {

 "name" : "Sara"

 },

 "traverse" : "http://localhost:7474/db/data/node/49/traverse/{returnType}",

 "all_typed_relationships" : "http://localhost:7474/db/data/node/49/relationships/all/{-list|&|types}",

 "property" : "http://localhost:7474/db/data/node/49/properties/{key}",

 "self" : "http://localhost:7474/db/data/node/49",

 "properties" : "http://localhost:7474/db/data/node/49/properties",

 "outgoing_typed_relationships" : "http://localhost:7474/db/data/node/49/relationships/out/{-list|&|types}",

 "incoming_relationships" : "http://localhost:7474/db/data/node/49/relationships/in",

 "extensions" : {

 },

 "create_relationship" : "http://localhost:7474/db/data/node/49/relationships",

 "paged_traverse" : "http://localhost:7474/db/data/node/49/paged/traverse/{returnType}{?pageSize,leaseTime}",

 "all_relationships" : "http://localhost:7474/db/data/node/49/relationships/all",

 "incoming_typed_relationships" : "http://localhost:7474/db/data/node/49/relationships/in/{-list|&|types}"

}]

18.18.16. Modify the graph while traversing
This example is showing a group count in Gremlin, for instance the counting of the different
relationship types connected to some the start node. The result is collected into a variable that then is
returned.

REST API

365

Figure 18.98. Starting Graph

nam e = 'Ian'

nam e = 'Peter'

knows knows

nam e = 'Bikes'

likes

Raw script source

g.v(44).bothE.each{g.removeEdge(it)}

Figure 18.99. Final Graph

Node[43]

nam e = 'Ian'

Node[44]

nam e = 'Peter'

Node[45]

nam e = 'Bikes'

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.v(44).bothE.each{g.removeEdge(it)}",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

[]

18.18.17. Flow algorithms with Gremlin
This is a basic stub example for implementing flow algorithms in for instance Flow Networks <http://
en.wikipedia.org/wiki/Flow_network> with a pipes-based approach and scripting, here between source
and sink using the capacity property on relationships as the base for the flow function and modifying
the graph during calculation.

http://en.wikipedia.org/wiki/Flow_network
http://en.wikipedia.org/wiki/Flow_network
http://en.wikipedia.org/wiki/Flow_network

REST API

366

Figure 18.100. Starting Graph

nam e = 'source'

nam e = 'm iddle'

CONNECTED
capacity = 1

nam e = 'sink'

CONNECTED
capacity = 1

CONNECTED
capacity = 2

CONNECTED
capacity = 3

Raw script source

source=g.v(72)

sink=g.v(73)

maxFlow = 0

source.outE.inV.loop(2){!it.object.equals(sink)}.paths.each{flow = it.capacity.min()

 maxFlow += flow

it.findAll{it.capacity}.each{it.capacity -= flow}}

maxFlow

Figure 18.101. Final Graph

Node[72]

nam e = 'source'

Node[74]

nam e = 'm iddle'

CONNECTED
capacity = 0

Node[73]

nam e = 'sink'

CONNECTED
capacity = 0

CONNECTED
capacity = 0

CONNECTED
capacity = 2

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

REST API

367

{

 "script" : "source=g.v(72);sink=g.v(73);maxFlow = 0;source.outE.inV.loop(2){!it.object.equals(sink)}.paths.each{flow = it.capacity.min(); maxFlow += flow;it.findAll{it.capacity}.each{it.capacity -= flow}};maxFlow",

 "params" : {

 }

}

Example response

• 200: OK
• Content-Type: application/json

4

18.18.18. Script execution errors
Script errors will result in an HTTP error response code.

Figure 18.102. Final Graph

Node[79]

nam e = 'you'

Node[80]

nam e = 'I'

know

Node[81]

Example request

• POST http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script
• Accept: application/json
• Content-Type: application/json

{

 "script" : "g.addVertex([name:{}])"

}

Example response

• 400: Bad Request
• Content-Type: application/json

{

 "message" : "javax.script.ScriptException: java.lang.IllegalArgumentException: Unknown property type on: Script25$_run_closure1@36c48772, class Script25$_run_closure1",

 "exception" : "BadInputException",

 "stacktrace" : ["org.neo4j.server.plugin.gremlin.GremlinPlugin.executeScript(GremlinPlugin.java:84)", "java.lang.reflect.Method.invoke(Method.java:597)", "org.neo4j.server.plugins.PluginMethod.invoke(PluginMethod.java:57)", "org.neo4j.server.plugins.PluginManager.invoke(PluginManager.java:168)", "org.neo4j.server.rest.web.ExtensionService.invokeGraphDatabaseExtension(ExtensionService.java:300)", "org.neo4j.server.rest.web.ExtensionService.invokeGraphDatabaseExtension(ExtensionService.java:122)", "java.lang.reflect.Method.invoke(Method.java:597)"]

}

368

Chapter 19. Python embedded bindings

This describes neo4j-embedded, a Python library that lets you use the embedded Neo4j database in
Python.

Apart from the reference documentation and installation instructions in this section, you may also
want to take a look at Chapter 9, Using Neo4j embedded in Python applications.

The source code for this project lives on GitHub: https://github.com/neo4j/python-embedded

https://github.com/neo4j/python-embedded

Python embedded bindings

369

19.1. Installation
Note
The Neo4j database itself (from the Community Edition) is included in the neo4j-
embedded distribution.

19.1.1. Installation on OSX/Linux
Prerequisites

Caution
Make sure that the entire stack used is either 64bit or 32bit (no mixing, that is). That means
the JVM, Python and JPype.

First, install JPype:

1. Download the latest version of JPype from http://sourceforge.net/projects/jpype/files/JPype/.
2. Unzip the file.
3. Open a console and navigate into the unzipped folder.
4. Run sudo python setup.py install

JPype is also available in the Debian repos:
sudo apt-get install python-jpype

Then, make sure the JAVA_HOME environment variable is set to your jre or jdk folder, so that JPype can
find the JVM.

Note
Installation can be problematic on OSX. See the following Stack Overflow discussion for
help: http://stackoverflow.com/questions/8525193/cannot-install-jpype-on-os-x-lion-to-
use-with-neo4j

Installing neo4j-embedded
You can install neo4j-embedded with your python package manager of choice:
sudo pip install neo4j-embedded

sudo easy_install neo4j-embedded

Or install manually:

1. Download the latest appropriate version of JPype from http://sourceforge.net/projects/jpype/files/
JPype/ for 32bit or from http://www.lfd.uci.edu/~gohlke/pythonlibs/ for 64bit.

2. Unzip the file.
3. Open a console and navigate into the unzipped folder.
4. Run sudo python setup.py install

19.1.2. Installation on Windows
Prerequisites

Warning
It is imperative that the entire stack used is either 64bit or 32bit (no mixing, that is). That
means the JVM, Python, JPype and all extra DLLs (see below).

http://sourceforge.net/projects/jpype/files/JPype/
http://stackoverflow.com/questions/8525193/cannot-install-jpype-on-os-x-lion-to-use-with-neo4j
http://stackoverflow.com/questions/8525193/cannot-install-jpype-on-os-x-lion-to-use-with-neo4j
http://sourceforge.net/projects/jpype/files/JPype/
http://sourceforge.net/projects/jpype/files/JPype/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

Python embedded bindings

370

First, install JPype:

Note
Notice that JPype only works with Python 2.6 and 2.7. Also note that there are different
downloads depending on which version you use.

1. Download the latest appropriate version of JPype from http://sourceforge.net/projects/jpype/files/
JPype/ for 32bit or from http://www.lfd.uci.edu/~gohlke/pythonlibs/ for 64bit.

2. Run the installer.

Then, make sure the JAVA_HOME environment variable is set to your jre or jdk folder. There is a
description of how to set environment variables in the section called “Solving problems with missing
DLL files”.

Note
There may be DLL files missing from your system that are required by JPype. See the
section called “Solving problems with missing DLL files” for instructions for how to fix
this.

Installing neo4j-embedded

1. Download the latest version from http://pypi.python.org/pypi/neo4j-embedded/.
2. Run the installer.

Solving problems with missing DLL files
Certain versions of Windows ship without DLL files needed to programmatically launch a JVM. You
will need to make IEShims.dll and certain debugging dlls available on Windows.

IEShims.dll is normally included with Internet Explorer installs. To make windows find this file
globally, you need to add the IE install folder to your PATH.

1. Right click on "My Computer" or "Computer".
2. Select "Properties".
3. Click on "Advanced" or "Advanced system settings".
4. Click the "Environment variables" button.
5. Find the path varible, and add C:\Program Files\Internet Explorer to it (or the install location of

IE, if you have installed it somewhere else).

Required debugging dlls are bundled with Microsoft Visual C++ Redistributable libraries.

• 32bit Windows: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5555
• 64bit Windows: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=14632

If you are still getting errors about missing DLL files, you can use http://
www.dependencywalker.com/ to open your jvm.dll (located in JAVA_HOME/bin/client/ or
JAVA_HOME/bin/server/), and it will tell you if there are other missing dlls.

http://sourceforge.net/projects/jpype/files/JPype/
http://sourceforge.net/projects/jpype/files/JPype/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://pypi.python.org/pypi/neo4j-embedded/
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5555
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=14632
http://www.dependencywalker.com/
http://www.dependencywalker.com/

Python embedded bindings

371

19.2. Core API
This section describes how get get up and running, and how to do basic operations.

19.2.1. Getting started

Creating a database
from neo4j import GraphDatabase

Create db

db = GraphDatabase(folder_to_put_db_in)

Always shut down your database

db.shutdown()

Creating a database, with configuration
Please see Chapter 21, Configuration & Performance for what options you can use here.
from neo4j import GraphDatabase

Example configuration parameters

db = GraphDatabase(folder_to_put_db_in, string_block_size=200, array_block_size=240)

db.shutdown()

JPype JVM configuration
You can set extra arguments to be passed to the JVM using the NEO4J_PYTHON_JVMARGS environment
variable. This can be used to, for instance, increase the max memory for the database.
Note that you must set this before you import the neo4j package, either by setting it before you start
python, or by setting it programatically in your app.
import os

os.environ['NEO4J_PYTHON_JVMARGS'] = '-Xms128M -Xmx512M'

import neo4j

You can also override the classpath used by neo4j-embedded, by setting the NEO4J_PYTHON_CLASSPATH
environment variable.

19.2.2. Transactions
All write operations to the database need to be performed from within transactions. This ensures that
your database never ends up in an inconsistent state.
See Chapter 12, Transaction Management for details on how Neo4j handles transactions.
We use the python with statement to define a transaction context. If you are using an older version of
Python, you may have to import the with statement:
from __future__ import with_statement

Either way, this is how you get into a transaction:
Start a transaction

with db.transaction:

 # This is inside the transactional

 # context. All work done here

 # will either entirely succeed,

 # or no changes will be applied at all.

 # Create a node

 node = db.node()

Python embedded bindings

372

 # Give it a name

 node['name'] = 'Cat Stevens'

The transaction is automatically

commited when you exit the with

block.

19.2.3. Nodes
This describes operations that are specific to node objects. For documentation on how to handle
properties on both relationships and nodes, see Section 19.2.5, “Properties”.

Creating a node
with db.transaction:

 # Create a node

 thomas = db.node(name='Thomas Anderson', age=42)

Fetching a node by id
You don't have to be in a transaction

to do read operations.

a_node = db.node[some_node_id]

Ids on nodes and relationships are available via the "id"

property, eg.:

node_id = a_node.id

Fetching the reference node
reference = db.reference_node

Removing a node
with db.transaction:

 node = db.node()

 node.delete()

Tip
See also Section 12.5, “Delete semantics”.

Removing a node by id
with db.transaction:

 del db.node[some_node_id]

Accessing relationships from a node
For details on what you can do with the relationship objects, see Section 19.2.4, “Relationships”.
All relationships on a node

for rel in a_node.relationships:

 pass

Incoming relationships

for rel in a_node.relationships.incoming:

 pass

Outgoing relationships

for rel in a_node.relationships.outgoing:

 pass

Relationships of a specific type

Python embedded bindings

373

for rel in a_node.mayor_of:

 pass

Incoming relationships of a specific type

for rel in a_node.mayor_of.incoming:

 pass

Outgoing relationships of a specific type

for rel in a_node.mayor_of.outgoing:

 pass

Getting and/or counting all nodes
Use this with care, it will become extremely slow in large datasets.
for node in db.nodes:

 pass

Shorthand for iterating through

and counting all nodes

number_of_nodes = len(db.nodes)

19.2.4. Relationships
This describes operations that are specific to relationship objects. For documentation on how to handle
properties on both relationships and nodes, see Section 19.2.5, “Properties”.

Creating a relationship
with db.transaction:

 # Nodes to create a relationship between

 steven = self.graphdb.node(name='Steve Brook')

 poplar_bluff = self.graphdb.node(name='Poplar Bluff')

 # Create a relationship of type "mayor_of"

 relationship = steven.mayor_of(poplar_bluff, since="12th of July 2012")

 # Or, to create relationship types with names

 # that would not be possible with the above

 # method.

 steven.relationships.create('mayor_of', poplar_bluff, since="12th of July 2012")

Fetching a relationship by id
the_relationship = db.relationship[a_relationship_id]

Removing a relationship
with db.transaction:

 # Create a relationship

 source = db.node()

 target = db.node()

 rel = source.Knows(target)

 # Delete it

 rel.delete()

Tip
See also Section 12.5, “Delete semantics”.

Removing a relationship by id
with db.transaction:

Python embedded bindings

374

 del db.relationship[some_relationship_id]

Relationship start node, end node and type
relationship_type = relationship.type

start_node = relationship.start

end_node = relationship.end

Getting and/or counting all relationships
Use this with care, it will become extremely slow in large datasets.

for rel in db.relationships:

 pass

Shorthand for iterating through

and counting all relationships

number_of_rels = len(db.relationships)

19.2.5. Properties
Both nodes and relationships can have properties, so this section applies equally to both node and
relationship objects. Allowed property values include strings, numbers, booleans, as well as arrays of
those primitives. Within each array, all values must be of the same type.

Setting properties
with db.transaction:

 node_or_rel['name'] = 'Thomas Anderson'

 node_or_rel['age'] = 42

 node_or_rel['favourite_numbers'] = [1,2,3]

 node_or_rel['favourite_words'] = ['banana','blue']

Getting properties
numbers = node_or_rel['favourite_numbers']

Removing properties
with db.transaction:

 del node_or_rel['favourite_numbers']

Looping through properties
Loop key and value at the same time

for key, value in node_or_rel.items():

 pass

Loop property keys

for key in node_or_rel.keys():

 pass

Loop property values

for value in node_or_rel.values():

 pass

19.2.6. Paths
A path object represents a path between two nodes in the graph. Paths thus contain at least two nodes
and one relationship, but can reach arbitrary length. It is used in various parts of the API, most notably
in traversals.

Python embedded bindings

375

Accessing the start and end nodes
start_node = path.start

end_node = path.end

Accessing the last relationship
last_relationship = path.last_relationship

Looping through the entire path
You can loop through all elements of a path directly, or you can choose to only loop through nodes or
relationships. When you loop through all elements, the first item will be the start node, the second will
be the first relationship, the third the node that the relationship led to and so on.
for item in path:

 # Item is either a Relationship,

 # or a Node

 pass

for nodes in path.nodes:

 # All nodes in a path

 pass

for nodes in path.relationships:

 # All relationships in a path

 pass

Python embedded bindings

376

19.3. Indexes
In order to rapidly find nodes or relationship based on properties, Neo4j supports indexing. This is
commonly used to find start nodes for traversals.

By default, the underlying index is powered by Apache Lucene <http://lucene.apache.org/java/docs/
index.html>, but it is also possible to use Neo4j with other index implementations.

You can create an arbitrary number of named indexes. Each index handles either nodes or
relationships, and each index works by indexing key/value/object triplets, object being either a node or
a relationship, depending on the index type.

19.3.1. Index management
Just like the rest of the API, all write operations to the index must be performed from within a
transaction.

Creating an index
Create a new index, with optional configuration.
with db.transaction:

 # Create a relationship index

 rel_idx = db.relationship.indexes.create('my_rels')

 # Create a node index, passing optional

 # arguments to the index provider.

 # In this case, enable full-text indexing.

 node_idx = db.node.indexes.create('my_nodes', type='fulltext')

Retrieving a pre-existing index
with db.transaction:

 node_idx = db.node.indexes.get('my_nodes')

 rel_idx = db.relationship.indexes.get('my_rels')

Deleting indexes
with db.transaction:

 node_idx = db.node.indexes.get('my_nodes')

 node_idx.delete()

 rel_idx = db.relationship.indexes.get('my_rels')

 rel_idx.delete()

Checking if an index exists
exists = db.node.indexes.exists('my_nodes')

19.3.2. Indexing things

Adding nodes or relationships to an index
with db.transaction:

 # Indexing nodes

 a_node = db.node()

 node_idx = db.node.indexes.create('my_nodes')

 # Add the node to the index

 node_idx['akey']['avalue'] = a_node

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html

Python embedded bindings

377

 # Indexing relationships

 a_relationship = a_node.knows(db.node())

 rel_idx = db.relationship.indexes.create('my_rels')

 # Add the relationship to the index

 rel_idx['akey']['avalue'] = a_relationship

Removing indexed items
Removing items from an index can be done at several levels of granularity. See the example below.
Remove specific key/value/item triplet

del idx['akey']['avalue'][item]

Remove all instances under a certain

key

del idx['akey'][item]

Remove all instances all together

del idx[item]

19.3.3. Searching the index
You can retrieve indexed items in two ways. Either you do a direct lookup, or you perform a query.
The direct lookup is the same across different index providers while the query syntax depends on what
index provider you use. As mentioned previously, Lucene is the default and by far most common
index provider. For querying Lucene you will want to use the Lucene query language <http://
lucene.apache.org/java/3_5_0/queryparsersyntax.html>.

There is a python library for programatically generating Lucene queries, available at GitHub <https://
github.com/scholrly/lucene-querybuilder>.

Important
Unless you loop through the entire index result, you have to close the result when you are
done with it. If you do not, the database does not know when it can release the resources
the result is taking up.

Direct lookups
hits = idx['akey']['avalue']

for item in hits:

 pass

Always close index results when you are

done, to free up resources.

hits.close()

Querying
hits = idx.query('akey:avalue')

for item in hits:

 pass

Always close index results when you are

done, to free up resources.

hits.close()

http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
https://github.com/scholrly/lucene-querybuilder
https://github.com/scholrly/lucene-querybuilder
https://github.com/scholrly/lucene-querybuilder

Python embedded bindings

378

19.4. Cypher Queries
You can use the Cypher query language from neo4j-embedded. Read more about cypher syntax and
cool stuff you can with it here: Chapter 15, Cypher Query Language.

19.4.1. Querying and reading the result

Basic query
To execute a plain text cypher query, do this:

result = db.query("START n=node(0) RETURN n")

Retrieve query result
Cypher returns a tabular result. You can either loop through the table row-by-row, or you can loop
through the values in a given column. Here is how to loop row-by-row:

root_node = "START n=node(0) RETURN n"

Iterate through all result rows

for row in db.query(root_node):

 node = row['n']

We know it's a single result,

so we could have done this as well

node = db.query(root_node).single['n']

Here is how to loop through the values of a given column:

root_node = "START n=node(0) RETURN n"

Fetch an iterator for the "n" column

column = db.query(root_node)['n']

for cell in column:

 node = cell

Coumns support "single":

column = db.query(root_node)['n']

node = column.single

List the result columns
You can get a list of the column names in the result like this:

result = db.query("START n=node(0) RETURN n,count(n)")

Get a list of the column names

columns = result.keys()

19.4.2. Parameterized and prepared queries

Parameterized queries
Cypher supports parameterized queries, see Section 15.3, “Parameters”. This is how you use them in
neo4j-embedded.

result = db.query("START n=node({id}) RETURN n",id=0)

node = result.single['n']

Python embedded bindings

379

Prepared queries
Prepared queries, where you could retrieve a pre-parsed version of a cypher query to be used later, is
deprecated. Cypher will recognize if it has previously parsed a given query, and won’t parse the same
string twice.

So, in effect, all cypher queries are prepared queries, if you use them more than once. Use
parameterized queries to gain the full power of this - then a generic query can be pre-parsed, and
modified with parameters each time it is executed.

Python embedded bindings

380

19.5. Traversals
Warning
Traversal support in neo4j-embedded for python is deprecated as of Neo4j 1.7 GA. Please
see Section 19.4, “Cypher Queries” or the core API instead. This is done because the
traversal framework requires a very tight coupling between the JVM and python. To keep
improving performance, we need to break that coupling.

The below documentation will be removed in neo4j-embedded 1.8, and support for traversals will be
dropped in neo4j-embedded 1.9.

The traversal API used here is essentially the same as the one used in the Java API, with a few
modifications.

Traversals start at a given node and uses a set of rules to move through the graph and to decide what
parts of the graph to return.

19.5.1. Basic traversals

Following a relationship
The most basic traversals simply follow certain relationship types, and return everything they
encounter. By default, each node is visited only once, so there is no risk of infinite loops.

traverser = db.traversal()\

 .relationships('related_to')\

 .traverse(start_node)

The graph is traversed as

you loop through the result.

for node in traverser.nodes:

 pass

Following a relationship in a specific direction
You can tell the traverser to only follow relationships in some specific direction.

from neo4j import OUTGOING, INCOMING, ANY

traverser = db.traversal()\

 .relationships('related_to', OUTGOING)\

 .traverse(start_node)

Following multiple relationship types
You can specify an arbitrary number of relationship types and directions to follow.

from neo4j import OUTGOING, INCOMING, ANY

traverser = db.traversal()\

 .relationships('related_to', INCOMING)\

 .relationships('likes')\

 .traverse(start_node)

19.5.2. Traversal results
A traversal can give you one of three different result types: nodes, relationships or paths.

Traversals are performed lazily, which means that the graph is traversed as you loop through the
result.

Python embedded bindings

381

traverser = db.traversal()\

 .relationships('related_to')\

 .traverse(start_node)

Get each possible path

for path in traverser:

 pass

Get each node

for node in traverser.nodes:

 pass

Get each relationship

for relationship in traverser.relationships:

 pass

19.5.3. Uniqueness
To avoid infinite loops, it’s important to define what parts of the graph can be re-visited during a
traversal. By default, uniqueness is set to NODE_GLOBAL, which means that each node is only visited
once.
Here are the other options that are available.
from neo4j import Uniqueness

Available options are:

Uniqueness.NONE

Any position in the graph may be revisited.

Uniqueness.NODE_GLOBAL

Default option

No node in the entire graph may be visited

more than once. This could potentially

consume a lot of memory since it requires

keeping an in-memory data structure

remembering all the visited nodes.

Uniqueness.RELATIONSHIP_GLOBAL

No relationship in the entire graph may be

visited more than once. For the same

reasons as NODE_GLOBAL uniqueness, this

could use up a lot of memory. But since

graphs typically have a larger number of

relationships than nodes, the memory

overhead of this uniqueness level could

grow even quicker.

Uniqueness.NODE_PATH

A node may not occur previously in the

path reaching up to it.

Uniqueness.RELATIONSHIP_PATH

A relationship may not occur previously in

the path reaching up to it.

Uniqueness.NODE_RECENT

Similar to NODE_GLOBAL uniqueness in that

there is a global collection of visited

nodes each position is checked against.

This uniqueness level does however have a

cap on how much memory it may consume in

the form of a collection that only

contains the most recently visited nodes.

Python embedded bindings

382

The size of this collection can be

specified by providing a number as the

second argument to the

uniqueness()-method along with the

uniqueness level.

Uniqueness.RELATIONSHIP_RECENT

works like NODE_RECENT uniqueness, but

with relationships instead of nodes.

traverser = db.traversal()\

 .uniqueness(Uniqueness.NODE_PATH)\

 .traverse(start_node)

19.5.4. Ordering
You can traverse either depth first, or breadth first. Depth first is the default, because it has lower
memory overhead.
Depth first traversal, this

is the default.

traverser = db.traversal()\

 .depthFirst()\

 .traverse(self.source)

Breadth first traversal

traverser = db.traversal()\

 .breadthFirst()\

 .traverse(start_node)

19.5.5. Evaluators - advanced filtering
In order to traverse based on other critera, such as node properties, or more complex things like
neighboring nodes or patterns, we use evaluators. An evaluator is a normal Python method that takes a
path as an argument, and returns a description of what to do next.

The path argument is the current position the traverser is at, and the description of what to do can be
one of four things, as seen in the example below.
from neo4j import Evaluation

Evaluation contains the four

options that an evaluator can

return. They are:

Evaluation.INCLUDE_AND_CONTINUE

Include this node in the result and

continue the traversal

Evaluation.INCLUDE_AND_PRUNE

Include this node in the result, but don't

continue the traversal

Evaluation.EXCLUDE_AND_CONTINUE

Exclude this node from the result, but

continue the traversal

Evaluation.EXCLUDE_AND_PRUNE

Exclude this node from the result and

don't continue the traversal

An evaluator

def my_evaluator(path):

Python embedded bindings

383

 # Filter on end node property

 if path.end['message'] == 'world':

 return Evaluation.INCLUDE_AND_CONTINUE

 # Filter on last relationship type

 if path.last_relationship.type.name() == 'related_to':

 return Evaluation.INCLUDE_AND_PRUNE

 # You can do even more complex things here, like subtraversals.

 return Evaluation.EXCLUDE_AND_CONTINUE

Use the evaluator

traverser = db.traversal()\

 .evaluator(my_evaluator)\

 .traverse(start_node)

Part IV. Operations
This part describes how to install and maintain a Neo4j installation. This includes topics such as backing
up the database and monitoring the health of the database as well as diagnosing issues.

385

Chapter 20. Installation & Deployment

Installation & Deployment

386

20.1. Deployment Scenarios
Neo4j can be embedded into your application, run as a standalone server or deployed on several
machines to provide high availability.

Neo4j deployment options
Single Instance Multiple Instances

Embedded EmbeddedGraphDatabase HighlyAvailableGraphDatabase
Standalone Neo4j Server Neo4j Server high availability

mode

20.1.1. Server
Neo4j is normally accessed as a standalone server, either directly through a REST interface or through
a language-specific driver. More information about Neo4j server is found in Chapter 17, Neo4j Server.
For running the server and embedded installations in high availability mode, see Chapter 22, High
Availability.

20.1.2. Embedded
Neo4j can be embedded directly in a server application by including the appropriate Java libraries.
When programming, you can refer to the GraphDatabaseService <http://components.neo4j.org/
neo4j/1.9.M04/apidocs/org/neo4j/graphdb/GraphDatabaseService.html> API. To switch from a single
instance to multiple highly available instances, simply switch from the concrete EmbeddedGraphDatabase
<http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html> to
the HighlyAvailableGraphDatabase <http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/
neo4j/kernel/HighlyAvailableGraphDatabase.html>.

http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/GraphDatabaseService.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/GraphDatabaseService.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/graphdb/GraphDatabaseService.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.9.M04/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html

Installation & Deployment

387

20.2. System Requirements
Memory constrains graph size, disk I/O constrains read/write performance, as always.

20.2.1. CPU
Performance is generally memory or I/O bound for large graphs, and compute bound for graphs which
fit in memory.

Minimum
Intel 486

Recommended
Intel Core i7

20.2.2. Memory
More memory allows even larger graphs, but runs the risk of inducing larger Garbage Collection
operations.

Minimum
1GB

Recommended
4-8GB

20.2.3. Disk
Aside from capacity, the performance characteristics of the disk are the most important when selecting
storage.

Minimum
SCSI, EIDE

Recommended
SSD w/ SATA

20.2.4. Filesystem
For proper ACID behavior, the filesystem must support flush (fsync, fdatasync).

Minimum
ext3 (or similar)

Recommended
ext4, ZFS

20.2.5. Software
Neo4j is Java-based.

Java
Oracle Java 6

Operating Systems
Linux, Windows XP, Mac OS X

20.2.6. JDK Version
The Neo4j runtime is continuously tested with

Installation & Deployment

388

• Oracle Java Runtime Environment JRE 1.6 <http://www.oracle.com/technetwork/java/javase/
downloads/index.html>

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installation & Deployment

389

20.3. Installation
Neo4j can be installed as a server, running either as a headless application or system service. For Java
developers, it is also possible to use Neo4j as a library, embedded in your application.

For information on installing Neo4j as a server, see Section 17.1, “Server Installation”.

The following table outlines the available editions and their names for use with dependency
management tools.

Tip
Follow the links in the table for details on dependency configuration with Apache Maven,
Apache Buildr, Apache Ivy and Groovy Grape!

Neo4j editions
Edition Dependency Description License

Community org.neo4j:neo4j <http://
search.maven.org/
#search|gav|1|g
%3A%22org.neo4j
%22%20AND%20a
%3A%22neo4j%22>

a high performance,
fully ACID
transactional graph
database

GPLv3

Advanced org.neo4j:neo4j-
advanced <http://
search.maven.org/
#search|gav|1|g
%3A%22org.neo4j
%22%20AND%20a
%3A%22neo4j-
advanced%22>

adding advanced
monitoring

AGPLv3

Enterprise org.neo4j:neo4j-
enterprise <http://
search.maven.org/
#search|gav|1|g
%3A%22org.neo4j
%22%20AND%20a
%3A%22neo4j-
enterprise%22>

adding online backup
and High Availability
clustering

AGPLv3

Note
The listed dependencies do not contain the implementation, but pulls it in transitively.

For more information regarding licensing, see the Licensing Guide <http://neo4j.org/licensing-
guide/>.

20.3.1. Embedded Installation
The latest release is always available from http://neo4j.org/download, included as part of the Neo4j
download packages. After selecting the appropriate version for your platform, embed Neo4j in your
Java application by including the Neo4j library jars in your build. Either take the jar files from the lib/

http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://neo4j.org/licensing-guide/
http://neo4j.org/licensing-guide/
http://neo4j.org/licensing-guide/
http://neo4j.org/download

Installation & Deployment

390

directory of the download, or directly use the artifacts available from Maven Central Repository 1.
Stable and milestone releases are available there.

Maven dependency.

<project>

...

 <dependencies>

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.9.M04</version>

 </dependency>

 ...

 </dependencies>

...

</project>

Where the artifactId is one of neo4j, neo4j-advanced, neo4j-enterprise.

20.3.2. Server Installation
please refer to Chapter 17, Neo4j Server and Section 17.1, “Server Installation”.

1http://repo1.maven.org/maven2/org/neo4j/

http://repo1.maven.org/maven2/org/neo4j/

Installation & Deployment

391

20.4. Upgrading
A database can be upgraded from a minor version to the next, e.g. 1.1 → 1.2, and 1.2 → 1.3, but you
can not jump directly from 1.1 → 1.3. For version 1.8 in particular, it is possible to upgrade directly
from version 1.5.3 and later, as an explicit upgrade. The upgrade process is a one way step; databases
cannot be downgraded.

For most upgrades, only small changes are required to the database store, and these changes proceed
automatically when you start up the database using the newer version of Neo4j.

However, some upgrades require more significant changes to the database store. In these cases, Neo4j
will refuse to start without explicit configuration to allow the upgrade.

The table below lists recent Neo4j versions, and the type of upgrade required.

Upgrade process for Neo4j version
From Version To Version Upgrade Type
1.3 1.4 Automatic
1.4 1.5 Explicit
1.5 1.6 Explicit
1.6 1.7 Automatic
1.7 1.8 Automatic
1.8 1.9.M02 Automatic

Note
Downgrade is supported only between versions which do not have incompatible store
layouts. That means that if you did an upgrade where you didn’t have to explicitly set the
allow_store_upgrade flag to false then you can downgrade without any problems to the
previous version used. Otherwise downgrading is not supported. In any case, downgrading
currently cannot be done in a rolling fashion, even in HA deployments. Instead, the whole
cluster must be shutdown and each machine downgraded individually and then service can
be resumed.

20.4.1. Automatic Upgrade
To perform a normal upgrade (for minor changes to the database store):

1. download the newer version of Neo4j
2. cleanly shutdown the database to upgrade, if it is running
3. startup the database with the newer version of Neo4j

20.4.2. Explicit Upgrade
To perform a special upgrade (for significant changes to the database store):

1. make sure the database you are upgrading has been cleanly shut down
2. set the Neo4j configuration parameter "allow_store_upgrade=true" in your neo4j.properties or

embedded configuration
3. start the database
4. the upgrade will happen during startup and the process is done when the database has been

successfully started

Installation & Deployment

392

5. "allow_store_upgrade=true" configuration parameter should be removed, set to "false" or
commented out

20.4.3. Upgrade 1.8 → 1.9.M02
There are no store format changes between these versions so upgrading standalone instances simply
consists of starting the database with the newer version. In the case of High Availability (HA)
installations, the communication protocol and the master election algorithm have changed and a new
"rolling upgrade" feature has been added, removing the need to shut down the entire cluster. For more
information, refer to the "Upgrading a Neo4j HA Cluster" chapter of the HA section of the Neo4j
manual.

20.4.4. Upgrade 1.7 → 1.8
There are no store format changes between these versions so upgrading standalone instances simply
consists of starting the database with the newer version. In the case of High Availability (HA)
installations, the communication protocol and the master election algorithm have changed and a new
"rolling upgrade" feature has been added, removing the need to shut down the entire cluster. For more
information, refer to the "Upgrading a Neo4j HA Cluster" chapter of the HA section of the Neo4j
manual.

20.4.5. Upgrade 1.6 → 1.7
There are no store format changes between these versions, which means there is no particular
procedure you need to upgrade a single instance.

In an HA environment these steps need to be performed:

1. shut down all the databases in the cluster
2. shut down the ZooKeeper cluster and clear the version-2 directories on all the ZooKeeper instances
3. start the ZooKeeper cluster again
4. remove the databases except the master and start the master database with 1.7
5. start up the other databases so that they get a copy from the master

20.4.6. Upgrade 1.5 → 1.6
This upgrade changes lucene version from 3.1 to 3.5. The upgrade itself is done by Lucene by loading
an index.

In an HA environment these steps need to be performed:

1. shut down all the databases in the cluster
2. shut down the ZooKeeper cluster and clear the version-2 directories on all the ZooKeeper instances
3. start the ZooKeeper cluster again
4. start up the other databases so that they get a copy from the master

20.4.7. Upgrade 1.4 → 1.5
This upgrade includes a significant change to the layout of property store files, which reduces their
size on disk, and improves IO performance. To achieve this layout change, the upgrade process takes
some time to process the whole of the existing database. You should budget for several minutes per
gigabyte of data as part of your upgrade planning.

Installation & Deployment

393

Warning
The upgrade process for this upgrade temporarily requires additional disk space, for the
period while the upgrade is in progress. Before starting the upgrade to Neo4j 1.5, you
should ensure that the machine performing the upgrade has free space equal to the current
size of of the database on disk. You can find the current space occupied by the database by
inspecting the store file directory (data/graph.db is the default location in Neo4j server).
Once the upgrade is complete, this additional space is no longer required.

Installation & Deployment

394

20.5. Usage Data Collector
The Neo4j Usage Data Collector is a sub-system that gathers usage data, reporting it to the UDC-
server at udc.neo4j.org. It is easy to disable, and does not collect any data that is confidential. For
more information about what is being sent, see below.

The Neo4j team uses this information as a form of automatic, effortless feedback from the Neo4j
community. We want to verify that we are doing the right thing by matching download statistics with
usage statistics. After each release, we can see if there is a larger retention span of the server software.

The data collected is clearly stated here. If any future versions of this system collect additional data,
we will clearly announce those changes.

The Neo4j team is very concerned about your privacy. We do not disclose any personally identifiable
information.

20.5.1. Technical Information
To gather good statistics about Neo4j usage, UDC collects this information:

• Kernel version: The build number, and if there are any modifications to the kernel.
• Store id: A randomized globally unique id created at the same time a database is created.
• Ping count: UDC holds an internal counter which is incremented for every ping, and reset for every

restart of the kernel.
• Source: This is either "neo4j" or "maven". If you downloaded Neo4j from the Neo4j website, it’s

"neo4j", if you are using Maven to get Neo4j, it will be "maven".
• Java version: The referrer string shows which version of Java is being used.
• MAC address to uniquely identify instances behind firewalls.
• Registration id: For registered server instances.
• Tags about the execution context (e.g. test, language, web-container, app-container, spring, ejb).
• Neo4j Edition (community, advanced, enterprise).
• A hash of the current cluster name (if any).
• Distribution information for Linux (rpm, dpkg, unknown).
• User-Agent header for tracking usage of REST client drivers

After startup, UDC waits for ten minutes before sending the first ping. It does this for two reasons;
first, we don’t want the startup to be slower because of UDC, and secondly, we want to keep pings
from automatic tests to a minimum. The ping to the UDC servers is done with a HTTP GET.

20.5.2. How to disable UDC
We’ve tried to make it extremely easy to disable UDC. In fact, the code for UDC is not even included
in the kernel jar but as a completely separate component.

There are three ways you can disable UDC:

1. The easiest way is to just remove the neo4j-udc-*.jar file. By doing this, the kernel will not load
UDC, and no pings will be sent.

2. If you are using Maven, and want to make sure that UDC is never installed in your system, a
dependency element like this will do that:
 <dependency>

 <groupId>org.neo4j</groupId>

Installation & Deployment

395

 <artifactId>neo4j</artifactId>

 <version>${neo4j-version}</version>

 <exclusions>

 <exclusion>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-udc</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

Where ${neo4j-version} is the Neo4j version in use.
3. Lastly, if you are using a packaged version of Neo4j, and do not want to make any change to

the jars, a system property setting like this will also make sure that UDC is never activated: -
Dneo4j.ext.udc.disable=true.

396

Chapter 21. Configuration & Performance

In order to get optimum performance out of Neo4j for your application there are a few parameters that
can be tweaked. The two main components that can be configured are the Neo4j caches and the JVM
that Neo4j runs in. The following sections describe how to tune these.

Configuration & Performance

397

21.1. Introduction
To gain good performance, these are the things to look into first:

• Make sure the JVM is not spending too much time performing garbage collection. Monitoring
heap usage on an application that uses Neo4j can be a bit confusing since Neo4j will increase the
size of caches if there is available memory and decrease if the heap is getting full. The goal is to
have a large enough heap to make sure that heavy/peak load will not result in so called GC trashing
(performance can drop as much as two orders of magnitude when GC trashing happens).

• Start the JVM with the -server flag and a good sized heap (see Section 21.6, “JVM Settings”).
Having too large heap may also hurt performance so you may have to try some different heap sizes.

• Use the parallel/concurrent garbage collector (we found that -XX:+UseConcMarkSweepGC works well in
most use-cases)

21.1.1. How to add configuration settings
When creating the embedded Neo4j instance it is possible to pass in parameters contained in a map
where keys and values are strings.
Map<String, String> config = new HashMap<String, String>();

config.put("neostore.nodestore.db.mapped_memory", "10M");

config.put("string_block_size", "60");

config.put("array_block_size", "300");

GraphDatabaseService db = new ImpermanentGraphDatabase(config);

If no configuration is provided, the Database Kernel will try to determine suitable settings from the
information available via the JVM settings and the underlying operating system.

The JVM is configured by passing command line flags when starting the JVM. The most important
configuration parameters for Neo4j are the ones that control the memory and garbage collector, but
some of the parameters for configuring the Just In Time compiler are also of interest.

This is an example of starting up your applications main class using 64-bit server VM mode and a
heap space of 1GB:
java -d64 -server -Xmx1024m -cp /path/to/neo4j-kernel.jar:/path/to/jta.jar:/path/to/your-application.jar com.example.yourapp.MainClass

Looking at the example above you will also notice one of the most basic command line parameters:
the one for specifying the classpath. The classpath is the path in which the JVM searches for your
classes. It is usually a list of jar-files. Specifying the classpath is done by specifying the flag -cp (or -
classpath) and then the value of the classpath. For Neo4j applications this should at least include the
path to the Neo4j neo4j-kernel.jar and the Java Transaction API (jta.jar) as well as the path where
the classes for your application are located.

Tip
On Linux, Unix and Mac OS X each element in the path list are separated by a colon
symbol (:), on Windows the path elements are separated by a semicolon (;).

When using the Neo4j REST server, see Section 17.2, “Server Configuration” for how to add
configuration settings for the database to the server.

Configuration & Performance

398

21.2. Performance Guide
This is the Neo4j performance guide. It will attempt to guide you in how to use Neo4j to achieve
maximum performance.

21.2.1. Try this first
The first thing is to make sure the JVM is running well and not spending to much time in garbage
collection. Monitoring heap usage on an application that uses Neo4j can be a bit confusing since
Neo4j will increase the size of caches if there is available memory and decrease if the heap is getting
full. The goal is to have a large enough heap so heavy/peak load will not result in so called GC
trashing (performance can drop as much as two orders of magnitude when this happens).

Start the JVM with -server flag and -Xmx<good sized heap> (f.ex. -Xmx512M for 512Mb memory
or -Xmx3G for 3Gb memory). Having too large heap may also hurt performance so you may have
to try some different heap sizes. Make sure parallel/concurrent garbage collector is running (-XX:
+UseConcMarkSweepGC works well in most use-cases).

Finally make sure the OS has some memory to manage proper file system caches meaning if
your server has 8GB of RAM don’t use all of that RAM for heap (unless you turned off memory
mapped buffers) but leave a good size of it to the OS. For more information on this see Chapter 21,
Configuration & Performance.

For Linux specific tweaks, see Section 21.10, “Linux Performance Guide”.

21.2.2. Neo4j primitives' lifecycle
Neo4j manages its primitives (nodes, relationships and properties) different depending on how you
use Neo4j. For example if you never get a property from a certain node or relationship that node
or relationship will not have its properties loaded into memory. The first time, after loading a node
or relationship, any property is accessed all the properties are loaded for that entity. If any of those
properties contain an array larger than a few elements or a long string such values are loaded on
demand when requesting them individually. Similarly, relationships of a node will only be loaded the
first time they are requested for that node.

Nodes and relationships are cached using LRU caches. If you (for some strange reason) only work
with nodes the relationship cache will become smaller and smaller while the node cache is allowed to
grow (if needed). Working with many relationships and few nodes results in bigger relationship cache
and smaller node cache.

The Neo4j API specification does not say anything about order regarding relationships so invoking

Node.getRelationships()

may return the relationships in a different order than the previous invocation. This allows us to make
even heavier optimizations returning the relationships that are most commonly traversed.

All in all Neo4j has been designed to be very adaptive depending on how it is used. The
(unachievable) overall goal is to be able to handle any incoming operation without having to go down
and work with the file/disk I/O layer.

21.2.3. Configuring Neo4j
In Chapter 21, Configuration & Performance page there’s information on how to configure Neo4j and
the JVM. These settings have a lot impact on performance.

Configuration & Performance

399

Disks, RAM and other tips
As always, as with any persistence solution, performance is very much depending on the persistence
media used. Better disks equals better performance.

If you have multiple disks or persistence media available it may be a good idea to split the store files
and transaction logs across those disks. Having the store files running on disks with low seek time
can do wonders for non cached read operations. Today a typical mechanical drive has an average seek
time of about 5ms, this can cause a query or traversal to be very slow when available RAM is too low
or caches and memory mapped settings are badly configured. A new good SATA enabled SSD has an
average seek time of <100 microseconds meaning those scenarios will execute at least 50 times faster.

To avoid hitting disk you need more RAM. On a standard mechanical drive you can handle graphs
with a few tens of millions of primitives with 1-2GB of RAM. 4-8GB of RAM can handle graphs with
hundreds of millions of primitives while you need a good server with 16-32GB to handle billions of
primitives. However, if you invest in a good SSD you will be able to handle much larger graphs on
less RAM.

Neo4j likes Java 1.6 JVMs and running in server mode so consider upgrading to that if you haven’t
yet (or at least give the -server flag). Use tools like vmstat or equivalent to gather info when your
application is running. If you have high I/O waits and not that many blocks going out/in to disks when
running write/read transactions its a sign that you need to tweak your Java heap, Neo4j cache and
memory mapped settings (maybe even get more RAM or better disks).

Write performance
If you are experiencing poor write performance after writing some data (initially fast, then massive
slowdown) it may be the operating system writing out dirty pages from the memory mapped regions
of the store files. These regions do not need to be written out to maintain consistency so to achieve
highest possible write speed that type of behavior should be avoided.

Another source of writes slow down can be the transaction size. Many small transactions result in
a lot of I/O writes to disc and should be avoided. Too big transactions can result in OutOfMemory
errors, since the uncommitted transaction data is held on the Java Heap in memory. On details about
transaction management in Neo4j, please read the Chapter 12, Transaction Management guidelines.

The Neo4j kernel makes use of several store files and a logical log file to store the graph on disk. The
store files contain the actual graph and the log contains modifying operations. All writes to the logical
log are append-only and when a transaction is committed changes to the logical log will be forced
(fdatasync) down to disk. The store files are however not flushed to disk and writes to them are not
append-only either. They will be written to in a more or less random pattern (depending on graph
layout) and writes will not be forced to disk until the log is rotated or the Neo4j kernel is shut down.

Since random writes to memory mapped regions for the store files may happen it is very important
that the data does not get written out to disk unless needed. Some operating systems have very
aggressive settings regarding when to write out these dirty pages to disk. If the OS decides to
start writing out dirty pages of these memory mapped regions, write access to disk will stop being
sequential and become random. That hurts performance a lot, so to get maximum write performance
when using Neo4j make sure the OS is configured not to write out any of the dirty pages caused by
writes to the memory mapped regions of the store files. As an example, if the machine has 8GB of
RAM and the total size of the store files is 4GB (fully memory mapped) the OS has to be configured
to accept at least 50% dirty pages in virtual memory to make sure we do not get random disk writes.

Note: make sure to read the Section 21.10, “Linux Performance Guide” as well for more specific
information.

Configuration & Performance

400

Second level caching
While normally building applications and "always assume the graph is in memory", sometimes it is
necessary to optimize certain performance critical sections. Neo4j adds a small overhead even if the
node, relationship or property in question is cached when you compare to in memory data structures.
If this becomes an issue use a profiler to find these hot spots and then add your own second-level
caching. We believe second-level caching should be avoided to greatest extend possible since it will
force you to take care of invalidation which sometimes can be hard. But when everything else fails
you have to use it so here is an example of how it can be done.

We have some POJO that wrapps a node holding its state. In this particular POJO we’ve overridden
the equals implementation.
 public boolean equals(Object obj)

 {

 return underlyingNode.getProperty("some_property").equals(obj);

 }

 public int hashCode()

 {

 return underlyingNode.getProperty("some_property").hashCode();

 }

This works fine in most scenarios but in this particular scenario many instances of that POJO is being
worked with in nested loops adding/removing/getting/finding to collection classes. Profiling the
applications will show that the equals implementation is being called many times and can be viewed
as a hot spot. Adding second-level caching for the equals override will in this particular scenario
increase performance.
 private Object cachedProperty = null;

 public boolean equals(Object obj)

 {

 if (cachedProperty == null)

 {

 cachedProperty = underlyingNode.getProperty("some_property");

 }

 return cachedProperty.equals(obj);

 }

 public int hashCode()

 {

 if (cachedPropety == null)

 {

 cachedProperty = underlyingNode.getProperty("some_property");

 }

 return cachedProperty.hashCode();

 }

The problem now is that we need to invalidate the cached property whenever the some_property
is changed (may not be a problem in this scenario since the state picked for equals and hash code
computation often won’t change).

Tip
To sum up, avoid second-level caching if possible and only add it when you really need it.

Configuration & Performance

401

21.3. Kernel configuration
These are the configuration options you can pass to the neo4j kernel. They can either be passed as a
map when using the embedded database, or in the neo4j.properties file when using the Neo4j Server.

All stores total mapped memory size
all_stores_total_mapped_memory_size

The size to allocate for a memory mapping pool to be shared between all stores.
Default value: 524288000

Allow store upgrade
allow_store_upgrade

Whether to allow a store upgrade in case the current version of the database starts against an older
store version. Setting this to true does not guarantee successful upgrade, justthat it allows an attempt
at it.
Default value: false

Array block size
array_block_size

Specifies the block size for storing arrays. This parameter is only honored when the store is created,
otherwise it is ignored. The default block size is 120 bytes, and the overhead of each block is the
same as for string blocks, i.e., 8 bytes.
Default value: 120

Backup slave
backup_slave

Mark this database as a backup slave.
Default value: false

Cache type
cache_type

The type of cache to use for nodes and relationships. Note that the Neo4j Enterprise Edition has the
additional 'gcr' cache type. See the chapter on caches in the manual for more information.
Default value: soft

Cypher parser version
cypher_parser_version

Enable this to specify a parser other than the default one.

Dump configuration
dump_configuration

Print out the effective Neo4j configuration after startup.
Default value: false

Configuration & Performance

402

Forced kernel id
forced_kernel_id

An identifier that uniquely identifies this graph database instance within this JVM. Defaults to an
auto-generated number depending on how many instance are started in this JVM.

Gc monitor threshold
gc_monitor_threshold

The amount of time in ms the monitor thread has to be blocked before logging a message it was
blocked.
Default value: 200

Gc monitor wait time
gc_monitor_wait_time

Amount of time in ms the GC monitor thread will wait before taking another measurement.
Default value: 100

Gcr cache min log interval
gcr_cache_min_log_interval

The minimal time that must pass in between logging statistics from the cache (when using the 'gcr'
cache).
Default value: 60s

Grab file lock
grab_file_lock

Whether to grab locks on files or not.
Default value: true

Intercept committing transactions
intercept_committing_transactions

Determines whether any TransactionInterceptors loaded will intercept prepared transactions before
they reach the logical log.
Default value: false

Intercept deserialized transactions
intercept_deserialized_transactions

Determines whether any TransactionInterceptors loaded will intercept externally received
transactions (e.g. in HA) before they reach the logical log and are applied to the store.
Default value: false

Keep logical logs
keep_logical_logs

Default value: true

Configuration & Performance

403

Make Neo4j keep the logical transaction logs for being able to backup the database.Can be used for
specifying the threshold to prune logical logs after. For example "10 days" will prune logical logs
that only contains transactions older than 10 days from the current time, or "100k txs" will keep the
100k latest transactions and prune any older transactions.
Default value: true

Load kernel extensions
load_kernel_extensions

Enable loading kernel extensions
Default value: true

Log mapped memory stats
log_mapped_memory_stats

Tell Neo4j to regularly log memory mapping statistics.
Default value: false

Log mapped memory stats filename
log_mapped_memory_stats_filename

The file where Neo4j will record memory mapping statistics.
Default value: mapped_memory_stats.log

Log mapped memory stats interval
log_mapped_memory_stats_interval

The number of records to be loaded between regular logging of memory mapping statistics.
Default value: 1000000

Logging.threshold for rotation
logging. threshold_for_rotation

Threshold in bytes for when database logs (text logs, for debugging, that is) are rotated.
Default value: 104857600

Logical log
logical_log

The base name for the logical log files, either an absolute path or relative to the store_dir setting.
This should generally not be changed.
Default value: nioneo_logical.log

Lucene searcher cache size
lucene_searcher_cache_size

Integer value that sets the maximum number of open lucene index searchers.
Default value: 2147483647

Configuration & Performance

404

Lucene writer cache size
lucene_writer_cache_size

NOTE: This no longer has any effect. Integer value that sets the maximum number of open lucene
index writers.
Default value: 2147483647

Mapped memory page size
mapped_memory_page_size

Target size for pages of mapped memory.
Default value: 1048576

Neo store
neo_store

The base name for the Neo4j Store files, either an absolute path or relative to the store_dir setting.
This should generally not be changed.
Default value: neostore

Neostore.nodestore.db.mapped memory
neostore. nodestore. db. mapped_memory

The size to allocate for memory mapping the node store.
Default value: 20971520

Neostore.propertystore.db.arrays.mapped memory
neostore. propertystore. db. arrays. mapped_memory

The size to allocate for memory mapping the array property store.
Default value: 136314880

Neostore.propertystore.db.index.keys.mapped memory
neostore. propertystore. db. index. keys. mapped_memory

The size to allocate for memory mapping the store for property key strings.
Default value: 1048576

Neostore.propertystore.db.index.mapped memory
neostore. propertystore. db. index. mapped_memory

The size to allocate for memory mapping the store for property key indexes.
Default value: 1048576

Neostore.propertystore.db.mapped memory
neostore. propertystore. db. mapped_memory

The size to allocate for memory mapping the property value store.
Default value: 94371840

Configuration & Performance

405

Neostore.propertystore.db.strings.mapped memory

neostore. propertystore. db. strings. mapped_memory

The size to allocate for memory mapping the string property store.
Default value: 136314880

Neostore.relationshipstore.db.mapped memory

neostore. relationshipstore. db. mapped_memory

The size to allocate for memory mapping the relationship store.
Default value: 104857600

Node auto indexing

node_auto_indexing

Controls the auto indexing feature for nodes. Setting to false shuts it down, while true enables it by
default for properties listed in the node_keys_indexable setting.
Default value: false

Node cache array fraction

node_cache_array_fraction

The fraction of the heap (1%-10%) to use for the base array in the node cache (when using the 'gcr'
cache).
Default value: 1.0

Node cache size

node_cache_size

The amount of memory to use for the node cache (when using the 'gcr' cache).

Node keys indexable

node_keys_indexable

A list of property names (comma separated) that will be indexed by default. This applies to Nodes
only.

Query cache size

query_cache_size

Used to set the number of Cypher query execution plans that are cached.
Default value: 100

Read only database

read_only

Only allow read operations from this Neo4j instance.
Default value: false

Configuration & Performance

406

Rebuild idgenerators fast
rebuild_idgenerators_fast

Use a quick approach for rebuilding the ID generators. This give quicker recovery time, but will limit
the ability to reuse the space of deleted entities.
Default value: true

Relationship auto indexing
relationship_auto_indexing

Controls the auto indexing feature for relationships. Setting to false shuts it down, while true enables
it by default for properties listed in the relationship_keys_indexable setting.
Default value: false

Relationship cache array fraction
relationship_cache_array_fraction

The fraction of the heap (1%-10%) to use for the base array in the relationship cache (when using the
'gcr' cache).
Default value: 1.0

Relationship cache size
relationship_cache_size

The amount of memory to use for the relationship cache (when using the 'gcr' cache).

Relationship grab size
relationship_grab_size

How many relationships to read at a time during iteration
Default value: 100

Relationship keys indexable
relationship_keys_indexable

A list of property names (comma separated) that will be indexed by default. This applies to
Relationships only.

Remote logging enabled
remote_logging_enabled

Whether to enable logging to a remote server or not.
Default value: false

Remote logging host
remote_logging_host

Host for remote logging using LogBack SocketAppender.
Default value: 127.0.0.1

Configuration & Performance

407

Remote logging port
remote_logging_port

Port for remote logging using LogBack SocketAppender.
Default value: 4560

Store dir
store_dir

The directory where the database files are located.

String block size
string_block_size

Specifies the block size for storing strings. This parameter is only honored when the store is created,
otherwise it is ignored. Note that each character in a string occupies two bytes, meaning that a block
size of 120 (the default size) will hold a 60 character long string before overflowing into a second
block. Also note that each block carries an overhead of 8 bytes. This means that if the block size is
120, the size of the stored records will be 128 bytes.
Default value: 120

Tx manager impl
tx_manager_impl

The name of the Transaction Manager service to use as defined in the TM service provider
constructor.
Default value: native

Use memory mapped buffers
use_memory_mapped_buffers

Tell Neo4j to use memory mapped buffers for accessing the native storage layer.

Configuration & Performance

408

21.4. Caches in Neo4j
For how to provide custom configuration to Neo4j, see Section 21.1, “Introduction”.
Neo4j utilizes two different types of caches: A file buffer cache and an object cache. The file buffer
cache caches the storage file data in the same format as it is stored on the durable storage media.
The object cache caches the nodes, relationships and properties in a format that is optimized for high
traversal speeds and transactional writes.

21.4.1. File buffer cache

Quick info

• The file buffer cache is sometimes called low level cache or file system cache.
• It caches the Neo4j data as stored on the durable media.
• It uses the operating system memory mapping features when possible.
• Neo4j will configure the cache automatically as long as the heap size of the JVM is

configured properly.

The file buffer cache caches the Neo4j data in the same format as it is represented on the durable
storage media. The purpose of this cache layer is to improve both read and write performance. The
file buffer cache improves write performance by writing to the cache and deferring durable write until
the logical log is rotated. This behavior is safe since all transactions are always durably written to the
logical log, which can be used to recover the store files in the event of a crash.
Since the operation of the cache is tightly related to the data it stores, a short description of the Neo4j
durable representation format is necessary background. Neo4j stores data in multiple files and relies
on the underlying file system to handle this efficiently. Each Neo4j storage file contains uniform fixed
size records of a particular type:

Store file Record size Contents
nodestore 9 B Nodes
relstore 33 B Relationships
propstore 41 B Properties

for nodes and
relationships

stringstore 128 B Values of string
properties

arraystore 128 B Values of array
properties

For strings and arrays, where data can be of variable length, data is stored in one or more 120B
chunks, with 8B record overhead. The sizes of these blocks can actually be configured when the store
is created using the string_block_size and array_block_size parameters. The size of each record type
can also be used to calculate the storage requirements of a Neo4j graph or the appropriate cache size
for each file buffer cache. Note that some strings and arrays can be stored without using the string
store or the array store respectively, see Section 21.7, “Compressed storage of short strings” and
Section 21.8, “Compressed storage of short arrays”.
Neo4j uses multiple file buffer caches, one for each different storage file. Each file buffer cache
divides its storage file into a number of equally sized windows. Each cache window contains an even

Configuration & Performance

409

number of storage records. The cache holds the most active cache windows in memory and tracks hit
vs. miss ratio for the windows. When the hit ratio of an uncached window gets higher than the miss
ratio of a cached window, the cached window gets evicted and the previously uncached window is
cached instead.

Important
Note that the block sizes can only be configured at store creation time.

Configuration

Parameter Possible values Effect

use_memory_mapped_buffers true or false If set to true Neo4j will use
the operating systems memory
mapping functionality for the
file buffer cache windows. If set
to false Neo4j will use its own
buffer implementation. In this case
the buffers will reside in the JVM
heap which needs to be increased
accordingly. The default value for
this parameter is true, except on
Windows.

neostore. nodestore. db.

 mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the node storage file.

neostore. relationshipstore. db.

 mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the relationship store file.

neostore. propertystore. db. index.

 keys. mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the something-something file.

neostore. propertystore. db. index.

 mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the something-something file.

neostore. propertystore. db.

 mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the property storage file.

neostore. propertystore. db.

 strings. mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the string property storage file.

neostore. propertystore. db. arrays.

 mapped_memory

The maximum amount of
memory to use for memory
mapped buffers for this file
buffer cache. The default
unit is MiB, for other units
use any of the following

suffixes: B, k, M or G.

The maximum amount of memory
to use for the file buffer cache of
the array property storage file.

string_block_size The number of
bytes per block.

Specifies the block size for storing
strings. This parameter is only
honored when the store is created,

Configuration & Performance

410

Parameter Possible values Effect
otherwise it is ignored. Note that
each character in a string occupies
two bytes, meaning that a block
size of 120 (the default size) will
hold a 60 character long string
before overflowing into a second
block. Also note that each block
carries an overhead of 8 bytes.
This means that if the block size is
120, the size of the stored records
will be 128 bytes.

array_block_size Specifies the block size for storing
arrays. This parameter is only
honored when the store is created,
otherwise it is ignored. The default
block size is 120 bytes, and the
overhead of each block is the same
as for string blocks, i.e., 8 bytes.

dump_configuration true or false If set to true the current
configuration settings will be
written to the default system
output, mostly the console or the
logfiles.

When memory mapped buffers are used (use_memory_mapped_buffers = true) the heap size of the JVM
must be smaller than the total available memory of the computer, minus the total amount of memory
used for the buffers. When heap buffers are used (use_memory_mapped_buffers = false) the heap size of
the JVM must be large enough to contain all the buffers, plus the runtime heap memory requirements
of the application and the object cache.
When reading the configuration parameters on startup Neo4j will automatically configure the
parameters that are not specified. The cache sizes will be configured based on the available memory
on the computer, how much is used by the JVM heap, and how large the storage files are.

21.4.2. Object cache

Quick info

• The object cache is sometimes called high level cache.
• It caches the Neo4j data in a form optimized for fast traversal.

The object cache caches individual nodes and relationships and their properties in a form that is
optimized for fast traversal of the graph. There are two different categories of object caches in Neo4j.
There is the reference caches. Here Neo4j will utilize as much as it can out of the allocated heap
memory for the JVM for object caching and relies on garbage collection for eviction from the cache
in an LRU manner. Note however that Neo4j is "competing" for the heap space with other objects
in the same JVM, such as a your application, if deployed in embedded mode, and Neo4j will let the
application "win" by using less memory if the application needs more.

Configuration & Performance

411

Note
The GC resistant cache described below is only available in the Neo4j Enterprise Edition.

The other is the GC resistant cache which gets assigned a certain amount of space in the JVM heap
and will purge objects whenever it grows bigger than that. It is assigned a maximum amount of
memory which the sum of all cached objects in it will not exceed. Objects will be evicted from cache
when the maximum size is about to be reached, instead of relying on garbage collection (GC) to
make that decision. Here the competition with other objects in the heap as well as GC-pauses can be
better controlled since the cache gets assigned a maximum heap space usage. The overhead of the GC
resistant cache is also much smaller as well as insert/lookup times faster than for reference caches.

Tip
The use of heap memory is subject to the java garbage collector — depending on the cache
type some tuning might be needed to play well with the GC at large heap sizes. Therefore,
assigning a large heap for Neo4j’s sake isn’t always the best strategy as it may lead to long
GC-pauses. Instead leave some space for Neo4j’s filesystem caches. These are outside of
the heap and under under the kernel’s direct control, thus more efficiently managed.

The content of this cache are objects with a representation geared towards supporting the Neo4j object
API and graph traversals. Reading from this cache is 5 to 10 times faster than reading from the file
buffer cache. This cache is contained in the heap of the JVM and the size is adapted to the current
amount of available heap memory.

Nodes and relationships are added to the object cache as soon as they are accessed. The cached
objects are however populated lazily. The properties for a node or relationship are not loaded until
properties are accessed for that node or relationship. String (and array) properties are not loaded until
that particular property is accessed. The relationships for a particular node is also not loaded until the
relationships are accessed for that node.

Configuration
The main configuration parameter for the object cache is the cache_type parameter. This specifies
which cache implementation to use for the object cache. Note that there will exist two cache instances,
one for nodes and one for relationships. The available cache types are:

cache_type Description

none Do not use a high level cache. No objects will be cached.
soft Provides optimal utilization of the available memory. Suitable for high performance

traversal. May run into GC issues under high load if the frequently accessed parts of
the graph does not fit in the cache.

This is the default cache implementation.
weak Provides short life span for cached objects. Suitable for high throughput applications

where a larger portion of the graph than what can fit into memory is frequently
accessed.

strong This cache will hold on to all data that gets loaded to never release it again. Provides
good performance if your graph is small enough to fit in memory.

gcr Provides means of assigning a specific amount of memory to dedicate to caching
loaded nodes and relationships. Small footprint and fast insert/lookup. Should be the

Configuration & Performance

412

cache_type Description
best option for most scenarios. See below on how to configure it. Note that this option
is only available in the Neo4j Enterprise Edition.

GC resistant cache configuration
Since the GC resistant cache operates with a maximum size in the JVM it may be configured per use
case for optimal performance. There are two aspects of the cache size.

One is the size of the array referencing the objects that are put in the cache. It is specified as a
fraction of the heap, for example specifying 5 will let that array itself take up 5% out of the entire
heap. Increasing this figure (up to a maximum of 10) will reduce the chance of hash collisions at the
expense of more heap used for it. More collisions means more redundant loading of objects from the
low level cache.

configuration

option

Description (what it controls) Example
value

node_cache_array_fractionFraction of the heap to dedicate to the array holding the nodes in the
cache (max 10).

7

relationship_cache_array_fractionFraction of the heap to dedicate to the array holding the relationships
in the cache (max 10).

5

The other aspect is the maximum size of all the objects in the cache. It is specified as size in bytes, for
example 500M for 500 megabytes or 2G for two gigabytes. Right before the maximum size is reached
a purge is performed where (currently) random objects are evicted from the cache until the cache size
gets below 90% of the maximum size. Optimal settings for the maximum size depends on the size
of your graph. The configured maximum size should leave enough room for other objects to coexist
in the same JVM, but at the same time large enough to keep loading from the low level cache at a
minimum. Predicted load on the JVM as well as layout of domain level objects should also be take
into consideration.

configuration

option

Description (what it controls) Example
value

node_cache_sizeMaximum size of the heap memory to dedicate to the cached nodes. 2G

relationship_cache_sizeMaximum size of the heap memory to dedicate to the cached
relationships.

800M

You can read about references and relevant JVM settings for Sun HotSpot here:

• Understanding soft/weak references <http://weblogs.java.net/blog/enicholas/archive/2006/05/
understanding_w.html>

• How Hotspot Decides to Clear SoftReferences <http://jeremymanson.blogspot.com/2009/07/how-
hotspot-decides-to-clear_07.html>

• HotSpot FAQ <http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#gc_softrefs>

Heap memory usage
This table can be used to calculate how much memory the data in the object cache will occupy on a
64bit JVM:

http://weblogs.java.net/blog/enicholas/archive/2006/05/understanding_w.html
http://weblogs.java.net/blog/enicholas/archive/2006/05/understanding_w.html
http://weblogs.java.net/blog/enicholas/archive/2006/05/understanding_w.html
http://jeremymanson.blogspot.com/2009/07/how-hotspot-decides-to-clear_07.html
http://jeremymanson.blogspot.com/2009/07/how-hotspot-decides-to-clear_07.html
http://jeremymanson.blogspot.com/2009/07/how-hotspot-decides-to-clear_07.html
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#gc_softrefs
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#gc_softrefs

Configuration & Performance

413

Object Size Comment

344 B Size for each node (not counting its relationships or properties).
48 B Object overhead.
136 B Property storage (ArrayMap 48B, HashMap 88B).
136 B Relationship storage (ArrayMap 48B, HashMap 88B).

Node

24 B Location of first / next set of relationships.
208 B Size for each relationship (not counting its properties).
48 B Object overhead.

Relationship

136 B Property storage (ArrayMap 48B, HashMap 88B).
116 B Size for each property of a node or relationship.
32 B Data element — allows for transactional modification and keeps track

of on disk location.
48 B Entry in the hash table where it is stored.
12 B Space used in hash table, accounts for normal fill ratio.

Property

24 B Property key index.
108 B Size for each relationship type for a node that has a relationship of

that type.
48 B Collection of the relationships of this type.
48 B Entry in the hash table where it is stored.

Relationships

12 B Space used in hash table, accounts for normal fill ratio.
Relationships 8 B Space used by each relationship related to a particular node (both

incoming and outgoing).
Primitive 24 B Size of a primitive property value.
String 64+B Size of a string property value. 64 + 2*len(string) B (64 bytes, plus

two bytes for each character in the string).

Configuration & Performance

414

21.5. Logical logs
Logical logs in Neo4j are the journal of which operations happens and are the source of truth in
scenarios where the database needs to be recovered after a crash or similar. Logs are rotated every
now and then (defaults to when they surpass 25 Mb in size) and the amount of legacy logs to keep can
be configured. Purpose of keeping a history of logical logs include being able to serve incremental
backups as well as keeping an HA cluster running.

For any given configuration at least the latest non-empty logical log will be kept, but configuration
can be supplied to control how much more to keep. There are several different means of controlling it
and the format in which configuration is supplied is:
keep_logical_logs=<true/false>

keep_logical_logs=<amount> <type>

For example:
Will keep logical logs indefinitely

keep_logical_logs=true

Will keep only the most recent non-empty log

keep_logical_logs=false

Will keep logical logs which contains any transaction committed within 30 days

keep_logical_logs=30 days

Will keep logical logs which contains any of the most recent 500 000 transactions

keep_logical_logs=500k txs

Full list:

Type Description Example

files Number of most recent
logical log files to keep

"10 files"

size Max disk size to allow log
files to occupy

"300M
size" or
"1G size"

txs Number of latest transactions
to keep Keep

"250k txs"
or "5M
txs"

hours Keep logs which contains
any transaction committed
within N hours from current
time

"10 hours"

days Keep logs which contains
any transaction committed
within N days from current
time

"50 days"

Configuration & Performance

415

21.6. JVM Settings
There are two main memory parameters for the JVM, one controls the heap space and the other
controls the stack space. The heap space parameter is the most important one for Neo4j, since this
governs how many objects you can allocate. The stack space parameter governs the how deep the call
stack of your application is allowed to get.

When it comes to heap space the general rule is: the larger heap space you have the better, but make
sure the heap fits in the RAM memory of the computer. If the heap is paged out to disk performance
will degrade rapidly. Having a heap that is much larger than what your application needs is not
good either, since this means that the JVM will accumulate a lot of dead objects before the garbage
collector is executed, this leads to long garbage collection pauses and undesired performance
behavior.

Having a larger heap space will mean that Neo4j can handle larger transactions and more concurrent
transactions. A large heap space will also make Neo4j run faster since it means Neo4j can fit a larger
portion of the graph in its caches, meaning that the nodes and relationships your application uses
frequently are always available quickly. The default heap size for a 32bit JVM is 64MB (and 30%
larger for 64bit), which is too small for most real applications.

Neo4j works fine with the default stack space configuration, but if your application implements some
recursive behavior it is a good idea to increment the stack size. Note that the stack size is shared for
all threads, so if you application is running a lot of concurrent threads it is a good idea to increase the
stack size.

• The heap size is set by specifying the -Xmx???m parameter to hotspot, where ??? is the heap size in
megabytes. Default heap size is 64MB for 32bit JVMs, 30% larger (appr. 83MB) for 64bit JVMs.

• The stack size is set by specifying the -Xss???m parameter to hotspot, where ??? is the stack size in
megabytes. Default stack size is 512kB for 32bit JVMs on Solaris, 320kB for 32bit JVMs on Linux
(and Windows), and 1024kB for 64bit JVMs.

Most modern CPUs implement a Non-Uniform Memory Access (NUMA) architecture <http://
en.wikipedia.org/wiki/Non-Uniform_Memory_Access>, where different parts of the memory
have different access speeds. Suns Hotspot JVM is able to allocate objects with awareness of the
NUMA structure as of version 1.6.0 update 18. When enabled this can give up to 40% performance
improvements. To enabled the NUMA awareness, specify the -XX:+UseNUMA parameter (works only
when using the Parallel Scavenger garbage collector (default or -XX:+UseParallelGC not the concurrent
mark and sweep one).

Properly configuring memory utilization of the JVM is crucial for optimal performance. As an
example, a poorly configured JVM could spend all CPU time performing garbage collection (blocking
all threads from performing any work). Requirements such as latency, total throughput and available
hardware have to be considered to find the right setup. In production, Neo4j should run on a multi
core/CPU platform with the JVM in server mode.

21.6.1. Configuring heap size and GC
A large heap allows for larger node and relationship caches — which is a good thing — but large
heaps can also lead to latency problems caused by full garbage collection. The different high level
cache implementations available in Neo4j together with a suitable JVM configuration of heap size and
garbage collection (GC) should be able to handle most workloads.

The default cache (soft reference based LRU cache) works best with a heap that never gets full: a
graph where the most used nodes and relationships can be cached. If the heap gets too full there is a

http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access

Configuration & Performance

416

risk that a full GC will be triggered; the larger the heap, the longer it can take to determine what soft
references should be cleared.

Using the strong reference cache means that all the nodes and relationships being used must fit in the
available heap. Otherwise there is a risk of getting out-of-memory exceptions. The soft reference and
strong reference caches are well suited for applications were the overal throughput is important.

The weak reference cache basically needs enough heap to handle the peak load of the
application — peak load multiplied by the average memory required per request. It is well suited for
low latency requirements were GC interuptions are not acceptable.

Important
When running Neo4j on Windows, keep in mind that the memory mapped buffers are
allocated on heap by default, so they need to be taken into account when determining heap
size.

Guidelines for heap size
Number of
primitives

RAM size Heap
configuration

Reserved RAM
for the OS

10M 2GB 512MB the rest
100M 8GB+ 1-4GB 1-2GB
1B+ 16GB-32GB+ 4GB+ 1-2GB

Tip
The recommended garbage collector to use when running Neo4j in production is the
Concurrent Mark and Sweep Compactor turned on by supplying -XX:+UseConcMarkSweepGC
as a JVM parameter.

When having made sure that the heap size is well configured the second thing to tune in order to tune
the garbage collector for your application is to specify the sizes of the different generations of the
heap. The default settings are well tuned for "normal" applications, and work quite well for most
applications, but if you have an application with either really high allocation rate, or a lot of long
lived objects you might want to consider tuning the sizes of the heap generation. The ratio between
the young and tenured generation of the heap is specified by using the -XX:NewRatio=# command line
option (where # is replaced by a number). The default ratio is 1:12 for client mode JVM, and 1:8 for
server mode JVM. You can also specify the size of the young generation explicitly using the -Xmn
command line option, which works just like the -Xmx option that specifies the total heap space.

GC shortname Generation Command line
parameter

Comment

Copy Young -XX:+UseSerialGC The Copying collector
MarkSweepCompact Tenured -XX:+UseSerialGC The Mark and Sweep

Compactor
ConcurrentMarkSweep Tenured -XX:+UseConcMarkSweepGC The Concurrent Mark

and Sweep Compactor
ParNew Young -XX:+UseParNewGC The parallel

Young Generation
Collector — can only

Configuration & Performance

417

GC shortname Generation Command line
parameter

Comment

be used with the
Concurrent mark and
sweep compactor.

PS Scavenge Young -XX:+UseParallelGC The parallel object
scavenger

PS MarkSweep Tenured -XX:+UseParallelGC The parallel mark and
sweep collector

These are the default configurations on some platforms according to our non-exhaustive research:

JVM -d32 -client -d32 -server -d64 -client -d64 -server

Mac OS X Snow
Leopard, 64-bit,
Hotspot 1.6.0_17

ParNew and
ConcurrentMarkSweep

PS Scavenge and PS
MarkSweep

ParNew and
ConcurrentMarkSweep

PS Scavenge and PS
MarkSweep

Ubuntu, 32-bit,
Hotspot 1.6.0_16

Copy and
MarkSweepCompact

Copy and
MarkSweepCompact

N/A N/A

Configuration & Performance

418

21.7. Compressed storage of short strings
Neo4j will try to classify your strings in a short string class and if it manages that it will treat it
accordingly. In that case, it will be stored without indirection in the property store, inlining it instead
in the property record, meaning that the dynamic string store will not be involved in storing that value,
leading to reduced disk footprint. Additionally, when no string record is needed to store the property,
it can be read and written in a single lookup, leading to performance improvements and less disk space
required.
The various classes for short strings are:

• Numerical, consisting of digits 0..9 and the punctuation space, period, dash, plus, comma and
apostrophe.

• Date, consisting of digits 0..9 and the punctuation space dash, colon, slash, plus and comma.
• Hex (lower case), consisting of digits 0..9 and lower case letters a..f
• Hex (upper case), consisting of digits 0..9 and upper case letters a..f
• Upper case, consisting of upper case letters A..Z, and the punctuation space, underscore, period,

dash, colon and slash.
• Lower case, like upper but with lower case letters a..z instead of upper case
• E-mail, consisting of lower case letters a..z and the punctuation comma, underscore, period, dash,

plus and the at sign (@).
• URI, consisting of lower case letters a..z, digits 0..9 and most punctuation available.
• Alpha-numerical, consisting of both upper and lower case letters a..zA..z, digits 0..9 and

punctuation space and underscore.
• Alpha-symbolical, consisting of both upper and lower case letters a..zA..Z and the punctuation

space, underscore, period, dash, colon, slash, plus, comma, apostrophe, at sign, pipe and semicolon.
• European, consisting of most accented european characters and digits plus punctuation space, dash,

underscore and period — like latin1 but with less punctuation.
• Latin 1.
• UTF-8.

In addition to the string’s contents, the number of characters also determines if the string can be
inlined or not. Each class has its own character count limits, which are

Character count limits
String class Character

count
limit

Numerical, Date and Hex 54

Uppercase, Lowercase and E-mail 43

URI, Alphanumerical and
Alphasymbolical

36

European 31

Latin1 27

UTF-8 14

That means that the largest inline-able string is 54 characters long and must be of the Numerical class
and also that all Strings of size 14 or less will always be inlined.

Configuration & Performance

419

Also note that the above limits are for the default 41 byte PropertyRecord layout — if that parameter
is changed via editing the source and recompiling, the above have to be recalculated.

Configuration & Performance

420

21.8. Compressed storage of short arrays
Neo4j will try to store your primitive arrays in a compressed way, so as to save disk space and
possibly an I/O operation. To do that, it employs a "bit-shaving" algorithm that tries to reduce the
number of bits required for storing the members of the array. In particular:

1. For each member of the array, it determines the position of leftmost set bit.
2. Determines the largest such position among all members of the array
3. It reduces all members to that number of bits
4. Stores those values, prefixed by a small header.

That means that when even a single negative value is included in the array then the natural size of the
primitives will be used.

There is a possibility that the result can be inlined in the property record if:

• It is less than 24 bytes after compression
• It has less than 64 members

For example, an array long[] {0L, 1L, 2L, 4L} will be inlined, as the largest entry (4) will require
3 bits to store so the whole array will be stored in 4*3=12 bits. The array long[] {-1L, 1L, 2L, 4L}
however will require the whole 64 bits for the -1 entry so it needs 64*4 = 32 bytes and it will end up
in the dynamic store.

Configuration & Performance

421

21.9. Memory mapped IO settings
Each file in the Neo4j store can use memory mapped I/O for reading/writing. Best performance is
achieved if the full file can be memory mapped but if there isn’t enough memory for that Neo4j will
try and make the best use of the memory it gets (regions of the file that get accessed often will more
likely be memory mapped).

Important
Neo4j makes heavy use of the java.nio package. Native I/O will result in memory being
allocated outside the normal Java heap so that memory usage needs to be taken into
consideration. Other processes running on the OS will impact the availability of such
memory. Neo4j will require all of the heap memory of the JVM plus the memory to be
used for memory mapping to be available as physical memory. Other processes may thus
not use more than what is available after the configured memory allocation is made for
Neo4j.

A well configured OS with large disk caches will help a lot once we get cache misses in the node and
relationship caches. Therefore it is not a good idea to use all available memory as Java heap.
If you look into the directory of your Neo4j database, you will find its store files, all prefixed by
neostore:

• nodestore stores information about nodes
• relationshipstore holds all the relationships
• propertystore stores information of properties and all simple properties such as primitive types

(both for relationships and nodes)
• propertystore strings stores all string properties
• propertystore arrays stores all array properties

There are other files there as well, but they are normally not interesting in this context.
This is how the default memory mapping configuration looks:
neostore.nodestore.db.mapped_memory=25M

neostore.relationshipstore.db.mapped_memory=50M

neostore.propertystore.db.mapped_memory=90M

neostore.propertystore.db.strings.mapped_memory=130M

neostore.propertystore.db.arrays.mapped_memory=130M

21.9.1. Optimizing for traversal speed example
To tune the memory mapping settings start by investigating the size of the different store files found
in the directory of your Neo4j database. Here is an example of some of the files and sizes in a Neo4j
database:
14M neostore.nodestore.db

510M neostore.propertystore.db

1.2G neostore.propertystore.db.strings

304M neostore.relationshipstore.db

In this example the application is running on a machine with 4GB of RAM. We’ve reserved about
2GB for the OS and other programs. The Java heap is set to 1.5GB, that leaves about 500MB of RAM
that can be used for memory mapping.

Tip
If traversal speed is the highest priority it is good to memory map as much as possible of
the node- and relationship stores.

Configuration & Performance

422

An example configuration on the example machine focusing on traversal speed would then look
something like:
neostore.nodestore.db.mapped_memory=15M

neostore.relationshipstore.db.mapped_memory=285M

neostore.propertystore.db.mapped_memory=100M

neostore.propertystore.db.strings.mapped_memory=100M

neostore.propertystore.db.arrays.mapped_memory=0M

21.9.2. Batch insert example
Read general information on batch insertion in Section 13.1, “Batch Insertion”.

The configuration should suit the data set you are about to inject using BatchInsert. Lets say we
have a random-like graph with 10M nodes and 100M relationships. Each node (and maybe some
relationships) have different properties of string and Java primitive types (but no arrays). The
important thing with a random graph will be to give lots of memory to the relationship and node store:
neostore.nodestore.db.mapped_memory=90M

neostore.relationshipstore.db.mapped_memory=3G

neostore.propertystore.db.mapped_memory=50M

neostore.propertystore.db.strings.mapped_memory=100M

neostore.propertystore.db.arrays.mapped_memory=0M

The configuration above will fit the entire graph (with exception to properties) in memory.

A rough formula to calculate the memory needed for the nodes:
number_of_nodes * 9 bytes

and for relationships:
number_of_relationships * 33 bytes

Properties will typically only be injected once and never read so a few megabytes for the property
store and string store is usually enough. If you have very large strings or arrays you may want to
increase the amount of memory assigned to the string and array store files.

An important thing to remember is that the above configuration will need a Java heap of 3.3G+ since
in batch inserter mode normal Java buffers that gets allocated on the heap will be used instead of
memory mapped ones.

Configuration & Performance

423

21.10. Linux Performance Guide
The key to achieve good performance on reads and writes is to have lots of RAM since disks are so
slow. This guide will focus on achieving good write performance on a Linux kernel based operating
system.

If you have not already read the information available in Chapter 21, Configuration & Performance
do that now to get some basic knowledge on memory mapping and store files with Neo4j.

This section will guide you through how to set up a file system benchmark and use it to configure
your system in a better way.

21.10.1. Setup
Create a large file with random data. The file should fit in RAM so if your machine has 4GB of RAM
a 1-2GB file with random data will be enough. After the file has been created we will read the file
sequentially a few times to make sure it is cached.

$ dd if=/dev/urandom of=store bs=1M count=1000

1000+0 records in

1000+0 records out

1048576000 bytes (1.0 GB) copied, 263.53 s, 4.0 MB/s

$

$ dd if=store of=/dev/null bs=100M

10+0 records in

10+0 records out

1048576000 bytes (1.0 GB) copied, 38.6809 s, 27.1 MB/s

$

$ dd if=store of=/dev/null bs=100M

10+0 records in

10+0 records out

1048576000 bytes (1.0 GB) copied, 1.52365 s, 688 MB/s

$ dd if=store of=/dev/null bs=100M

10+0 records in

10+0 records out

1048576000 bytes (1.0 GB) copied, 0.776044 s, 1.4 GB/s

If you have a standard hard drive in the machine you may know that it is not capable of transfer
speeds as high as 1.4GB/s. What is measured is how fast we can read a file that is cached for us by the
operating system.

Next we will use a small utility that simulates the Neo4j kernel behavior to benchmark write speed of
the system.

$ git clone git@github.com:neo4j/tooling.git

...

$ cd tooling/write-test/

$ mvn compile

[INFO] Scanning for projects...

...

$./run

Usage: <large file> <log file> <[record size] [min tx size] [max tx size] [tx count] <[--nosync | --nowritelog | --nowritestore | --noread | --nomemorymap]>>

The utility will be given a store file (large file we just created) and a name of a log file. Then a record
size in bytes, min tx size, max tx size and transaction count must be set. When started the utility will
map the large store file entirely in memory and read (transaction size) records from it randomly and
then write them sequentially to the log file. The log file will then force changes to disk and finally the
records will be written back to the store file.

Configuration & Performance

424

21.10.2. Running the benchmark
Lets try to benchmark 100 transactions of size 100-500 with a record size of 33 bytes (same record
size used by the relationship store).

$./run store logfile 33 100 500 100

tx_count[100] records[30759] fdatasyncs[100] read[0.96802425 MB] wrote[1.9360485 MB]

Time was: 4.973

20.108585 tx/s, 6185.2 records/s, 20.108585 fdatasyncs/s, 199.32773 kB/s on reads, 398.65546 kB/s on writes

We see that we get about 6185 record updates/s and 20 transactions/s with the current transaction
size. We can change the transaction size to be bigger, for example writing 10 transactions of size
1000-5000 records:

$./run store logfile 33 1000 5000 10

tx_count[10] records[24511] fdatasyncs[10] read[0.77139187 MB] wrote[1.5427837 MB]

Time was: 0.792

12.626263 tx/s, 30948.232 records/s, 12.626263 fdatasyncs/s, 997.35516 kB/s on reads, 1994.7103 kB/s on writes

With larger transaction we will do fewer of them per second but record throughput will increase. Lets
see if it scales, 10 transactions in under 1s then 100 of them should execute in about 10s:

$./run store logfile 33 1000 5000 100

tx_count[100] records[308814] fdatasyncs[100] read[9.718763 MB] wrote[19.437527 MB]

Time was: 65.115

1.5357445 tx/s, 4742.594 records/s, 1.5357445 fdatasyncs/s, 152.83751 kB/s on reads, 305.67502 kB/s on writes

This is not very linear scaling. We modified a bit more than 10x records in total but the time jumped
up almost 100x. Running the benchmark watching vmstat output will reveal that something is not as it
should be:

$ vmstat 3

procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

 0 1 47660 298884 136036 2650324 0 0 0 10239 1167 2268 5 7 46 42

 0 1 47660 302728 136044 2646060 0 0 0 7389 1267 2627 6 7 47 40

 0 1 47660 302408 136044 2646024 0 0 0 11707 1861 2016 8 5 48 39

 0 2 47660 302472 136060 2646432 0 0 0 10011 1704 1878 4 7 49 40

 0 1 47660 303420 136068 2645788 0 0 0 13807 1406 1601 4 5 44 47

There are a lot of blocks going out to IO, way more than expected for the write speed we are seeing in
the benchmark. Another observation that can be made is that the Linux kernel has spawned a process
called "flush-x:x" (run top) that seems to be consuming a lot of resources.

The problem here is that the Linux kernel is trying to be smart and write out dirty pages from the
virtual memory. As the benchmark will memory map a 1GB file and do random writes it is likely that
this will result in 1/4 of the memory pages available on the system to be marked as dirty. The Neo4j
kernel is not sending any system calls to the Linux kernel to write out these pages to disk however the
Linux kernel decided to start doing so and it is a very bad decision. The result is that instead of doing
sequential like writes down to disk (the logical log file) we are now doing random writes writing
regions of the memory mapped file to disk.

It is possible to observe this behavior in more detail by looking at /proc/vmstat "nr_dirty" and
"nr_writeback" values. By default the Linux kernel will start writing out pages at a very low ratio of
dirty pages (10%).

$ sync

$ watch grep -A 1 dirty /proc/vmstat

...

nr_dirty 22

nr_writeback 0

Configuration & Performance

425

The "sync" command will write out all data (that needs writing) from memory to disk. The second
command will watch the "nr_dirty" and "nr_writeback" count from vmstat. Now start the benchmark
again and observe the numbers:
nr_dirty 124947

nr_writeback 232

The "nr_dirty" pages will quickly start to rise and after a while the "nr_writeback" will also increase
meaning the Linux kernel is scheduling a lot of pages to write out to disk.

21.10.3. Fixing the problem
As we have 4GB RAM on the machine and memory map a 1GB file that does not need its content
written to disk (until we tell it to do so because of logical log rotation or Neo4j kernel shutdown) it
should be possible to do endless random writes to that memory with high throughput. All we have to
do is to tell the Linux kernel to stop trying to be smart. Edit the /etc/sysctl.conf (need root access) and
add the following lines:
vm.dirty_background_ratio = 50

vm.dirty_ratio = 80

Then (as root) execute:
sysctl -p

The "vm.dirty_background_ratio" tells at what ratio should the linux kernel start the background task
of writing out dirty pages. We increased this from the default 10% to 50% and that should cover the
1GB memory mapped file. The "vm.dirty_ratio" tells at what ratio all IO writes become synchronous,
meaning that we can not do IO calls without waiting for the underlying device to complete them
(which is something you never want to happen).

Rerun the benchmark:
$./run store logfile 33 1000 5000 100

tx_count[100] records[265624] fdatasyncs[100] read[8.35952 MB] wrote[16.71904 MB]

Time was: 6.781

14.7470875 tx/s, 39171.805 records/s, 14.7470875 fdatasyncs/s, 1262.3726 kB/s on reads, 2524.745 kB/s on writes

Results are now more in line with what can be expected, 10x more records modified results in 10x
longer execution time. The vmstat utility will not report any absurd amount of IO blocks going out (it
reports the ones caused by the fdatasync to the logical log) and Linux kernel will not spawn a "flush-
x:x" background process writing out dirty pages caused by writes to the memory mapped store file.

Configuration & Performance

426

21.11. Linux specific notes
21.11.1. File system tuning for high IO

In order to support the high IO load of small transactions from a database, the underlying file system
should be tuned. Symptoms for this are low CPU load with high iowait. In this case, there are a couple
of tweaks possible on Linux systems:

• Disable access-time updates: noatime,nodiratime flags for disk mount command or in the /etc/fstab
for the database disk volume mount.

• Tune the IO scheduler for high disk IO on the database disk.

21.11.2. Setting the number of open files
Linux platforms impose an upper limit on the number of concurrent files a user may have open. This
number is reported for the current user and session with the command
user@localhost:~$ ulimit -n

1024

The usual default of 1024 is often not enough, especially when many indexes are used or a server
installation sees too many connections (network sockets count against that limit as well). Users are
therefore encouraged to increase that limit to a healthy value of 40000 or more, depending on usage
patterns. Setting this value via the ulimit command is possible only for the root user and that for that
session only. To set the value system wide you have to follow the instructions for your platform.

What follows is the procedure to set the open file descriptor limit to 40k for user neo4j under Ubuntu
10.04 and later. If you opted to run the neo4j service as a different user, change the first field in step 2
accordingly.

1. Become root since all operations that follow require editing protected system files.
user@localhost:~$ sudo su -

Password:

root@localhost:~$

2. Edit /etc/security/limits.conf and add these two lines:
neo4j soft nofile 40000

neo4j hard nofile 40000

3. Edit /etc/pam.d/su and uncomment or add the following line:
session required pam_limits.so

4. A restart is required for the settings to take effect.
After the above procedure, the neo4j user will have a limit of 40000 simultaneous open files. If you
continue experiencing exceptions on Too many open files or Could not stat() directory then you
may have to raise that limit further.

427

Chapter 22. High Availability

Note
The High Availability features are only available in the Neo4j Enterprise Edition.

Neo4j High Availability or “Neo4j HA” provides the following two main features:

1. It enables a fault-tolerant database architecture, where several Neo4j slave databases can be
configured to be exact replicas of a single Neo4j master database. This allows the end-user system
to be fully functional and both read and write to the database in the event of hardware failure.

2. It enables a horizontally scaling read-mostly architecture that enables the system to handle more
read load than a single Neo4j database instance can handle.

High Availability

428

22.1. Architecture
Neo4j HA has been designed to make the transition from single machine to multi machine operation
simple, by not having to change the already existing application.

Consider an existing application with Neo4j embedded and running on a single machine. To deploy
such an application in a multi machine setup the only required change is to switch the creation of the
GraphDatabaseService from GraphDatabaseFactory to HighlyAvailableGraphDatabaseFactory. Since both
implement the same interface, no additional changes are required.

Figure 22.1. Multiple Neo4j instances in HA mode

When running Neo4j in HA mode there is always a single master and zero or more slaves. Compared
to other master-slave replication setups Neo4j HA can handle write requests on all machines so there
is no need to redirect those to the master specifically.

A slave will handle writes by synchronizing with the master to preserve consistency. Writes to master
can be configured to be optimistically pushed to 0 or more slaves. By optimistically we mean the
master will try to push to slaves before the transaction completes but if it fails the transaction will still
be successful (different from normal replication factor). All updates will however propagate from the
master to other slaves eventually so a write from one slave may not be immediately visible on all other
slaves. This is the only difference between multiple machines running in HA mode compared to single
machine operation. All other ACID characteristics are the same.

High Availability

429

22.2. Setup and configuration
Neo4j HA can be set up to accommodate differing requirements for load, fault tolerance and available
hardware.

Within a cluster, Neo4j HA uses its own Paxos implementation for all cluster membership related
tasks, from instances joining/leaving a cluster to master election and availability information
propagation. Read operations through the GraphDatabaseService API will always work, whereas write
operations requires an available master.

For reaching quorum among the members in the cluster the number of members should be odd.

22.2.1. Installation Notes
For installation instructions of a High Availability cluster see Section 22.5, “High Availability setup
tutorial”.

Note that while the HA version of Neo4j supports the same API as the single instance embedded
version, it does have additional configuration parameters. Although there are many parameters, most
of them have defaults that should work in most cases.

HA configuration parameters
Parameter Name Description Example value Required?

ha. server_id integer >= 0 and has to
be unique in the cluster

1 yes

ha. server (auto-discovered) host
& port to bind when
acting as master

my-domain. com:6001 no

ha. discovery. enabled whether or not to
use the resource of
ha.discovery.url to
define the cluster

true no

ha. discovery. url if ha.discovery.enabled
is true, used to define
the cluster

no

ha. initial_hosts if ha.discovery.enabled
is false, a comma-
separated list of other
members of the cluster
to join. If no members
are reachable a new
cluster will be created.

my-server:5001 no

ha. cluster_server (auto-discovered) host
& port to bind the
cluster management
communication

ha. pull_interval interval for, as slave,
pulling updates from
the master. Default
is to not pull updates

30s or 1500ms no

High Availability

430

Parameter Name Description Example value Required?
regularly, only during
write transactions

ha. read_timeout how long a slave will
wait for response from
master before giving up
(default 20)

20 no

ha. lock_read_timeout how long a slave lock
acquisition request will
wait for response from
master before giving
up (defaults to what
ha.read_timeout is, or
its default if absent)

40 no

ha. state_switch_timeout how long max time
to gracefully await
a slave/master role
switch

20s no

ha.

 max_concurrent_channels_per_slave

max number
of concurrent
communication
channels each slave
has to its master.
Increase if there’s high
contention on few
nodes

100 no

ha. branched_data_policy what to do with the
db that is considered
branched and will be
replaced with a fresh
copy from the master
{keep_all(default),keep_last,keep_none,shutdown}

keep_none no

ha. tx_push_factor amount of slaves the
master will push each
committed transaction
to

1 (default) no

ha. tx_push_strategy the strategy for
selecting which slaves
to push committed
transactions to.
"fixed" (default) will
push to slaves with
descending server_id
order; "round_robin"
will have slaves take

fixed no

High Availability

431

Parameter Name Description Example value Required?
turn receiving the
transactions

Note
Note that the org.neo4j.server.database.mode setting in the neo4j-server.properties file has
to be set to HA to run Neo4j in High Availability mode.

22.2.2. Different methods for participating in a cluster
There are currently multiple ways of telling your database instance which cluster to create/join,
different ways for different occasions.

Knowing at least one other member
A database instance can join a cluster by supplying ha.initial_hosts a comma-separated list of URLs
to at least one other cluster member of the cluster to join. It’s called initial hosts since it’s only for
joining the cluster. After an instance joins it gets aware of all the members of the cluster. It will
take turn contacting each one in the list until it gets a response, where it will await a decision by the
existing cluster members to have it join. If it cannot contact any of the members in the URL list it will
create a new cluster with itself as master. This option requires ha.discovery.enabled be set to false.

Discovery
A database instance can point to URL acting as a live list of members in a cluster, by setting
ha.discovery.url to a valid and accessible URL. If the resource pointed out by that URL exists it will
take turn contacting each member in that list until it gets a response, where it will await a decision
by the existing cluster members to have it join. If the resource pointed out by the discovery URL
doesn’t exist it will create it and with it a cluster having itself as initial master. This option requires
ha.discovery.enabled be set to true.

High Availability

432

22.3. How Neo4j HA operates
A Neo4j HA cluster operates cooperatively — each database instance contains the logic needed in
order to coordinate with the other members of the cluster. On startup a Neo4j HA database instance
will try to connect to an existing cluster specified by configuration. If the cluster exists, the instance
will join it as a slave. Otherwise the cluster will be created and the instance will become its master.

When performing a write transaction on a slave each write operation will be synchronized with the
master (locks will be acquired on both master and slave). When the transaction commits it will first be
committed on the master and then, if successful, on the slave. To ensure consistency, a slave has to be
up to date with the master before performing a write operation. This is built into the communication
protocol between the slave and master, so that updates will be applied to a slave communicating with
its master automatically.

Write transactions performed directly through the master will execute in the same way as running
in normal non-HA mode. On success the transaction will be pushed out to a configurable number of
slaves (default one slave). This is done optimistically meaning if the push fails the transaction will
still be successful. It’s also possible to configure push factor to 0 for higher write performance when
writing directly through the master, although increasing the risk of losing any transaction not yet
pulled by another slave if the master goes down.

Slaves can also be configured to pull updates asynchronously by setting the ha.pull_interval option.

Whenever a Neo4j database becomes unavailable, by means of for example hardware failure or
network outages, the other database instances in the cluster will detect that and mark it as temporarily
failed. A database instance that becomes available after being unavailable will automatically catch
up with the cluster. If the master goes down another (best suited) member will be elected and have
its role switched from slave to master after a quorum has been reached within the cluster. When the
new master has performed its role switch it will broadcast its availability to all the other members of
the cluster. Normally a new master is elected and started within just a few seconds and during this
time no writes can take place (the writes will block or in rare cases throw an exception). The only
time this is not true is when an old master had changes that did not get replicated to any other member
before becoming unavailable. If the new master is elected and performs changes before the old master
recovers, there will be two "branches" of the database after the point where the old master became
unavailable. The old master will move away its database (its "branch") and download a full copy from
the new master, to become available as a slave in the cluster.

All this can be summarized as:

• Write transactions can be performed on any database instance in a cluster.
• Neo4j HA is fault tolerant and can continue to operate from any number of machines down to a

single machine.
• Slaves will be automatically synchronized with the master on write operations.
• If the master fails a new master will be elected automatically.
• The cluster automatically handles instances becoming unavailable (for example due to network

issues), and also makes sure to accept them as members in the cluster when they are available
again.

• Transactions are atomic, consistent and durable but eventually propagated out to other slaves.
• Updates to slaves are eventual consistent by nature but can be configured to be pushed

optimistically from master during commit.
• If the master goes down any running write transaction will be rolled back and new transactions will

block or fail until a new master has become available.

High Availability

433

• Reads are highly available and the ability to handle read load scales with more database instances in
the cluster.

High Availability

434

22.4. Upgrading a Neo4j HA Cluster
Warning
Rolling upgrades in a HA scenario is new as of 1.9.M02 and, as any milestone feature,
should not be considered safe for production settings. Offline upgrades work as normally.

This document describes the steps required to upgrade a Neo4j cluster from a previous version to 1.9
without disrupting its operation, a process referred to as a rolling upgrade. The starting assumptions
are that there exists a cluster running Neo4j version 1.8 or newer with the corresponding ZooKeeper
instances and that the machine which is currently the master is known. It is also assumed that on each
machine the Neo4j service and the neo4j coordinator service is installed under a directory which from
here on is assumed to be /opt/old-neo4j

22.4.1. Overview
The process consists of upgrading each machine in turn by removing it from the cluster, moving over
the database and starting it back up again. Configuration settings also have to be transferred. It is
important to note that the last machine to be upgraded must be the master. In general, the "cluster
version" is defined by the version of the master, providing the master is of the older version the cluster
as a whole can operate (the 1.9 instances running in compatibility mode). When a 1.9 instance is
elected master however, the older instances are not capable of communicating with it, so we have
to make sure that the last machine upgraded is the old master. The upgrade process is detected
automatically from the joining 1.9 instances and they will not participate in a master election while
even a single old instance is part of the cluster.

22.4.2. Step 1: On each slave perform the upgrade
Download and unpack the new version. Copy over any configuration settings you run your
instances with, taking care for deprecated settings and API changes that can occur between versions.
Also, ensure that newly introduced settings have proper values (see Section 22.2, “Setup and
configuration”). The most important thing about the settings setup is the ha.coordinators setting in
neo4j.properties which must be set to the value the existing 1.8 instances are using. You also have to
make sure that all but one instance have the allow_init_cluster setting to false - the machine that has
it set to true should be the one that is to become the new master. In addition, it is necessary that the
last machine to be upgraded (the 1.8 master) does not have the ha.coordinators setting present in its
configuration file. Finally, don’t forget to copy over any server plugins you may have. First, shutdown
the neo4j instance with

service neo4j-service stop

Next, uninstall it

service neo4j-service remove

Now you can copy over the database. Assuming the old instance is at /opt/old-neo4j and the newly
unpacked under /opt/neo4j-enterprise-1.9 the proper command would be

cp -R /opt/old-neo4j/data/graph.db /opt/neo4j-enterprise-1.9/data/

Next install the neo4j service, which also starts it

/opt/neo4j-enterprise-1.9/bin/neo4j install

Done. Now check that the services are running and that webadmin reports the version 1.9.
Transactions should also be applied from the master as usual.

High Availability

435

22.4.3. Step 2: Upgrade the master, complete the procedure

Warning
Make sure that the installation that will replace the current master instance does not have
ha.coordinators setting present in the neo4j.properties file.

Go to the current master and execute step 1 The moment it will be stopped another instance will take
over (the one with the allow_init_cluster setting set to true), transitioning the cluster to 1.9. Finish
Step 1 on this machine as well and you will have completed the process.

22.4.4. Step 3: Cleanup, removing the coordinator services
Each 1.8 installation still has a coordinator service installed and running. To have those removed you
need to execute at every upgraded instance
service neo4j-coordinator stop

service neo4j-coordinator remove

After that, the 1.8 instances are no longer active or needed and can be removed or archived.

High Availability

436

22.5. High Availability setup tutorial
This is a guide to set up a Neo4j HA cluster and run embedded Neo4j or Neo4j Server instances
participating as cluster members. This tutorial shows how to do this on a single computer. Adjust
configuration accordingly if you are using several separate computers to run your clusters.

22.5.1. Background
A Neo4j HA cluster consists of a set of Neo4j Enterprise instances, either running in embedded or
server mode. All that is needed to set this up is to configure the instances so that they can find each
other and communicate over the network.

Tip
Neo4j Server (see Chapter 17, Neo4j Server) and Neo4j Embedded (see Section 21.1,
“Introduction”) can both be used as nodes in the same HA cluster. This opens for scenarios
where one application can insert and update data via a Java or JVM language based
application, and other instances can run Neo4j Server and expose the data via the REST
API (Chapter 18, REST API).

Below, you will see how to set up a cluster with 3 participating Neo4j instances.

Download and unpack Neo4j Enterprise
Download and unpack three installations of Neo4j Enterprise (called $NEO4J_HOME1, $NEO4J_HOME2,
$NEO4J_HOME3) from the Neo4j download site <http://neo4j.org/download>.

22.5.2. Start the Neo4j Servers in HA mode
In your conf/neo4j.properties file, enable HA by setting the necessary parameters for all 3
installations. Neo4j HA uses two ports, one for transmitting data and one for cluster coordination.
The cluster coordination port is by default set to a range, and Neo4j will try to bind in this range
on startup, so there is no need to specify port number for that. The config files should include the
following:

Tip
The amount of necessary configuration increases for a cluster where many instances lives
on the same physical machine, due to port clashes. This will be reduced further as HA
develops.

Database instances #1

Unique server id for this graph database

can not be negative id and must be unique

ha.server_id = 1

IP and port for this instance to bind to for communicating data with the

other neo4j instances in the cluster.

ha.server = 127.0.0.1:6361

online_backup_port = 6362

IP and port for this instance to bind to for communicating cluster information

with the other neo4j instances in the cluster.

ha.cluster_server = 127.0.0.1:5001

List of other known instances in this cluster

ha.initial_hosts = 127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003

http://neo4j.org/download
http://neo4j.org/download

High Availability

437

Database instances #2
Unique server id for this graph database

can not be negative id and must be unique

ha.server_id = 2

IP and port for this instance to bind to for communicating data with the

other neo4j instances in the cluster.

ha.server = 127.0.0.1:6363

online_backup_port = 6364

IP and port for this instance to bind to for communicating cluster information

with the other neo4j instances in the cluster.

ha.cluster_server = 127.0.0.1:5002

List of other known instances in this cluster

ha.initial_hosts = 127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003

Database instances #3
Unique server id for this graph database

can not be negative id and must be unique

ha.server_id = 3

IP and port for this instance to bind to for communicating data with the

other neo4j instances in the cluster.

ha.server = 127.0.0.1:6365

online_backup_port = 6366

IP and port for this instance to bind to for communicating cluster information

with the other neo4j instances in the cluster.

ha.cluster_server = 127.0.0.1:5003

List of other known instances in this cluster

ha.initial_hosts = 127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003

To avoid port clashes when starting the servers, adjust the ports for the REST end points in all
instances under conf/neo4j-server.properties and enable HA mode:

Database instances #1
http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7474

...

https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=7473

...

Allowed values:

HA - High Availability

SINGLE - Single mode, default.

To run in High Availability mode, configure the coord.cfg file, and the

neo4j.properties config file, then uncomment this line:

org.neo4j.server.database.mode=HA

Database instances #2
http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7476

...

https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=7475

...

Allowed values:

HA - High Availability

SINGLE - Single mode, default.

To run in High Availability mode, configure the coord.cfg file, and the

High Availability

438

neo4j.properties config file, then uncomment this line:

org.neo4j.server.database.mode=HA

Database instances #3
http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7478

...

https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=7477

...

Allowed values:

HA - High Availability

SINGLE - Single mode, default.

To run in High Availability mode, configure the coord.cfg file, and the

neo4j.properties config file, then uncomment this line:

org.neo4j.server.database.mode=HA

To avoid JMX port clashes adjust the assigned ports for all instances in conf/neo4j-wrapper.conf. The
paths to the jmx.password and jmx.access files also needs to be set. Note that the jmx.password file
needs the correct permissions set, see the configuration file for further information.

Database instance #1
...

wrapper.java.additional.4=-Dcom.sun.management.jmxremote.port=3637

wrapper.java.additional.5=-Dcom.sun.management.jmxremote.password.file=conf/jmx.password

wrapper.java.additional.6=-Dcom.sun.management.jmxremote.access.file=conf/jmx.access

...

Database instance #2
...

wrapper.java.additional.4=-Dcom.sun.management.jmxremote.port=3638

wrapper.java.additional.5=-Dcom.sun.management.jmxremote.password.file=conf/jmx.password

wrapper.java.additional.6=-Dcom.sun.management.jmxremote.access.file=conf/jmx.access

...

Database instance #3
...

wrapper.java.additional.4=-Dcom.sun.management.jmxremote.port=3639

wrapper.java.additional.5=-Dcom.sun.management.jmxremote.password.file=conf/jmx.password

wrapper.java.additional.6=-Dcom.sun.management.jmxremote.access.file=conf/jmx.access

...

Now, start all three server instances.
neo4j_home1$./bin/neo4j start

neo4j_home2$./bin/neo4j start

neo4j_home3$./bin/neo4j start

Now, you should be able to access the 3 servers (the first one being elected as master since it was
started first) at http://localhost:7474/webadmin/#/info/org.neo4j/High%20Availability/, http://
localhost:7475/webadmin/#/info/org.neo4j/High%20Availability/ and http://localhost:7476/
webadmin/#/info/org.neo4j/High%20Availability/ and check the status of the HA configuration.
Alternatively, the REST API is exposing JMX, so you can check the HA JMX bean with for example:
curl -H "Content-Type:application/json" -d '["org.neo4j:*"]' \

 http://localhost:7474/db/manage/server/jmx/query

Which will get a response along the lines of the following:
"description" : "Information about all instances in this cluster",

 "name" : "InstancesInCluster",

http://localhost:7474/webadmin/#/info/org.neo4j/High%20Availability/
http://localhost:7475/webadmin/#/info/org.neo4j/High%20Availability/
http://localhost:7475/webadmin/#/info/org.neo4j/High%20Availability/
http://localhost:7476/webadmin/#/info/org.neo4j/High%20Availability/
http://localhost:7476/webadmin/#/info/org.neo4j/High%20Availability/

High Availability

439

 "value" : [{

 "description" : "org.neo4j.management.InstanceInfo",

 "value" : [{

 "description" : "address",

 "name" : "address"

 }, {

 "description" : "instanceId",

 "name" : "instanceId"

 }, {

 "description" : "lastCommittedTransactionId",

 "name" : "lastCommittedTransactionId",

 "value" : 1

 }, {

 "description" : "serverId",

 "name" : "serverId",

 "value" : 1

 }, {

 "description" : "master",

 "name" : "master",

 "value" : true

 }],

 "type" : "org.neo4j.management.InstanceInfo"

 }

22.5.3. Start Neo4j Embedded in HA mode
If you are using Maven and Neo4j Embedded, simply add the following dependency to your project:
<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-ha</artifactId>

 <version>1.9.M04</version>

</dependency>

If you prefer to download the jar files manually, they are included in the Neo4j distribution <http://
neo4j.org/download/>.

The difference in code when using Neo4j-HA is the creation of the graph database service.
GraphDatabaseService db = new HighlyAvailableGraphDatabaseFactory().

 newHighlyAvailableDatabaseBuilder(path).

 setConfig(config).

 newGraphDatabase();

The configuration can contain the standard configuration parameters (provided as part of the config
above or in neo4j.properties but will also have to contain:
#HA instance1

#unique server id for this graph database

#can not be negative id and must be unique

ha.server_id = 1

#ip and port for this instance to bind to

ha.server = localhost:6361

#addresses and ports other cluster members use, to try and join the cluster through them

ha.initial_hosts = localhost:5001,localhost:5002,localhost:5003

remote_shell_enabled = true

First we start up one highly available database instance, pointing out a path and configuration, as
shown above.

We created a config file with server id=1 and enabled the remote shell. It should now be possible to
connect to the instance using Chapter 27, Neo4j Shell:

http://neo4j.org/download/
http://neo4j.org/download/
http://neo4j.org/download/

High Availability

440

neo4j_home1$./bin/neo4j-shell -port 1337

NOTE: Remote Neo4j graph database service 'shell' at port 1337

Welcome to the Neo4j Shell! Enter 'help' for a list of commands

neo4j-sh (0)$ set name "Master says Hi"

neo4j-sh (Master says Hi,0)$

Since it is the first instance to join the cluster it is elected master. Starting another instance would
require a second configuration and another path to the db.
#HA instance2

#unique server id for this graph database

#can not be negative id and must be unique

ha.server_id = 2

#ip and port for this instance to bind to

ha.server = localhost:6362§

#addresses and ports other cluster members use, to try and join the cluster through them

ha.initial_hosts = localhost:5001,localhost:5002,localhost:5003

remote_shell_enabled = true

remote_shell_port=1338

Now start the shell connecting to port 1338:
neo4j_home1$./bin/neo4j-shell -port 1338

NOTE: Remote Neo4j graph database service 'shell' at port 1338

Welcome to the Neo4j Shell! Enter 'help' for a list of commands

neo4j-sh (Master says Hi,0)$ set name "Slave says Hi"

neo4j-sh (Slave says Hi,0)$

Quickly going over to the master’s shell will yield
neo4j-sh (Master says Hi,0)$ ls -p

*name=[Slave says Hi]

neo4j-sh (Slave says Hi,0)$

You can start sending requests to either master or slave members of the cluster, and they will be
coordinated and replicated for you.

High Availability

441

22.6. Setting up HAProxy as a load balancer
In the Neo4j HA architecture, the cluster is typically fronted by a load balancer. In this section we will
explore how to set up HAProxy to perform load balancing across the HA cluster.

22.6.1. Installing HAProxy
For this tutorial we will assume a Linux environment. We will also be installing HAProxy
from source, and we’ll be using version 1.4.18. You need to ensure that your Linux server has a
development environment set up. On Ubuntu/apt systems, simply do:
aptitude install build-essential

And on CentOS/yum systems do:
yum -y groupinstall 'Development Tools'

Then download the tarball from the HAProxy website <http://haproxy.1wt.eu/>. Once you’ve
downloaded it, simply build and install HAProxy:
tar -zvxf haproxy-1.4.18.tar.gz

cd haproxy-1.4.18

make

cp haproxy /usr/sbin/haproxy

Or specify a target for make (TARGET=linux26 for linux kernel 2.6 or above or linux24 for 2.4
kernel)
tar -zvxf haproxy-1.4.18.tar.gz

cd haproxy-1.4.18

make TARGET=linux26

cp haproxy /usr/sbin/haproxy

22.6.2. Configuring HAProxy
HAProxy can be configured in many ways. The full documentation is available at their website.

For this example, we will configure HAProxy to load balance requests to three HA servers. Simply
write the follow configuration to /etc/haproxy.cfg:
global

 daemon

 maxconn 256

defaults

 mode http

 timeout connect 5000ms

 timeout client 50000ms

 timeout server 50000ms

frontend http-in

 bind *:80

 default_backend neo4j

backend neo4j

 server s1 10.0.1.10:7474 maxconn 32

 server s2 10.0.1.11:7474 maxconn 32

 server s3 10.0.1.12:7474 maxconn 32

listen admin

 bind *:8080

 stats enable

HAProxy can now be started by running:

http://haproxy.1wt.eu/
http://haproxy.1wt.eu/

High Availability

442

/usr/sbin/haproxy -f /etc/haproxy.cfg

You can connect to http://<ha-proxy-ip>:8080/haproxy?stats to view the status dashboard. This
dashboard can be moved to run on port 80, and authentication can also be added. See the HAProxy
documentation for details on this.

22.6.3. Configuring separate sets for master and slaves
It is possible to set HAProxy backends up to only include slaves or the master. For example, it may be
desired to only write to slaves. To accomplish this, you need to have a small extension on the server
than can report whether or not the machine is master via HTTP response codes. In this example, the
extension exposes two URLs:

• /hastatus/master, which returns 200 if the machine is the master, and 404 if the machine is a slave
• /hastatus/slave, which returns 200 if the machine is a slave, and 404 if the machine is the master

The following example excludes the master from the set of machines. Request will only be sent to the
slaves.
global

 daemon

 maxconn 256

defaults

 mode http

 timeout connect 5000ms

 timeout client 50000ms

 timeout server 50000ms

frontend http-in

 bind *:80

 default_backend neo4j-slaves

backend neo4j-slaves

 option httpchk GET /hastatus/slave

 server s1 10.0.1.10:7474 maxconn 32 check

 server s2 10.0.1.11:7474 maxconn 32 check

 server s3 10.0.1.12:7474 maxconn 32 check

listen admin

 bind *:8080

 stats enable

22.6.4. Cache-based sharding with HAProxy
Neo4j HA enables what is called cache-based sharding. If the dataset is too big to fit into the cache of
any single machine, then by applying a consistent routing algorithm to requests, the caches on each
machine will actually cache different parts of the graph. A typical routing key could be user ID.

In this example, the user ID is a query parameter in the URL being requested. This will route the same
user to the same machine for each request.
global

 daemon

 maxconn 256

defaults

 mode http

 timeout connect 5000ms

 timeout client 50000ms

 timeout server 50000ms

http://<ha-proxy-ip>:8080/haproxy?stats

High Availability

443

frontend http-in

 bind *:80

 default_backend neo4j-slaves

backend neo4j-slaves

 balance url_param user_id

 server s1 10.0.1.10:7474 maxconn 32

 server s2 10.0.1.11:7474 maxconn 32

 server s3 10.0.1.12:7474 maxconn 32

listen admin

 bind *:8080

 stats enable

Naturally the health check and query parameter-based routing can be combined to only route requests
to slaves by user ID. Other load balancing algorithms are also available, such as routing by source IP
(source), the URI (uri) or HTTP headers(hdr()).

444

Chapter 23. Backup

Note
The Backup features are only available in the Neo4j Enterprise Edition.

Backups are performed over the network live from a running graph database onto a local copy. There
are two types of backup: full and incremental.

A full backup copies the database files without acquiring any locks, allowing for continued operations
on the target instance. This of course means that while copying, transactions will continue and the
store will change. For this reason, the transaction that was running when the backup operation started
is noted and, when the copy operation completes, all transactions from the latter down to the one
happening at the end of the copy are replayed on the backup files. This ensures that the backed up data
represent a consistent and up-to-date snapshot of the database storage.

In contrast, an incremental backup does not copy store files — instead it copies the logs of the
transactions that have taken place since the last full or incremental backup which are then replayed
over an existing backup store. This makes incremental backups far more efficient than doing full
backups every time but they also require that a full backup has taken place before they are executed.

Regardless of the mode a backup is created with, the resulting files represent a consistent database
snapshot and they can be used to boot up a Neo4j instance.

The database to be backed up is specified using a URI with syntax

<running mode>://<host>[:port]{,<host>[:port]*}

Running mode must be defined and is either single for non-HA or ha for HA clusters. The
<host>[:port] part points to a host running the database, on port port if not the default. The additional
host:port arguments are useful for passing multiple cluster members.

Important
As of version 1.9, backups are enabled by default. That means that the configuration
parameter online_backup_enabled defaults to true and that makes the backup service
available on the default port (6362). To enable the backup service on a different port use
online_backup_port=9999.

Backup

445

23.1. Embedded and Server
To perform a backup from a running embedded or server database run:
Performing a full backup

./neo4j-backup -full -from single://192.168.1.34 -to /mnt/backup/neo4j-backup

Performing an incremental backup

./neo4j-backup -incremental -from single://192.168.1.34 -to /mnt/backup/neo4j-backup

Performing an incremental backup where the service is registered on a custom port

./neo4j-backup -incremental -from single://192.168.1.34:9999 -to /mnt/backup/neo4j-backup

Backup

446

23.2. Online Backup from Java
In order to programmatically backup your data full or subsequently incremental from a JVM based
program, you need to write Java code like
OnlineBackup backup = OnlineBackup.from(InetAddress.getLocalHost().getHostAddress());

backup.full(backupPath.getPath());

backup.incremental(backupPath.getPath());

For more information, please see the Javadocs for OnlineBackup <http://components.neo4j.org/neo4j-
enterprise/1.9.M04/apidocs/org/neo4j/backup/OnlineBackup.html>

http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/neo4j/backup/OnlineBackup.html
http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/neo4j/backup/OnlineBackup.html
http://components.neo4j.org/neo4j-enterprise/1.9.M04/apidocs/org/neo4j/backup/OnlineBackup.html

Backup

447

23.3. High Availability
To perform a backup on an HA cluster you specify one or more members of the target HA cluster.
Note that the addresses you must provide are the cluster server addresses and not the HA server
addresses. That is, use the value of the ha.cluster_server setting in the configuration.
Performing a full backup from HA cluster, specifying two possible cluster members

./neo4j-backup -full -from ha://192.168.1.15:5001,192.168.1.16:5002 -to /mnt/backup/neo4j-backup

Performing an incremental backup from HA cluster, specifying only one cluster member

./neo4j-backup -incremental -from ha://192.168.1.15:5001 -to /mnt/backup/neo4j-backup

Backup

448

23.4. Restoring Your Data
The Neo4j backups are fully functional databases. To use a backup, all you need to do replace your
database folder with the backup. Just make sure the database isn’t running while replacing the folder.

449

Chapter 24. Security

Neo4j in itself does not enforce security on the data level. However, there are different aspects that
should be considered when using Neo4j in different scenarios.

Security

450

24.1. Securing access to the Neo4j Server
24.1.1. Secure the port and remote client connection accepts

By default, the Neo4j Server is bundled with a Web server that binds to host localhost on port 7474,
answering only requests from the local machine.

This is configured in the conf/neo4j-server.properties file:

http port (for all data, administrative, and UI access)

org.neo4j.server.webserver.port=7474

#let the webserver only listen on the specified IP. Default

#is localhost (only accept local connections). Uncomment to allow

#any connection.

#org.neo4j.server.webserver.address=0.0.0.0

If you need to enable access from external hosts, configure the Web server in the conf/neo4j-
server.properties by setting the property org.neo4j.server.webserver.address=0.0.0.0 to enable access
from any host.

24.1.2. Arbitrary code execution
By default, the Neo4j Server comes with some places where arbitrary code code execution can
happen. These are the Section 18.14, “Traversals” REST endpoints. To secure these, either disable
them completely by removing offending plugins from the server classpath, or secure access to
these URLs through proxies or Authorization Rules. Also, the Java Security Manager <http://
docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html> can be used to secure parts of
the codebase.

24.1.3. HTTPS support
The Neo4j server includes built in support for SSL encrypted communication over HTTPS. The
first time the server starts, it automatically generates a self-signed SSL certificate and a private key.
Because the certificate is self signed, it is not safe to rely on for production use, instead, you should
provide your own key and certificate for the server to use.

To provide your own key and certificate, replace the generated key and certificate, or change the
neo4j-server.properties file to set the location of your certificate and key:

Certificate location (auto generated if the file does not exist)

org.neo4j.server.webserver.https.cert.location=ssl/snakeoil.cert

Private key location (auto generated if the file does not exist)

org.neo4j.server.webserver.https.key.location=ssl/snakeoil.key

Note that the key should be unencrypted. Make sure you set correct permissions on the private key, so
that only the Neo4j server user can read/write it.

You can set what port the HTTPS connector should bind to in the same configuration file, as well as
turn HTTPS off:

Turn https-support on/off

org.neo4j.server.webserver.https.enabled=true

https port (for all data, administrative, and UI access)

org.neo4j.server.webserver.https.port=443

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html

Security

451

24.1.4. Server Authorization Rules
Administrators may require more fine-grained security policies in addition to IP-level restrictions on
the Web server. Neo4j server supports administrators in allowing or disallowing access the specific
aspects of the database based on credentials that users or applications provide.

To facilitate domain-specific authorization policies in Neo4j Server, SecurityRules <http://
components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/rest/security/

SecurityRule.html> can be implemented and registered with the server. This makes scenarios like user
and role based security and authentication against external lookup services possible.

Enforcing Server Authorization Rules
In this example, a (dummy) failing security rule is registered to deny access to all URIs to the server
by listing the rules class in neo4j-server.properties:

org.neo4j.server.rest.security_rules=my.rules.PermanentlyFailingSecurityRule

with the rule source code of:

public class PermanentlyFailingSecurityRule implements SecurityRule

{

 public static final String REALM = "WallyWorld"; // as per RFC2617 :-)

 @Override

 public boolean isAuthorized(HttpServletRequest request)

 {

 return false; // always fails - a production implementation performs

 // deployment-specific authorization logic here

 }

 @Override

 public String forUriPath()

 {

 return "/*";

 }

 @Override

 public String wwwAuthenticateHeader()

 {

 return SecurityFilter.basicAuthenticationResponse(REALM);

 }

}

With this rule registered, any access to the server will be denied. In a production-quality
implementation the rule will likely lookup credentials/claims in a 3rd-party directory service (e.g.
LDAP) or in a local database of authorized users.

Example request

• POST http://localhost:7474/db/data/node
• Accept: application/json

Example response

• 401: Unauthorized
• WWW-Authenticate: Basic realm="WallyWorld"

http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/rest/security/SecurityRule.html
http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/rest/security/SecurityRule.html
http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/rest/security/SecurityRule.html
http://components.neo4j.org/neo4j-server/1.9.M04/apidocs/org/neo4j/server/rest/security/SecurityRule.html

Security

452

Using Wildcards to Target Security Rules
In this example, a security rule is registered to deny access to all URIs to the server by listing the
rule(s) class(es) in neo4j-server.properties. In this case, the rule is registered using a wildcard URI
path (where * characters can be used to signify any part of the path). For example /users* means the
rule will be bound to any resources under the /users root path. Similarly /users*type* will bind the
rule to resources matching URIs like /users/fred/type/premium.
org.neo4j.server.rest.security_rules=my.rules.PermanentlyFailingSecurityRuleWithWildcardPath

with the rule source code of:
public String forUriPath()

{

 return "/protected/*";

}

With this rule registered, any access to URIs under /protected/ will be denied by the server. Using
wildcards allows flexible targeting of security rules to arbitrary parts of the server’s API, including
any unmanaged extensions or managed plugins that have been registered.

Example request

• GET http://localhost:7474/protected/tree/starts/here/dummy/more/stuff
• Accept: application/json

Example response

• 401: Unauthorized
• WWW-Authenticate: Basic realm="WallyWorld"

Using Complex Wildcards to Target Security Rules
In this example, a security rule is registered to deny access to all URIs matching a complex pattern.
The config looks like this:
org.neo4j.server.rest.security_rules=my.rules.PermanentlyFailingSecurityRuleWithComplexWildcardPath

with the rule source code of:
public class PermanentlyFailingSecurityRuleWithComplexWildcardPath implements SecurityRule

{

 public static final String REALM = "WallyWorld"; // as per RFC2617 :-)

 @Override

 public boolean isAuthorized(HttpServletRequest request)

 {

 return false;

 }

 @Override

 public String forUriPath()

 {

 return "/protected/*/something/else/*/final/bit";

 }

 @Override

 public String wwwAuthenticateHeader()

 {

 return SecurityFilter.basicAuthenticationResponse(REALM);

Security

453

 }

}

Example request

• GET http://localhost:7474/protected/wildcard_replacement/x/y/z/something/else/
more_wildcard_replacement/a/b/c/final/bit/more/stuff

• Accept: application/json

Example response

• 401: Unauthorized
• WWW-Authenticate: Basic realm="WallyWorld"

24.1.5. Hosted Scripting

Important
The neo4j server exposes remote scripting functionality by default that allow full access to
the underlying system. Exposing your server without implementing a security layer poses a
substantial security vulnerability.

24.1.6. Security in Depth
Although the Neo4j server has a number of security features built-in (see the above chapters), for
sensitive deployments it is often sensible to front against the outside world it with a proxy like Apache
mod_proxy 1.

This provides a number of advantages:

• Control access to the Neo4j server to specific IP addresses, URL patterns and IP ranges. This can be
used to make for instance only the /db/data namespace accessible to non-local clients, while the /
db/admin URLs only respond to a specific IP address.
<Proxy *>

 Order Deny,Allow

 Deny from all

 Allow from 192.168.0

</Proxy>

While equivalent functionality can be implemented with Neo4j’s SecurityRule plugins (see above), for
operations professionals configuring servers like Apache is often preferable to developing plugins.
However it should be noted that where both approaches are used, they will work harmoniously
providing the behavior is consistent across proxy server and SecurityRule plugins.

• Run Neo4j Server as a non-root user on a Linux/Unix system on a port < 1000 (e.g. port 80) using
ProxyPass /neo4jdb/data http://localhost:7474/db/data

ProxyPassReverse /neo4jdb/data http://localhost:7474/db/data

• Simple load balancing in a clustered environment to load-balance read load using the Apache
mod_proxy_balancer 2 plugin
<Proxy balancer://mycluster>

1http://httpd.apache.org/docs/2.2/mod/mod_proxy.html
2http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

Security

454

BalancerMember http://192.168.1.50:80

BalancerMember http://192.168.1.51:80

</Proxy>

ProxyPass /test balancer://mycluster

24.1.7. Rewriting URLs with a Proxy installation
When installing Neo4j Server behind proxies, you need to enable rewriting of the JSON calls,
otherwise they will point back to the servers own base URL (normally http://localhost:7474).

To do this, you can use Apache mod_substitute <http://httpd.apache.org/docs/2.2/mod/
mod_substitute.html>.
ProxyPass / http://localhost:7474/

ProxyPassReverse / http://localhost:7474/

<Location />

 AddOutputFilterByType SUBSTITUTE application/json

 AddOutputFilterByType SUBSTITUTE text/html

 Substitute s/localhost:7474/myproxy.example.com/n

 Substitute s/http/https/n

</Location>

http://localhost:7474
http://httpd.apache.org/docs/2.2/mod/mod_substitute.html
http://httpd.apache.org/docs/2.2/mod/mod_substitute.html
http://httpd.apache.org/docs/2.2/mod/mod_substitute.html

455

Chapter 25. Monitoring

Note
Most of the monitoring features are only available in the Advanced and Enterprise editions
of Neo4j.

In order to be able to continuously get an overview of the health of a Neo4j database, there are
different levels of monitoring facilities available. Most of these are exposed through JMX <http://
www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html>.

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Monitoring

456

25.1. Adjusting remote JMX access to the Neo4j Server
Per default, the Neo4j Advanced Server and Neo4j Enterprise Server editions do not allow remote
JMX connections, since the relevant options in the conf/neo4j-wrapper.conf configuration file
are commented out. To enable this feature, you have to remove the # characters from the various
com.sun.management.jmxremote options there.

When commented in, the default values are set up to allow remote JMX connections with certain
roles, refer to the conf/jmx.password, conf/jmx.access and conf/wrapper.conf files for details.

Make sure that conf/jmx.password has the correct file permissions. The owner of the file has to be the
user that will run the service, and the permissions should be read only for that user. On Unix systems,
this is 0600.

On Windows, follow the tutorial at http://docs.oracle.com/javase/6/docs/technotes/guides/
management/security-windows.html to set the correct permissions. If you are running the service
under the Local System Account, the user that owns the file and has access to it should be SYSTEM.

With this setup, you should be able to connect to JMX monitoring of the Neo4j server using <IP-OF-
SERVER>:3637, with the username monitor and the password Neo4j.

Note that it is possible that you have to update the permissions and/or ownership of the conf/
jmx.password and conf/jmx.access files — refer to the relevant section in conf/wrapper.conf for
details.

Warning
For maximum security, please adjust at least the password settings in conf/jmx.password
for a production installation.

For more details, see: http://download.oracle.com/javase/6/docs/technotes/guides/management/
agent.html

http://docs.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html

Monitoring

457

25.2. How to connect to a Neo4j instance using JMX and
JConsole

First, start your embedded database or the Neo4j Server, for instance using

$NEO4j_HOME/bin/neo4j start

Now, start JConsole with

$JAVA_HOME/bin/jconsole

Connect to the process running your Neo4j database instance:

Figure 25.1. Connecting JConsole to the Neo4j Java process

Now, beside the MBeans exposed by the JVM, you will see an org.neo4j section in the MBeans tab.
Under that, you will have access to all the monitoring information exposed by Neo4j.

For opening JMX to remote monitoring access, please see Section 25.1, “Adjusting remote JMX
access to the Neo4j Server” and the JMX documention <http://docs.oracle.com/javase/6/docs/
technotes/guides/management/agent.html#gdenl>. When using Neo4j in embedded mode, make sure
to pass the com.sun.management.jmxremote.port=portNum or other configuration as JVM parameters to
your running Java process.

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdenl
http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdenl
http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdenl

Monitoring

458

Figure 25.2. Neo4j MBeans View

Monitoring

459

25.3. How to connect to the JMX monitoring
programmatically

In order to programmatically connect to the Neo4j JMX server, there are some convenience methods
in the Neo4j Management component to help you find out the most commonly used monitoring
attributes of Neo4j. See Section 4.8, “Reading a management attribute” for an example.

Once you have access to this information, you can use it to for instance expose the values to SNMP
<http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol> or other monitoring systems.

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Monitoring

460

25.4. Reference of supported JMX MBeans
MBeans exposed by Neo4j

• Branched Store: Information about the branched stores present in this HA cluster member
• Cache/NodeCache: Information about the caching in Neo4j
• Cache/RelationshipCache: Information about the caching in Neo4j
• Configuration: The configuration parameters used to configure Neo4j
• Diagnostics: Diagnostics provided by Neo4j
• High Availability: Information about an instance participating in a HA cluster
• Kernel: Information about the Neo4j kernel
• Locking: Information about the Neo4j lock status
• Memory Mapping: The status of Neo4j memory mapping
• Primitive count: Estimates of the numbers of different kinds of Neo4j primitives
• Store file sizes: Information about the sizes of the different parts of the Neo4j graph store
• Transactions: Information about the Neo4j transaction manager
• XA Resources: Information about the XA transaction manager

Note
For additional information on the primitive datatypes (int, long etc.) used in the JMX
attributes, please see Property value types.

MBean Branched Store (org.neo4j.management.BranchedStore) Attributes
Name Description Type Read Write

Information about the branched stores present in this HA cluster member
BranchedStores A list of the branched stores org. neo4j.

 management.

 BranchedStoreInfo[]

as CompositeData[]

yes no

MBean Cache/NodeCache (org.neo4j.management.Cache) Attributes
Name Description Type Read Write

Information about the caching in Neo4j
CacheSize The size of this cache (nr of entities or

total size in bytes)
long yes no

CacheType The type of cache used by Neo4j String yes no
HitCount The number of times a cache query

returned a result
long yes no

MissCount The number of times a cache query did
not return a result

long yes no

MBean Cache/NodeCache (org.neo4j.management.Cache) Operations
Name Description ReturnType Signature

clear Clears the Neo4j caches void (no parameters)

Monitoring

461

MBean Cache/RelationshipCache (org.neo4j.management.Cache) Attributes
Name Description Type Read Write

Information about the caching in Neo4j
CacheSize The size of this cache (nr of entities or

total size in bytes)
long yes no

CacheType The type of cache used by Neo4j String yes no
HitCount The number of times a cache query

returned a result
long yes no

MissCount The number of times a cache query did
not return a result

long yes no

MBean Cache/RelationshipCache (org.neo4j.management.Cache) Operations
Name Description ReturnType Signature

clear Clears the Neo4j caches void (no parameters)

MBean Configuration (org.neo4j.jmx.impl.ConfigurationBean) Attributes
Name Description Type Read Write

The configuration parameters used to configure Neo4j
ephemeral Configuration attribute String yes yes
ha. server_ id Configuration attribute String yes yes
jmx. port Configuration attribute String yes yes
neostore. nodestore.

 db. mapped_ memory

The size to allocate for memory
mapping the node store.

String yes yes

neostore.

 propertystore. db.

 arrays. mapped_ memory

The size to allocate for memory
mapping the array property store.

String yes yes

neostore.

 propertystore. db.

 mapped_ memory

The size to allocate for memory
mapping the property value store.

String yes yes

neostore.

 propertystore. db.

 strings. mapped_

 memory

The size to allocate for memory
mapping the string property store.

String yes yes

neostore.

 relationshipstore.

 db. mapped_ memory

The size to allocate for memory
mapping the relationship store.

String yes yes

store_ dir The directory where the database files
are located.

String yes yes

MBean Configuration (org.neo4j.jmx.impl.ConfigurationBean) Operations
Name Description ReturnType Signature

apply Apply settings void (no parameters)

Monitoring

462

MBean Diagnostics (org.neo4j.management.Diagnostics) Attributes

Name Description Type Read Write

Diagnostics provided by Neo4j
DiagnosticsProviders A list of the ids for the registered

diagnostics providers.
List (java. util.

 List)

yes no

MBean Diagnostics (org.neo4j.management.Diagnostics) Operations

Name Description ReturnType Signature

dumpAll Dump diagnostics information to JMX String (no parameters)

dumpToLog Dump diagnostics information to the
log.

void (no parameters)

dumpToLog Dump diagnostics information to the
log.

void java. lang. String

extract Operation exposed for management String java. lang. String

MBean High Availability (org.neo4j.management.HighAvailability) Attributes

Name Description Type Read Write

Information about an instance participating in a HA cluster
Alive Whether this instance is alive or not boolean yes no
Available Whether this instance is available or not boolean yes no
InstanceId The identifier used to identify this server

in the HA cluster
String yes no

InstancesInCluster Information about all instances in this
cluster

org. neo4j.

 management.

 ClusterMemberInfo[]

as CompositeData[]

yes no

LastCommittedTxId The latest transaction id present in this
instance’s store

long yes no

LastUpdateTime The time when the data on this instance
was last updated from the master

String yes no

Role The role this instance has in the cluster String yes no

MBean High Availability (org.neo4j.management.HighAvailability) Operations

Name Description ReturnType Signature

update (If this is a slave) Update the database
on this instance with the latest
transactions from the master

String (no parameters)

MBean Kernel (org.neo4j.jmx.Kernel) Attributes

Name Description Type Read Write

Information about the Neo4j kernel

Monitoring

463

Name Description Type Read Write

KernelStartTime The time from which this Neo4j
instance was in operational mode.

Date (java. util.

 Date)

yes no

KernelVersion The version of Neo4j String yes no
MBeanQuery An ObjectName that can be used as a

query for getting all management beans
for this Neo4j instance.

javax. management.

 ObjectName

yes no

ReadOnly Whether this is a read only instance boolean yes no
StoreCreationDate The time when this Neo4j graph store

was created.
Date (java. util.

 Date)

yes no

StoreDirectory The location where the Neo4j store is
located

String yes no

StoreId An identifier that, together with store
creation time, uniquely identifies this
Neo4j graph store.

String yes no

StoreLogVersion The current version of the Neo4j store
logical log.

long yes no

MBean Locking (org.neo4j.management.LockManager) Attributes
Name Description Type Read Write

Information about the Neo4j lock status
Locks Information about all locks held by

Neo4j
java. util. List<org.

 neo4j. kernel.

 info. LockInfo> as

CompositeData[]

yes no

NumberOf

 AdvertedDeadlocks

The number of lock sequences that
would have lead to a deadlock situation
that Neo4j has detected and adverted (by
throwing DeadlockDetectedException).

long yes no

MBean Locking (org.neo4j.management.LockManager) Operations
Name Description ReturnType Signature

getContendedLocks getContendedLocks java. util.

 List<org. neo4j.

 kernel. info.

 LockInfo> as

CompositeData[]

long

MBean Memory Mapping (org.neo4j.management.MemoryMapping) Attributes
Name Description Type Read Write

The status of Neo4j memory mapping
MemoryPools Get information about each pool of

memory mapped regions from store files
with memory mapping enabled

org. neo4j.

 management.

yes no

Monitoring

464

Name Description Type Read Write
 WindowPoolInfo[] as

CompositeData[]

MBean Primitive count (org.neo4j.jmx.Primitives) Attributes
Name Description Type Read Write

Estimates of the numbers of different kinds of Neo4j primitives
NumberOf NodeIds InUse An estimation of the number of nodes

used in this Neo4j instance
long yes no

NumberOf PropertyIds

 InUse

An estimation of the number of
properties used in this Neo4j instance

long yes no

NumberOf

 RelationshipIds InUse

An estimation of the number of
relationships used in this Neo4j instance

long yes no

NumberOf

 RelationshipTypeIds

 InUse

The number of relationship types used
in this Neo4j instance

long yes no

MBean Store file sizes (org.neo4j.management.StoreFile) Attributes
Name Description Type Read Write

Information about the sizes of the different parts of the Neo4j graph store
ArrayStoreSize The amount of disk space used to store

array properties, in bytes.
long yes no

LogicalLogSize The amount of disk space used by the
current Neo4j logical log, in bytes.

long yes no

NodeStoreSize The amount of disk space used to store
nodes, in bytes.

long yes no

PropertyStoreSize The amount of disk space used to store
properties (excluding string values and
array values), in bytes.

long yes no

RelationshipStoreSize The amount of disk space used to store
relationships, in bytes.

long yes no

StringStoreSize The amount of disk space used to store
string properties, in bytes.

long yes no

TotalStoreSize The total disk space used by this Neo4j
instance, in bytes.

long yes no

MBean Transactions (org.neo4j.management.TransactionManager) Attributes
Name Description Type Read Write

Information about the Neo4j transaction manager
LastCommittedTxId The id of the latest committed

transaction
long yes no

NumberOf Committed

 Transactions

The total number of committed
transactions

long yes no

Monitoring

465

Name Description Type Read Write

NumberOf Opened

 Transactions

The total number started transactions int yes no

NumberOf Open

 Transactions

The number of currently open
transactions

int yes no

NumberOf RolledBack

 Transactions

The total number of rolled back
transactions

long yes no

PeakNumberOf

 Concurrent

 Transactions

The highest number of transactions ever
opened concurrently

int yes no

MBean XA Resources (org.neo4j.management.XaManager) Attributes
Name Description Type Read Write

Information about the XA transaction manager
XaResources Information about all XA resources

managed by the transaction manager
org. neo4j.

 management.

 XaResourceInfo[] as

CompositeData[]

yes no

Part V. Tools
The Tools part describes available Neo4j tools and how to use them.

467

Chapter 26. Web Administration

The Neo4j Web Administration is the primary user interface for Neo4j. With it, you can:

• monitor the Neo4j Server
• manipulate and browse data
• interact with the database via various consoles
• view raw data management objects (JMX MBeans)

The tool is available at http://127.0.0.1:7474/ after you have installed the Neo4j Server. To use it
together with an embedded database, see Section 17.4, “Using the server (with web interface) with an
embedded database”.

http://127.0.0.1:7474/

Web Administration

468

26.1. Dashboard tab
The Dashboard tab provides an overview of a running Neo4j instance.

Figure 26.1. Web Administration Dashboard

26.1.1. Entity chart
The charts show entity counts over time: node, relationship and properties.

Figure 26.2. Entity charting

26.1.2. Status monitoring
Below the entity chart is a collection of status panels, displaying current resource usage.

Figure 26.3. Status indicator panels

Web Administration

469

26.2. Data tab
Use the Data tab to browse, add or modify nodes, relationships and their properties.

Figure 26.4. Browsing and manipulating data

Figure 26.5. Editing properties

Web Administration

470

26.3. Console tab
The Console tab gives:

• scripting access to the database via the Gremlin <http://gremlin.tinkerpop.com> scripting engine,
• query access via Cypher,
• HTTP access via the HTTP console.

Figure 26.6. Traverse data with Gremlin

Figure 26.7. Query data with Cypher

http://gremlin.tinkerpop.com
http://gremlin.tinkerpop.com

Web Administration

471

Figure 26.8. Interact over HTTP

Web Administration

472

26.4. The Server Info tab
The Server Info tab provides raw access to all available management objects (see Chapter 25,
Monitoring for details).

Figure 26.9. JMX Attributes

473

Chapter 27. Neo4j Shell

Neo4j shell is a command-line shell for browsing the graph, much like how the Unix shell along with
commands like cd, ls and pwd can be used to browse your local file system. It consists of two parts:

• a lightweight client that sends commands via RMI and
• a server that processes those commands and sends the result back to the client.

It’s a nice tool for development and debugging. This guide will show you how to get it going!

Neo4j Shell

474

27.1. Starting the shell
When used together with Neo4j started as a server, simply issue the following at the command line:
./bin/neo4j-shell

For the full list of options, see the reference in the Shell manual page.

To connect to a running Neo4j database, use Section 27.1.4, “Read-only mode” for local databases
and see Section 27.1.1, “Enabling the shell server” for remote databases.

You need to make sure that the shell jar file is on the classpath when you start up your Neo4j instance.

27.1.1. Enabling the shell server
Shell is enabled from the configuration of the Neo4j kernel, see Section 17.2, “Server Configuration”.
Here’s some sample configurations:
Using default values

enable_remote_shell = true

...or specify custom port, use default values for the others

enable_remote_shell = port=1234

When using the Neo4j server, see Section 17.2, “Server Configuration” for how to add configuration
settings in that case.

There are two ways to start the shell, either by connecting to a remote shell server or by pointing it to
a Neo4j store path.

27.1.2. Connecting to a shell server
To start the shell and connect to a running server, run:
neo4j-shell

Alternatively supply -port and -name options depending on how the remote shell server was enabled.
Then you’ll get the shell prompt like this:
neo4j-sh (0)$

27.1.3. Pointing the shell to a path
To start the shell by just pointing it to a Neo4j store path you run the shell jar file. Given that the right
neo4j-kernel-<version>.jar and jta jar files are in the same path as your neo4j-shell-<version>.jar file
you run it with:
$ neo4j-shell -path path/to/neo4j-db

27.1.4. Read-only mode
By issuing the -readonly switch when starting the shell with a store path, changes cannot be made to
the database during the session.
$ neo4j-shell -readonly -path path/to/neo4j-db

27.1.5. Run a command and then exit
It is possible to tell the shell to just start, execute a command and then exit. This opens up for uses of
background jobs and also handling of huge output of f.ex. an ''ls'' command where you then could pipe
the output to ''less'' or another reader of your choice, or even to a file. So some examples of usage:
$ neo4j-shell -c "cd -a 24 && set name Mattias"

Neo4j Shell

475

$ neo4j-shell -c "trav -r KNOWS" | less

Neo4j Shell

476

27.2. Passing options and arguments
Passing options and arguments to your commands is very similar to many CLI commands in an *nix
environment. Options are prefixed with a - and can contain one or more options. Some options expect
a value to be associated with it. Arguments are string values which aren’t prefixed with -. Let’s look at
ls as an example:

ls -r -f KNOWS:out -v 12345 will make a verbose listing of node 12345's outgoing relationships of type
KNOWS. The node id, 12345, is an argument to ls which tells it to do the listing on that node instead of
the current node (see pwd command). However a shorter version of this can be written:

ls -rfv KNOWS:out 12345. Here all three options are written together after a single - prefix. Even
though f is in the middle it gets associated with the KNOWS:out value. The reason for this is that the ls
command doesn’t expect any values associated with the r or v options. So, it can infer the right values
for the rights options.

Neo4j Shell

477

27.3. Enum options
Some options expects a value which is one of the values in an enum, f.ex. direction part of
relationship type filtering where there’s INCOMING, OUTGOING and BOTH. All such values can be supplied
in an easier way. It’s enough that you write the start of the value and the interpreter will find what you
really meant. F.ex. out, in, i or even INCOMING.

Neo4j Shell

478

27.4. Filters
Some commands makes use of filters for varying purposes. F.ex. -f in ls and in trav. A filter is
supplied as a json <http://www.json.org/> object (w/ or w/o the surrounding {} brackets. Both keys
and values can contain regular expressions for a more flexible matching. An example of a filter could
be .*url.*:http.*neo4j.*,name:Neo4j. The filter option is also accompanied by the options -i and -
l which stands for ignore case (ignore casing of the characters) and loose matching (it’s considered
a match even if the filter value just matches a part of the compared value, not necessarily the entire
value). So for a case-insensitive, loose filter you can supply a filter with -f -i -l or -fil for short.

http://www.json.org/
http://www.json.org/

Neo4j Shell

479

27.5. Node titles
To make it easier to navigate your graph the shell can display a title for each node, f.ex. in ls -r. It
will display the relationships as well as the nodes on the other side of the relationships. The title is
displayed together with each node and its best suited property value from a list of property keys.

If you’re standing on a node which has two KNOWS relationships to other nodes it’d be difficult to know
which friend is which. The title feature addresses this by reading a list of property keys and grabbing
the first existing property value of those keys and displays it as a title for the node. So you may
specify a list (with or without regular expressions), f.ex: name,title.*,caption and the title for each
node will be the property value of the first existing key in that list. The list is defined by the client
(you) using the TITLE_KEYS environment variable and the default being .*name.*,.*title.*

Neo4j Shell

480

27.6. How to use (individual commands)
The shell is modeled after Unix shells like bash that you use to walk around your local file system. It
has some of the same commands, like cd and ls. When you first start the shell (see instructions above),
you will get a list of all the available commands. Use man <command> to get more info about a particular
command. Some notes:

27.6.1. Current node/relationship and path
You have a current node/relationship and a "current path" (like a current working directory in bash)
that you’ve traversed so far. You start at the reference node <http://api.neo4j.org/current/org/neo4j/
graphdb/GraphDatabaseService.html#getReferenceNode()> and can then cd your way through the
graph (check your current path at any time with the pwd command). cd can be used in different ways:

• cd <node-id> will traverse one relationship to the supplied node id. The node must have a direct
relationship to the current node.

• cd -a <node-id> will do an absolute path change, which means the supplied node doesn’t have to
have a direct relationship to the current node.

• cd -r <relationship-id> will traverse to a relationship instead of a node. The relationship must have
the current node as either start or end point. To see the relationship ids use the ls -vr command on
nodes.

• cd -ar <relationship-id> will do an absolute path change which means the relationship can be any
relationship in the graph.

• cd will take you back to the reference node, where you started in the first place.
• cd .. will traverse back one step to the previous location, removing the last path item from your

current path (pwd).
• cd start (only if your current location is a relationship). Traverses to the start node of the

relationship.
• cd end (only if your current location is a relationship). Traverses to the end node of the relationship.

27.6.2. Listing the contents of a node/relationship
List contents of the current node/relationship (or any other node) with the ls command. Please note
that it will give an empty output if the current node/relationship has no properties or relationships (for
example in the case of a brand new graph). ls can take a node id as argument as well as filters, see
Section 27.4, “Filters” and for information about how to specify direction see Section 27.3, “Enum
options”. Use man ls for more info.

27.6.3. Creating nodes and relationships
You create new nodes by connecting them with relationships to the current node. For example,
mkrel -t A_RELATIONSHIP_TYPE -d OUTGOING -c will create a new node (-c) and draw to it an OUTGOING
relationship of type A_RELATIONSHIP_TYPE from the current node. If you already have two nodes which
you’d like to draw a relationship between (without creating a new node) you can do for example,
mkrel -t A_RELATIONSHIP_TYPE -d OUTGOING -n <other-node-id> and it will just create a new relationship
between the current node and that other node.

27.6.4. Setting, renaming and removing properties
Property operations are done with the set, mv and rm commands. These commands operates on the
current node/relationship. * set <key> <value> with optionally the -t option (for value type) sets a
property. Supports every type of value that Neo4j supports. Examples of a property of type int:

http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html#getReferenceNode()
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html#getReferenceNode()
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html#getReferenceNode()

Neo4j Shell

481

$ set -t int age 29

And an example of setting a double[] property:
$ set -t double[] my_values [1.4,12.2,13]

Example of setting a String property containing a JSON string:
mkrel -c -d i -t DOMAIN_OF --np "{'app':'foobar'}"

• rm <key> removes a property.
• mv <key> <new-key> renames a property from one key to another.

27.6.5. Deleting nodes and relationships
Deletion of nodes and relationships is done with the rmnode and rmrel commands. rmnode can delete
nodes, if the node to be deleted still has relationships they can also be deleted by supplying -f option.
rmrel can delete relationships, it tries to ensure connectedness in the graph, but relationships can be
deleted regardless with the -f option. rmrel can also delete the node on the other side of the deleted
relationship if it’s left with no more relationships, see -d option.

27.6.6. Environment variables
The shell uses environment variables a-la bash to keep session information, such as the current path
and more. The commands for this mimics the bash commands export and env. For example you can
at anytime issue a export STACKTRACES=true command to set the STACKTRACES environment variable
to true. This will then result in stacktraces being printed if an exception or error should occur. List
environment variables using env

27.6.7. Executing groovy/python scripts
The shell has support for executing scripts, such as Groovy <http://groovy.codehaus.org> and
Python <http://www.python.org> (via Jython <http://www.jython.org>). As of now the scripts
(*.groovy, *.py) must exist on the server side and gets called from a client with for example, gsh --
renamePerson 1234 "Mathias" "Mattias" --doSomethingElse where the scripts renamePerson.groovy
and doSomethingElse.groovy must exist on the server side in any of the paths given by the GSH_PATH
environment variable (defaults to .:src:src/script). This variable is like the java classpath, separated by
a :. The python/jython scripts can be executed with the jsh in a similar fashion, however the scripts
have the .py extension and the environment variable for the paths is JSH_PATH.

When writing the scripts assume that there’s made available an args variable (a String[]) which
contains the supplied arguments. In the case of the renamePerson example above the array would
contain ["1234", "Mathias", "Mattias"]. Also please write your outputs to the out variable, such as
out.println("My tracing text") so that it will be printed at the shell client instead of the server.

27.6.8. Traverse
You can traverse the graph with the trav command which allows for simple traversing from the
current node. You can supply which relationship types (w/ regex matching) and optionally direction
as well as property filters for matching nodes. In addition to that you can supply a command line
to execute for each match. An example: trav -o depth -r KNOWS:both,HAS_.*:incoming -c "ls $n".
Which means traverse depth first for relationships with type KNOWS disregarding direction and incoming
relationships with type matching HAS_.* and do a ls <matching node> for each match. The node
filtering is supplied with the -f option, see Section 27.4, “Filters”. See Section 27.3, “Enum options”
for the traversal order option. Even relationship types/directions are supplied using the same format as
filters.

http://groovy.codehaus.org
http://groovy.codehaus.org
http://www.python.org
http://www.python.org
http://www.jython.org
http://www.jython.org

Neo4j Shell

482

27.6.9. Query with Cypher
You can use Cypher to query the graph. For that, use the start command.

Tip
Cypher queries need to be terminated by a semicolon ;.

• start n = node(0) return n; will give you a listing of the node with ID 0

27.6.10. Indexing
It’s possible to query and manipulate indexes via the index command. Example: index -i persons name
(will index the name for the current node or relationship in the "persons" index).

• -g will do exact lookup in the index and display hits. You can supply -c with a command to be
executed for each hit.

• -q will ask the index a query and display hits. You can supply -c with a command to be executed
for each hit.

• --cd will change current location to the hit from the query. It’s just a convenience for using the -c
option.

• --ls will do a listing of the contents for each hit. It’s just a convenience for using the -c option.
• -i will index a key-value pair in an index for the current node/relationship. If no value is given the

property value for that key for the current node is used as value.
• -r will remove a key-value pair (if it exists) from an index for the current node/relationship. Key

and value is optional.
• -t will set the index type to work with, for example index -t Relationship --delete friends will

delete the friends relationship index.

27.6.11. Transactions
It is useful to be able to test changes, and then being able to commit or rollback said changes.

Transactions can be nested. With a nested transaction, a commit does not write any changes to
disk, except for the top level transaction. A rollback, however works regardless of the level of the
transaction. It will roll back all open transactions.

• begin transaction Starts a transaction.
• commit Commits a transaction.
• rollback Rollbacks all open transactions.

Neo4j Shell

483

27.7. Extending the shell: Adding your own commands
Of course the shell is extendable and has a generic core which has nothing to do with Neo4j… only
some of the commands <http://components.neo4j.org/neo4j-shell/1.9.M04/apidocs/org/neo4j/shell/
App.html> do.

So you say you’d like to start a Neo4j graph database <http://api.neo4j.org/current/org/neo4j/graphdb/
GraphDatabaseService.html>, enable the remote shell and add your own apps to it so that your apps
and the standard Neo4j apps co-exist side by side? Well, here’s an example of how an app could look
like:
import org.neo4j.helpers.Service;

import org.neo4j.shell.kernel.apps.GraphDatabaseApp;

@Service.Implementation(App.class)

public class LsRelTypes extends GraphDatabaseApp

{

 @Override

 protected String exec(AppCommandParser parser, Session session, Output out)

 throws ShellException, RemoteException

 {

 GraphDatabaseService graphDb = getServer().getDb();

 out.println("Types:");

 for (RelationshipType type : graphDb.getRelationshipTypes())

 {

 out.println(type.name());

 }

 return null;

 }

}

And you could now use it in the shell by typing lsreltypes (its name is based on the class name) if
getName method isn’t overridden.

If you’d like it to display some nice help information when using the help (or man) app, override the
getDescription method for a general description and use addValueType method to add descriptions
about (and logic to) the options you can supply when using your app.

Know that the apps reside server-side so if you have a running server and starts a remote client to it
from another JVM you can’t add your apps on the client.

http://components.neo4j.org/neo4j-shell/1.9.M04/apidocs/org/neo4j/shell/App.html
http://components.neo4j.org/neo4j-shell/1.9.M04/apidocs/org/neo4j/shell/App.html
http://components.neo4j.org/neo4j-shell/1.9.M04/apidocs/org/neo4j/shell/App.html
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html

Neo4j Shell

484

27.8. An example shell session
 # where are we?

 neo4j-sh (0)$ pwd

 Current is (0)

 (0)

 # On the current node, set the key "name" to value "Jon"

 neo4j-sh (0)$ set name "Jon"

 # send a cypher query

 neo4j-sh (Jon,0)$ start n=node(0) return n;

 +---------------------+

 | n |

 +---------------------+

 | Node[0]{name:"Jon"} |

 +---------------------+

 1 row

 11 ms

 # make an incoming relationship of type LIKES, create the end node with the node properties specified.

 neo4j-sh (Jon,0)$ mkrel -c -d i -t LIKES --np "{'app':'foobar'}"

 # where are we?

 neo4j-sh (Jon,0)$ ls

 *name =[Jon]

 (me)<-[:LIKES]-(1)

 # change to the newly created node

 neo4j-sh (Jon,0)$ cd 1

 # list relationships, including relationshship id

 neo4j-sh (1)$ ls -avr

 (me)-[:LIKES,0]->(Jon,0)

 # create one more KNOWS relationship and the end node

 neo4j-sh (1)$ mkrel -c -d i -t KNOWS --np "{'name':'Bob'}"

 # print current history stack

 neo4j-sh (1)$ pwd

 Current is (1)

 (Jon,0)-->(1)

 # verbose list relationships

 neo4j-sh (1)$ ls -avr

 (me)-[:LIKES,0]->(Jon,0)

 (me)<-[:KNOWS,1]-(Bob,2)

Neo4j Shell

485

27.9. A Matrix example
This example is creating a graph of the characters in the Matrix via the shell and then executing
Cypher queries against it:

Figure 27.1. Shell Matrix Example

Node[0]

Node[1]

nam e = 'Thom as Andersson'

ROOT

Node[2]

nam e = 'Trinity '

KNOWS
Node[3]

nam e = 'Morpheus'

KNOWS
age = 3

KNOWS
age = 90

Node[4]

nam e = 'Cypher'

KNOWS

Node[5]

nam e = 'Agent Sm ith'

KNOWS

Node[6]

nam e = 'The Architect '

CODED_BY

Neo4j is configured for autoindexing, in this case with the following in the Neo4j configuration file:
node_auto_indexing=true

node_keys_indexable=name,age

relationship_auto_indexing=true

relationship_keys_indexable=ROOT,KNOWS,CODED_BY

The following is a sample shell session creating the Matrix graph and querying it.
 # create the Thomas Andersson node

 neo4j-sh (0)$ mkrel -t ROOT -c -v

 Node (1) created

Neo4j Shell

486

 Relationship [:ROOT,0] created

 # go to the new node

 neo4j-sh (0)$ cd 1

 # set the name property

 neo4j-sh (1)$ set name "Thomas Andersson"

 # create Thomas direct friends

 neo4j-sh (Thomas Andersson,1)$ mkrel -t KNOWS -cv

 Node (2) created

 Relationship [:KNOWS,1] created

 # go to the new node

 neo4j-sh (Thomas Andersson,1)$ cd 2

 # set the name property

 neo4j-sh (2)$ set name "Trinity"

 # go back in the history stack

 neo4j-sh (Trinity,2)$ cd ..

 # create Thomas direct friends

 neo4j-sh (Thomas Andersson,1)$ mkrel -t KNOWS -cv

 Node (3) created

 Relationship [:KNOWS,2] created

 # go to the new node

 neo4j-sh (Thomas Andersson,1)$ cd 3

 # set the name property

 neo4j-sh (3)$ set name "Morpheus"

 # create relationship to Trinity

 neo4j-sh (Morpheus,3)$ mkrel -t KNOWS 2

 # list the relationships of node 3

 neo4j-sh (Morpheus,3)$ ls -rv

 (me)-[:KNOWS,3]->(Trinity,2)

 (me)<-[:KNOWS,2]-(Thomas Andersson,1)

 # change the current position to relationship #2

 neo4j-sh (Morpheus,3)$ cd -r 2

 # set the age property on the relationship

 neo4j-sh [:KNOWS,2]$ set -t int age 3

 # back to Morpheus

 neo4j-sh [:KNOWS,2]$ cd ..

 # next relationsip

 neo4j-sh (Morpheus,3)$ cd -r 3

 # set the age property on the relationship

 neo4j-sh [:KNOWS,3]$ set -t int age 90

 # position to the start node of the current relationship

 neo4j-sh [:KNOWS,3]$ cd start

 # new node

 neo4j-sh (Morpheus,3)$ mkrel -t KNOWS -c

Neo4j Shell

487

 # list relationships on the current node

 neo4j-sh (Morpheus,3)$ ls -r

 (me)-[:KNOWS]->(Trinity,2)

 (me)-[:KNOWS]->(4)

 (me)<-[:KNOWS]-(Thomas Andersson,1)

 # go to Cypher

 neo4j-sh (Morpheus,3)$ cd 4

 # set the name

 neo4j-sh (4)$ set name Cypher

 # create new node from Cypher

 neo4j-sh (Cypher,4)$ mkrel -ct KNOWS

 # list relationships

 neo4j-sh (Cypher,4)$ ls -r

 (me)-[:KNOWS]->(5)

 (me)<-[:KNOWS]-(Morpheus,3)

 # go to the Agent Smith node

 neo4j-sh (Cypher,4)$ cd 5

 # set the name

 neo4j-sh (5)$ set name "Agent Smith"

 # outgoing relationship and new node

 neo4j-sh (Agent Smith,5)$ mkrel -cvt CODED_BY

 Node (6) created

 Relationship [:CODED_BY,6] created

 # go there

 neo4j-sh (Agent Smith,5)$ cd 6

 # set the name

 neo4j-sh (6)$ set name "The Architect"

 # go to the first node in the history stack

 neo4j-sh (The Architect,6)$ cd

 # Morpheus' friends, looking up Morpheus by name in the Neo4j autoindex

 neo4j-sh (0)$ start morpheus = node:node_auto_index(name='Morpheus') match morpheus-[:KNOWS]-zionist return zionist.name;

 +--------------------+

 | zionist.name |

 +--------------------+

 | "Trinity" |

 | "Cypher" |

 | "Thomas Andersson" |

 +--------------------+

 3 rows

 45 ms

 # Morpheus' friends, looking up Morpheus by name in the Neo4j autoindex

 neo4j-sh (0)$ cypher 1.8 start morpheus = node:node_auto_index(name='Morpheus') match morpheus-[:KNOWS]-zionist return zionist.name;

 +--------------------+

 | zionist.name |

 +--------------------+

 | "Trinity" |

 | "Cypher" |

Neo4j Shell

488

 | "Thomas Andersson" |

 +--------------------+

 3 rows

 1 ms

Part VI. Community
The Neo4j project has a strong community around it. Read about how to get help from the community
and how to contribute to it.

490

Chapter 28. Community Support

You can learn a lot about Neo4j on different events. To get information on upcoming Neo4j events,
have a look here:

• http://neo4j.org/
• http://neo4j.meetup.com/

Get help from the Neo4j open source community; here are some starting points.

• Neo4j Community Discussions: https://groups.google.com/forum/#!forum/neo4j
• Twitter: http://twitter.com/neo4j
• IRC channel: irc://irc.freenode.net/neo4j web chat <http://webchat.freenode.net/?

randomnick=1&channels=neo4j>.

Report a bug or add a feature request:

• General: https://github.com/neo4j/community/issues
• Monitoring: https://github.com/neo4j/advanced/issues
• Backup and High Availability: https://github.com/neo4j/enterprise/issues

Questions regarding the documentation: The Neo4j Manual is published online with a comment
function, please use that to post any questions or comments. See http://docs.neo4j.org/.

http://neo4j.org/
http://neo4j.meetup.com/
https://groups.google.com/forum/#!forum/neo4j
http://twitter.com/neo4j
irc://irc.freenode.net/neo4j
http://webchat.freenode.net/?randomnick=1&channels=neo4j
http://webchat.freenode.net/?randomnick=1&channels=neo4j
http://webchat.freenode.net/?randomnick=1&channels=neo4j
https://github.com/neo4j/community/issues
https://github.com/neo4j/advanced/issues
https://github.com/neo4j/enterprise/issues
http://docs.neo4j.org/

491

Chapter 29. Contributing to Neo4j

The Neo4j project is an Open Source effort to bring fast complex data storage and processing to life.
Every form of help is highly appreciated by the community - and you are not alone, see Section 29.6,
“Contributors”!

One crucial aspect of contributing to the Neo4j project is the Section 29.1, “Contributor License
Agreement”.

In short: make sure to sign the CLA and send in the email, or the Neo4j project won’t be able to accept
your contribution.

Note that you can contribute to Neo4j also by contributing documentation or giving feedback on
the current documentation. Basically, at all the places where you can get help, there’s also room for
contributions.

If you want to contribute, there are some good areas to start with, especially for getting in contact with
the community, Chapter 28, Community Support.

To document your efforts, we highly recommend to read Section 29.3, “Writing Neo4j
Documentation”.

Contributing to Neo4j

492

29.1. Contributor License Agreement
29.1.1. Summary

We require all source code that is hosted on the Neo4j infrastructure to be contributed through the
Neo4j Contributor License Agreement <http://dist.neo4j.org/neo4j-cla.pdf> (CLA). The purpose
of the Neo4j Contributor License Agreement is to protect the integrity of the code base, which
in turn protects the community around that code base: the founding entity Neo Technology, the
Neo4j developer community and the Neo4j users. This kind of contributor agreement is common
amongst free software and open source projects (it is in fact very similar to the widely signed Oracle
Contributor Agreement <http://www.oracle.com/technetwork/community/oca-486395.html>).

Please see the below or send a mail to admins [at] neofourjay.org if you have any other questions
about the intent of the CLA. If you have a legal question, please ask a lawyer.

29.1.2. Common questions

Am I losing the rights to my own code?
No, the Neo4j CLA <http://dist.neo4j.org/neo4j-cla.pdf> only asks you to share your rights, not
relinquish them. Unlike some contribution agreements that require you to transfer copyrights to
another organization, the CLA does not take away your rights to your contributed intellectual
property. When you agree to the CLA, you grant us joint ownership in copyright, and a patent license
for your contributions. You retain all rights, title, and interest in your contributions and may use them
for any purpose you wish. Other than revoking our rights, you can still do whatever you want with
your code.

What can you do with my contribution?
We may exercise all rights that a copyright holder has, as well as the rights you grant in the Neo4j
CLA <http://dist.neo4j.org/neo4j-cla.pdf> to use any patents you have in your contributions. As
the CLA provides for joint copyright ownership, you may exercise the same rights as we in your
contributions.

What are the community benefits of this?
Well, it allows us to sponsor the Neo4j projects and provide an infrastructure for the community,
while making sure that we can include this in software that we ship to our customers without any
nasty surprises. Without this ability, we as a small company would be hard pressed to release all our
code as free software.

Moreover, the CLA lets us protect community members (both developers and users) from hostile
intellectual property litigation should the need arise. This is in line with how other free software
stewards like the Free Software Foundation - FSF <http://www.fsf.org> defend projects (except
with the FSF, there’s no shared copyright but instead you completely sign it over to the FSF). The
contributor agreement also includes a "free software covenant," or a promise that a contribution will
remain available as free software.

At the end of the day, you still retain all rights to your contribution and we can stand confident that we
can protect the Neo4j community and the Neo Technology customers.

Can we discuss some items in the CLA?
Absolutely! Please give us feedback! But let’s keep the legalese off the mailing lists. Please mail your
feedback directly to cla (@t) neotechnology dot cöm and we’ll get back to you.

http://dist.neo4j.org/neo4j-cla.pdf
http://dist.neo4j.org/neo4j-cla.pdf
http://www.oracle.com/technetwork/community/oca-486395.html
http://www.oracle.com/technetwork/community/oca-486395.html
http://www.oracle.com/technetwork/community/oca-486395.html
http://dist.neo4j.org/neo4j-cla.pdf
http://dist.neo4j.org/neo4j-cla.pdf
http://dist.neo4j.org/neo4j-cla.pdf
http://dist.neo4j.org/neo4j-cla.pdf
http://dist.neo4j.org/neo4j-cla.pdf
http://www.fsf.org
http://www.fsf.org

Contributing to Neo4j

493

I still don’t like this CLA.
That’s fine. You can still host it anywhere else, of course. Please do! We’re only talking here about the
rules for the infrastructure that we provide.

29.1.3. How to sign
When you’ve read through the CLA, please send a mail to cla (@t) neotechnology dot cöm. Include
the following information:

• Your full name.
• Your e-mail address.
• An attached copy of the Neo4j CLA <http://dist.neo4j.org/neo4j-cla.pdf>.
• That you agree to its terms.

For example:
Hi. My name is John Doe (john@doe.com).

I agree to the terms in the attached Neo4j Contributor License Agreement.

http://dist.neo4j.org/neo4j-cla.pdf
http://dist.neo4j.org/neo4j-cla.pdf

Contributing to Neo4j

494

29.2. Areas for contribution
Neo4j is a project with a vast ecosystem and a lot of space for contributions. Where you can and want
to pitch in depends of course on your time, skill set and interests. Below are some of the areas that
might interest you:

29.2.1. Neo4j Distribution

• The Neo4j Community open issues <https://github.com/neo4j/community/issues> for some starting
points for contribution

• See the GitHub Neo4j area <https://github.com/neo4j/> for a list of projects

29.2.2. Maintaining Neo4j Documentation
Some parts of the documentation need extra care from the community to stay up to date. They
typically refer to different kinds of community contributions. Below is a list of such places, feel free
to look into them and check for outdated or missing content! The easiest way to contribute fixes is to
comment at the online HTML version <http://docs.neo4j.org/chunked/snapshot/>.

• Chapter 5, Neo4j Remote Client Libraries

29.2.3. Drivers and bindings to Neo4j

• REST: see Chapter 5, Neo4j Remote Client Libraries for a list of active projects

https://github.com/neo4j/community/issues
https://github.com/neo4j/community/issues
https://github.com/neo4j/
https://github.com/neo4j/
http://docs.neo4j.org/chunked/snapshot/
http://docs.neo4j.org/chunked/snapshot/

Contributing to Neo4j

495

29.3. Writing Neo4j Documentation
Note
Other than writing documentation, you can help out by providing comments - head over to
the online HTML version <http://docs.neo4j.org/chunked/snapshot/> to do that!

For how to build the manual see: readme <https://github.com/neo4j/neo4j/blob/master/manual/
README.asciidoc>

The documents use the asciidoc format, see:

• Aciidoc Reference <http://www.methods.co.nz/asciidoc/>
• AsciiDoc cheatsheet <http://powerman.name/doc/asciidoc>

The cheatsheet is really useful!

29.3.1. Overall Flow
Each (sub)project has its own documentation, which will produce a docs.jar file. By default this file is
assembled from the contents in src/docs/. Asciidoc documents have the .asciidoc file extension.

The documents can use code snippets which will extract code from the project. The corresponding
code must be deployed to the sources.jar or test-sources.jar file.

By setting up a unit test accordingly, documentation can be written directly in the JavaDoc comment.

The above files are all consumed by the build of the manual (by adding them as dependencies). To get
content included in the manual, it has to be explicitly included by a document in the manual as well.

Note that different ways to add documentation works best for different cases:

• For detail level documentation, it works well to write the documentation as part of unit tests (in
the JavaDoc comment). In this case, you typically do not want to link to the source code in the
documentation.

• For tutorial level documentation, the result will be best by writing a .asciidoc file containing
the text. Source snippets and output examples can then be included from there. In this case you
typically want to link to the source code, and users should be able to run it without any special
setup.

29.3.2. File Structure in docs.jar

Directory Contents

dev/ content aimed at developers
dev/images/ images used by the dev docs
ops/ content aimed at operations
ops/images/ images used by the ops docs
man/ manpages

Additional subdirectories are used as needed to structure the documents, like dev/tutorial/, ops/
tutorial/ etc.

http://docs.neo4j.org/chunked/snapshot/
http://docs.neo4j.org/chunked/snapshot/
https://github.com/neo4j/neo4j/blob/master/manual/README.asciidoc
https://github.com/neo4j/neo4j/blob/master/manual/README.asciidoc
https://github.com/neo4j/neo4j/blob/master/manual/README.asciidoc
http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/
http://powerman.name/doc/asciidoc
http://powerman.name/doc/asciidoc

Contributing to Neo4j

496

29.3.3. Headings and document structure
Each document starts over with headings from level zero (the document title). Each document should
have an id. In some cases sections in the document need to have id’s as well, this depends on where
they fit in the overall structure. To be able to link to content, it has to have an id. Missing id’s in
mandatory places will fail the build.

This is how a document should start:
[[unique-id-verbose-is-ok]]

The Document Title

==================

To push the headings down to the right level in the output, the leveloffset attribute is used when
including the document inside of another document.

Subsequent headings in a document should use the following syntax:
== Subheading ==

... content here ...

=== Subsubheading ===

content here ...

Asciidoc comes with one more syntax for headings, but in this project it’s not used.

29.3.4. Writing
Put one sentence on each line. This makes it easy to move content around, and also easy to spot (too)
long sentences.

29.3.5. Gotchas

• A chapter can’t be empty. (the build will fail on the docbook xml validity check)
• The document title should be "underlined" by the same number of = as there are characters in the

title.
• Always leave a blank line at the end of documents (or the title of the next document might end up in

the last paragraph of the document)
• As {} are used for Asciidoc attributes, everything inside will be treated as an attribute. What you

have to do is to escape the opening brace: \{. If you don’t, the braces and the text inside them will
be removed without any warning being issued!

29.3.6. Links
To link to other parts of the manual the id of the target is used. This is how such a reference looks:
<<community-docs-overall-flow>>

Which will render like: Section 29.3.1, “Overall Flow”

Note
Just write "see <<target-id>>" and similar, that should suffice in most cases.

If you need to link to another document with your own link text, this is what to do:
<<target-id, link text that fits in the context>>

Contributing to Neo4j

497

Note
Having lots of linked text may work well in a web context but is a pain in print, and we
aim for both!

External links are added like this:
http://neo4j.org/[Link text here]

Which renders like: Link text here <http://neo4j.org/>

For short links it may be better not to add a link text, just do:
http://neo4j.org/

Which renders like: http://neo4j.org/

Note
It’s ok to have a dot right after the URL, it won’t be part of the link.

29.3.7. Text Formatting

• _Italics_ is rendered as Italics and used for emphasis.
• *Bold* is rendered as Bold and used sparingly, for strong emphasis only.
• +methodName()+ is rendered as methodName() and is used for literals as well (note: the content

between the + signs will be parsed).
• `command` is rendered as command (typically used for command-line) (note: the content between the

` signs will not be parsed).
• 'my/path/' is rendered as my/path/ (used for file names and paths).
• ``Double quoted'' (that is two grave accents to the left and two acute accents to the right) renders as

“Double quoted”.
• `Single quoted' (that is a single grave accent to the left and a single acute accent to the right) renders

as ‘Single quoted’.

29.3.8. Admonitions
These are very useful and should be used where appropriate. Choose from the following (write all
caps and no, we can’t easily add new ones):

Note
Note.

Tip
Tip.

Important
Important

Caution
Caution

http://neo4j.org/
http://neo4j.org/
http://neo4j.org/

Contributing to Neo4j

498

Warning
Warning

Here’s how it’s done:
NOTE: Note.

A multiline variation:
[TIP]

Tiptext.

Line 2.

Which is rendered as:

Tip
Tiptext. Line 2.

29.3.9. Images

Important
All images in the entire manual share the same namespace. You know how to handle that.

Images Files
To include an image file, make sure it resides in the images/ directory relative to the document you’re
including it from. Then go:
image::neo4j-logo.png[]

Which is rendered as:

Static Graphviz/DOT
We use the Graphviz/DOT language to describe graphs. For documentation see http://graphviz.org/.
This is how to include a simple example graph:
 ["dot", "community-docs-graphdb-rels.svg"]

 "Start node" -> "End node" [label="relationship"]

Which is rendered as:

Start node

End node

relat ionship

http://graphviz.org/

Contributing to Neo4j

499

Here’s an example using some predefined variables available in the build:

 ["dot", "community-docs-graphdb-rels-overview.svg", "meta"]

 "A Relationship" [fillcolor="NODEHIGHLIGHT"]

 "Start node" [fillcolor="NODE2HIGHLIGHT"]

 "A Relationship" -> "Start node" [label="has a"]

 "A Relationship" -> "End node" [label="has a"]

 "A Relationship" -> "Relationship type" [label="has a"]

 Name [TEXTNODE]

 "Relationship type" -> Name [label="uniquely identified by" color="EDGEHIGHLIGHT" fontcolor="EDGEHIGHLIGHT"]

Which is rendered as:

A Relat ionship

Start node

has a

End node

has a

Relat ionship type

has a

Nam e

uniquely ident ified by

The optional second argument given to the dot filter defines the style to use:

• when not defined: Default styling for nodespace examples.
• neoviz: Nodespace view generated by Neoviz.
• meta: Graphs that don’t resemble db contents, but rather concepts.

Caution
Keywords of the DOT language have to be surrounded by double quotes when used for
other purposes. The keywords include node, edge, graph, digraph, subgraph, and strict.

29.3.10. Attributes
Common attributes you can use in documents:

• {neo4j-version} - rendered as "1.9.M04"
• {neo4j-git-tag} - rendered as "1.9.M04"
• {lucene-version} - rendered as "3_5_0"

These can substitute part of URLs that point to for example APIdocs or source code. Note that neo4j-
git-tag also handles the case of snapshot/master.

Sample Asciidoc attributes which can be used:

• {docdir} - root directory of the documents

Contributing to Neo4j

500

• {nbsp} - non-breaking space

29.3.11. Comments
There’s a separate build including comments. The comments show up with a yellow background. This
build doesn’t run by default, but after a normal build, you can use make annotated to build it. You can
also use the resulting page to search for content, as the full manual is on a single page.

Here’s how to write a comment:

// this is a comment

The comments are not visible in the normal build. Comment blocks won’t be included in the output of
any build at all. Here’s a comment block:

////

Note that includes in here will still be processed, but not make it into the output.

That is, missing includes here will still break the build!

////

29.3.12. Code Snippets

Explicitly defined in the document

Warning
Use this kind of code snippets as little as possible. They are well known to get out of sync
with reality after a while.

This is how to do it:

 [source,cypher]

 start n=(2, 1) where (n.age < 30 and n.name = "Tobias") or not(n.name = "Tobias") return n

Which is rendered as:

start n=(2, 1) where (n.age < 30 and n.name = "Tobias") or not(n.name = "Tobias") return n

If there’s no suitable syntax highlighter, just omit the language: [source].

Currently the following syntax highlighters are enabled:

• Bash
• Cypher
• Groovy
• Java
• JavaScript
• Python
• XML

For other highlighters we could add see http://alexgorbatchev.com/SyntaxHighlighter/manual/
brushes/.

Fetched from source code
Code can be automatically fetched from source files. You need to define:

http://alexgorbatchev.com/SyntaxHighlighter/manual/brushes/
http://alexgorbatchev.com/SyntaxHighlighter/manual/brushes/

Contributing to Neo4j

501

• component: the artifactId of the Maven coordinates,
• source: path to the file inside the jar it’s deployed to,
• classifier: sources or test-sources or any other classifier pointing to the artifact,
• tag: tag name to search the file for,
• the language of the code, if a corresponding syntax highlighter is available.

Note that the artifact has to be included as a Maven dependency of the Manual project so that the files
can be found.

Be aware of that the tag "abc" will match "abcd" as well. It’s a simple on/off switch, meaning that
multiple occurrences will be assembled into a single code snippet in the output. This behavior can be
user to hide away assertions from code examples sourced from tests.

This is how to define a code snippet inclusion:
 [snippet,java]

 component=neo4j-examples

 source=org/neo4j/examples/JmxTest.java

 classifier=test-sources

 tag=getStartTime

This is how it renders:
private static Date getStartTimeFromManagementBean(

 GraphDatabaseService graphDbService)

{

 GraphDatabaseAPI graphDb = (GraphDatabaseAPI) graphDbService;

 Kernel kernel = graphDb.getDependencyResolver().resolveDependency(JmxKernelExtension.class)

 .getSingleManagementBean(Kernel.class);

 Date startTime = kernel.getKernelStartTime();

 return startTime;

}

Query Results
There’s a special filter for Cypher query results. This is how to tag a query result:
 .Result

 [queryresult]

 +----------------------------------+

 | friend_of_friend.name | count(*) |

 +----------------------------------+

 | Ian | 2 |

 | Derrick | 1 |

 | Jill | 1 |

 +----------------------------------+

 3 rows, 12 ms

This is how it renders:

Result
friend_of_friend.name count(*)

Ian 2

Derrick 1

3 rows, 12 ms

Contributing to Neo4j

502

friend_of_friend.name count(*)

Jill 1

3 rows, 12 ms

29.3.13. A sample Java based documentation test
For Java, there are a couple of premade utilities that keep code and documentation together in
Javadocs and code snippets that generate Asciidoc for the rest of the toolchain.

To illustrate this, look at the following documentation that generates the Asciidoc file hello-world-
title.asciidoc with a content of:

[[examples-hello-world-sample-chapter]]

Hello world Sample Chapter

==========================

This is a sample documentation test, demonstrating different ways of

bringing code and other artifacts into Asciidoc form. The title of the

generated document is determined from the method name, replacing "+_+" with

" ".

Below you see a number of different ways to generate text from source,

inserting it into the JavaDoc documentation (really being Asciidoc markup)

via the +@@+ snippet markers and programmatic adding with runtime data

in the Java code.

- The annotated graph as http://www.graphviz.org/[GraphViz]-generated visualization:

.Hello World Graph

["dot", "Hello-World-Graph-hello-world-Sample-Chapter.svg", "neoviz", ""]

 N1 [

 label = "{Node\[1\]|name = \'you\'\l}"

]

 N2 [

 label = "{Node\[2\]|name = \'I\'\l}"

]

 N2 -> N1 [

 color = "#2e3436"

 fontcolor = "#2e3436"

 label = "know\n"

]

- A sample Cypher query:

[source,cypher]

START n = node(2)

RETURN n

- A sample text output snippet:

[source]

Hello graphy world!

- a generated source link to the original GIThub source for this test:

https://github.com/neo4j/neo4j/blob/{neo4j-git-tag}/community/embedded-examples/src/test/java/org/neo4j/examples/DocumentationTest.java[DocumentationTest.java]

Contributing to Neo4j

503

- The full source for this example as a source snippet, highlighted as Java code:

[snippet,java]

component=neo4j-examples

source=org/neo4j/examples/DocumentationTest.java

classifier=test-sources

tag=sampleDocumentation

This is the end of this chapter.

this file is included in this documentation via

 :leveloffset: 3

 include::{importdir}/neo4j-examples-docs-jar/dev/examples/hello-world-sample-chapter.asciidoc[]

which renders the following chapter:

29.3.14. Hello world Sample Chapter
This is a sample documentation test, demonstrating different ways of bringing code and other artifacts
into Asciidoc form. The title of the generated document is determined from the method name,
replacing "_" with " ".

Below you see a number of different ways to generate text from source, inserting it into the JavaDoc
documentation (really being Asciidoc markup) via the @@ snippet markers and programmatic adding
with runtime data in the Java code.

• The annotated graph as GraphViz <http://www.graphviz.org/>-generated visualization:

Figure 29.1. Hello World Graph

Node[1]

nam e = 'you'

Node[2]

nam e = 'I'

know

• A sample Cypher query:

START n = node(2)

RETURN n

• A sample text output snippet:

Hello graphy world!

• a generated source link to the original GIThub source for this test:

DocumentationTest.java <https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-
examples/src/test/java/org/neo4j/examples/DocumentationTest.java>

http://www.graphviz.org/
http://www.graphviz.org/
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/DocumentationTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/DocumentationTest.java
https://github.com/neo4j/neo4j/blob/1.9.M04/community/embedded-examples/src/test/java/org/neo4j/examples/DocumentationTest.java

Contributing to Neo4j

504

• The full source for this example as a source snippet, highlighted as Java code:

// START SNIPPET: _sampleDocumentation

package org.neo4j.examples;

import org.junit.Test;

import org.neo4j.kernel.impl.annotations.Documented;

import org.neo4j.test.GraphDescription.Graph;

import static org.neo4j.visualization.asciidoc.AsciidocHelper.*;

public class DocumentationTest extends AbstractJavaDocTestbase

{

 /**

 * This is a sample documentation test, demonstrating different ways of

 * bringing code and other artifacts into Asciidoc form. The title of the

 * generated document is determined from the method name, replacing "+_+" with

 * " ".

 *

 * Below you see a number of different ways to generate text from source,

 * inserting it into the JavaDoc documentation (really being Asciidoc markup)

 * via the +@@+ snippet markers and programmatic adding with runtime data

 * in the Java code.

 *

 * - The annotated graph as http://www.graphviz.org/[GraphViz]-generated visualization:

 *

 * @@graph

 *

 * - A sample Cypher query:

 *

 * @@cypher

 *

 * - A sample text output snippet:

 *

 * @@output

 *

 * - a generated source link to the original GIThub source for this test:

 *

 * @@github

 *

 * - The full source for this example as a source snippet, highlighted as Java code:

 *

 * @@sampleDocumentation

 *

 * This is the end of this chapter.

 */

 @Test

 // signaling this to be a documentation test

 @Documented

 // the graph data setup as simple statements

 @Graph("I know you")

 // title is determined from the method name

 public void hello_world_Sample_Chapter()

 {

 // initialize the graph with the annotation data

 data.get();

 gen.get().addTestSourceSnippets(this.getClass(), "sampleDocumentation");

 gen.get()

 .addGithubTestSourceLink("github", this.getClass(),

 "community/embedded-examples");

 gen.get().addSnippet("output",

 createOutputSnippet("Hello graphy world!"));

Contributing to Neo4j

505

 gen.get().addSnippet(

 "graph",

 createGraphVizWithNodeId("Hello World Graph", graphdb(),

 gen.get().getTitle()));

 // A cypher snippet referring to the generated graph in the start clause

 gen.get().addSnippet(

 "cypher",

 createCypherSnippet("start n = node(" + data.get().get("I").getId()

 + ") return n"));

 }

}

// END SNIPPET: _sampleDocumentation

This is the end of this chapter.

29.3.15. Integrated Live Console
An interactive console can be added and will show up in the online HTML version. An optional title
can be added, which will be used for the text of the button.

This is how to do it, using Geoff to define the data, with an empty line to separate it from the query:
 .Interactive Matrix Example

 [console]

 (A) {"name" : "Neo"};

 (B) {"name" : "Trinity"};

 (A)-[:LOVES]->(B)

 start n = node(*)

 return n

And this is the result:

29.3.16. Toolchain
Useful links when configuring the docbook toolchain:

• http://www.docbook.org/tdg/en/html/docbook.html
• http://www.sagehill.net/docbookxsl/index.html
• http://docbook.sourceforge.net/release/xsl/1.76.1/doc/html/index.html
• http://docbook.sourceforge.net/release/xsl/1.76.1/doc/fo/index.html

http://www.docbook.org/tdg/en/html/docbook.html
http://www.sagehill.net/docbookxsl/index.html
http://docbook.sourceforge.net/release/xsl/1.76.1/doc/html/index.html
http://docbook.sourceforge.net/release/xsl/1.76.1/doc/fo/index.html

Contributing to Neo4j

506

29.4. Translating the Neo4j Manual
To translate the Neo4j Manual, there’s a special project setup to use. See the French translation project
for an example: https://github.com/neo4j/manual-french

The project contains:

• conf/ — configuration for the project.
• docs/ — translated files for content provided by Neo4j modules.
• po/ — translation files and po4a configuration files.
• src/ — translated files for content provided by the original manual.
• Makefile — a makefile with project-specific configuration.
• pom.xml — Maven build configuration.

29.4.1. Prerequisites

• Apache Maven
• GNU Make
• Python
• Perl
• Perl module: Unicode::GCString

To check if you have the Unicode::GCString module installed, you can issue the following command:

perl -MUnicode::GCString -e ''

If there’s no error, the module has been successfully installed on your system.

To install the module, you can use cpanminus <http://search.cpan.org/dist/App-cpanminus/lib/App/
cpanminus.pm>. For a convenient way to install it, see http://cpanmin.us. With cpanminus installed,
execute this command:

cpanm Unicode::GCString

You will probably want to use a .po file editor as well, see Section 29.4.5, “Translation tools”.

29.4.2. Build flow and file layout
The build is essentially a two-step process. The first step generates or copies translated documents,
while the second step is an ordinary AsciiDoc build using the output from the first step as sources.

Other than the src/ and docs/ diirectories of the project, the build generates files with the same layout
in two more places:

1. target/original/(src|docs)/ — the contents of the original manual. Note that’s it easier to look for
content here than to dig into the original manual itself.

2. target/(src|docs)/ — the translated source to use for the AsciiDoc build.

The translated documents in target/(src|docs)/ are generated in three steps:

1. It starts out as a copy of the original manual.
2. Next, any static translated files fromt the src/ and docs/ directories of the project are copied.
3. Finally, the translation files in the po/ directory are used to generate translated documents.

https://github.com/neo4j/manual-french
http://search.cpan.org/dist/App-cpanminus/lib/App/cpanminus.pm
http://search.cpan.org/dist/App-cpanminus/lib/App/cpanminus.pm
http://search.cpan.org/dist/App-cpanminus/lib/App/cpanminus.pm
http://cpanmin.us

Contributing to Neo4j

507

Files produced by later steps will overwrite existing files from earlier steps.

29.4.3. Adding a chapter to a translation file
The translation is split over multiple translation files, one per “part” of the manual. It’s all about
making the translation easier to manage and the tools to perform well. The basic rule of thumb is that
if some content is moved, it should likely still end up in the same translation file. In that case, the tools
will even detect this and the translation will be moved automatically.

To add a document to a translation file, do like this:
make add DOCUMENT="src/introduction/the-neo4j-graphdb.asciidoc" PART="introduction"

If the translation file does not already exist, it will be created. The document will be added to the
translation build configuration file as well. (The configuration is in the corresponding .conf file in the
po/ directory.)

If there exists a translated copy of the document at the location the DOCUMENT parameter points to, the
script will attempt to populate the translation file with translated paragraphs from that document.
Note that the structure of the document has to be a perfect match, or it will fail. However, the error
messages are helpful, so just fix and try again until it works! Translation file and configuration are
only changed when the first part succeeds.

Note
Only documents that need to be translated should be added. For example Cypher queries
and query results should not be translated. In general, documents residing in a directory
named includes should not be translated.

Also note that AsciiDoc include:: lines are normally not part of the translation at all, but handled
automatically. In case they need to be handled differently in a document, this has to be configured in
the corresponding .conf file. For example a normal document entry in such a file can look like this:
[type: asciidoc] target/original/src/operations/index.asciidoc fr:target/src/operations/index.asciidoc

To configure a single document not to handle include:: lines automatically, add the following at the
end of the line:
opt: "-o definitions=target/tools/main/resources/conf/translate-includes"

29.4.4. Workflow
First, use Maven to set up the environment and download the original manual and documentation
tools:
mvn clean package

To refresh the original manual and the tools, use the maven command again. For the sake of keeping
in sync with the original manual, a daily run of this command is recommended.

Once things are set up, use make during work.

• make — same as make preview.
• make add — add a document to a translation file.
• make preview — refresh and build preview of the manual.
• make refresh — refresh translation files from the original and generated translated documents.

The preview of the translated manual is found in the target/html/ directory.

Contributing to Neo4j

508

The actual work on translation is done by editing translation files. Suggested tools for that are found
below.

29.4.5. Translation tools
There are different editors for .po files containing the translations Below is a list of editors.

• Gtranslator <http://projects.gnome.org/gtranslator/>
• Lokalize <http://userbase.kde.org/Lokalize>
• Virtaal <http://translate.sourceforge.net/wiki/virtaal/index>
• Poedit <http://www.poedit.net/>

http://projects.gnome.org/gtranslator/
http://projects.gnome.org/gtranslator/
http://userbase.kde.org/Lokalize
http://userbase.kde.org/Lokalize
http://translate.sourceforge.net/wiki/virtaal/index
http://translate.sourceforge.net/wiki/virtaal/index
http://www.poedit.net/
http://www.poedit.net/

Contributing to Neo4j

509

29.5. Contributing Code to Neo4j
29.5.1. Intro

The Neo4j community is a free software and open source community centered around software
and components for the Neo4j Graph Database. It is sponsored by Neo Technology <http://
neotechnology.com>, which provides infrastructure (different kinds of hosting, documentation, etc)
as well as people to manage it. The Neo4j community is an open community, in so far as it welcomes
any member that accepts the basic criterias of contribution and adheres to the community’s Code of
Conduct.

Contribution can be in many forms (documentation, discussions, bug reports). This document outlines
the rules of governance for a contributor of code.

29.5.2. Governance fundamentals
In a nutshell, you need to be aware of the following fundamentals if you wish to contribute code:

• All software published by the Neo4j project must have been contributed under the Neo4j Code
Contributor License Agreement.

• Neo4j is a free software and open source community. As a contributor, you are free to place your
work under any license that has been approved by either the Free Software Foundation <http://
fsf.org> or the Open Source Initiative <http://opensource.org>. You still retain copyright, so in
addition to that license you can of course release your work under any other license (for example a
fully proprietary license), just not on the Neo4j infrastructure.

• The Neo4j software is split into components. A Git repository holds either a single or multiple
components.

• The source code should follow the Neo4j Code Style and “fit in” with the Neo4j infrastructure as
much as is reasonable for the specific component.

29.5.3. Contributor roles
Every individual that contributes code does so in the context of a role (a single individual can have
multiple roles). The role defines their responsibilities and privileges:

• A patch submitter is a person who wishes to contribute a patch to an existing component. See
Workflow below.

• A committer can contribute code directly to one or more components.
• A component maintainer is in charge of a specific component. They can:

• commit code in their component’s repository,
• manage tickets for the repository,
• grant push rights to the repository.

• A Neo4j admin manages the Neo4j infrastructure. They:
• define new components and assign component maintainership,
• drive, mentor and coach Neo4j component development.

29.5.4. Contribution workflow
Code contributions to Neo4j are normally done via Github Pull Requests, following the workflow
shown below. Please check the pull request checklist before sending off a pull request as well.

1. Fork the appropriate Github repository.

http://neotechnology.com
http://neotechnology.com
http://neotechnology.com
http://fsf.org
http://fsf.org
http://fsf.org
http://opensource.org
http://opensource.org

Contributing to Neo4j

510

2. Create a new branch for your specific feature or fix.
3. Write unit tests for your code.
4. Write code.
5. Write appropriate Javadocs and Manual entries.
6. Commit changes.
7. Send pull request.

29.5.5. Pull request checklist

1. Sign the CLA.
2. Ensure that you have not added any merge commits.
3. Squash all your changes into a single commit.
4. Rebase against the latest master.
5. Run all relevant tests.
6. Send the request!

29.5.6. Unit Tests
You have a much higher chance of getting your changes accepted if you supply us with small,
readable unit tests covering the code you’ve written. Also, make sure your code doesn’t break
any existing tests. Note that there may be downstream components that need to be tested as well,
depending on what you change.

To run tests, use Maven rather than your IDE to ensure others can replicate your test run. The
command for running Neo4j tests in any given component is mvn clean validate.

29.5.7. Code Style
The Neo4j Code style is maintained on GitHub in styles for the different IDEs <https://github.com/
neo4j/neo4j.github.com/tree/master/code-style>.

29.5.8. Commit messages
Please take some care in providing good commit messages. Use your common sense. In particular:

• Use english. This includes proper punctuation and correct spelling. Commit messages are supposed
to convey some information at a glance — they’re not a chat room.

• Remember that a commit is a changeset, which describes a cohesive set of changes across
potentially many files. Try to group every commit as a logical change. Explain what it changes. If
you have to redo work, you might want to clean up your commit log before doing a pull request.

• If you fix a bug or an issue that’s related to a ticket, then refer to the ticket in the message. For
example, `‘Added this and then changed that. This fixes #14.’' Just mentioning #xxx in the commit
will connect it to the GitHub issue with that number, see GitHub issues <https://github.com/
blog/831-issues-2-0-the-next-generation>. Any of these synonyms will also work:
• fixes #xxx
• fixed #xxx
• fix #xxx
• closes #xxx
• close #xxx
• closed #xxx.

https://github.com/neo4j/neo4j.github.com/tree/master/code-style
https://github.com/neo4j/neo4j.github.com/tree/master/code-style
https://github.com/neo4j/neo4j.github.com/tree/master/code-style
https://github.com/blog/831-issues-2-0-the-next-generation
https://github.com/blog/831-issues-2-0-the-next-generation
https://github.com/blog/831-issues-2-0-the-next-generation

Contributing to Neo4j

511

• Remember to convey intent. Don’t be too brief but don’t provide too much detail, either. That’s
what git diff is for.

29.5.9. Signing the CLA
One crucial aspect of contributing is the Contributor License Agreement. In short: make sure to sign
the CLA, or the Neo4j project won’t be able to accept your contribution.

29.5.10. Don’t merge, use rebase instead!
Because we would like each contribution to be contained in a single commit, merge commits are not
allowed inside a pull request. Merges are messy, and should only be done when necessary, eg. when
merging a branch into master to remember where the code came from.

If you want to update your development branch to incorporate the latest changes from master, use
git rebase. For details on how to use rebase, see Git manual on rebase: the Git Manual <http://git-
scm.com/book/en/Git-Branching-Rebasing>.

29.5.11. Single commit
If you have multiple commits, you should squash them into a single one for the pull request, unless
there is some extraordinary reason not to. Keeping your changes in a single commit makes the commit
history easier to read, it also makes it easy to revert and move features around.

One way to do this is to, while standing on your local branch with your changes, create a new branch
and then interactively rebase your commits into a single one.

Interactive rebasing with Git.

On branch mychanges

git checkout -b mychanges-clean

Assuming you have 4 commits, rebase the last four commits interactively:

git rebase -i HEAD~4

In the dialog git gives you, keep your first commit, and squash all others into it.

Then reword the commit description to accurately depict what your commit does.

If applicable, include any issue numbers like so: #760

For more details, see the git manual: http://git-scm.com/book/en/Git-Tools-Rewriting-
History#Changing-Multiple-Commit-Messages

If you are asked to modify parts of your code, work in your original branch (the one with multiple
commits), and follow the above process to create a fixed single commit.

http://git-scm.com/book/en/Git-Branching-Rebasing
http://git-scm.com/book/en/Git-Branching-Rebasing
http://git-scm.com/book/en/Git-Branching-Rebasing
http://git-scm.com/book/en/Git-Tools-Rewriting-History#Changing-Multiple-Commit-Messages
http://git-scm.com/book/en/Git-Tools-Rewriting-History#Changing-Multiple-Commit-Messages

Contributing to Neo4j

512

29.6. Contributors
As an Open Source Project, the Neo4j User community extends its warmest thanks to all the
contributors who have signed the Section 29.1, “Contributor License Agreement” to date and are
contributing to this collective effort.

name GIThub ID

Johan Svensson johan-neo <https://github.com/johan-neo>
Emil Eifrem emileifrem <https://github.com/emileifrem>
Peter Neubauer peterneubauer <https://github.com/

peterneubauer>
Mattias Persson tinwelint <https://github.com/tinwelint>
Tobias Lindaaker thobe <https://github.com/thobe>
Anders Nawroth nawroth <https://github.com/nawroth>
Andrés Taylor systay <https://github.com/systay>
Jacob Hansson jakewins <https://github.com/jakewins>
Jim Webber jimwebber <https://github.com/jimwebber>
Josh Adell jadell <https://github.com/jadell>
Andreas Kollegger akollegger <https://github.com/akollegger>
Chris Gioran digitalstain <https://github.com/digitalstain>
Thomas Baum tbaum <https://github.com/tbaum>
Alistair Jones apcj <https://github.com/apcj>
Michael Hunger jexp <https://github.com/jexp>
Jesper Nilsson jespernilsson <https://github.com/jespernilsson>
Tom Sulston tomsulston <https://github.com/tomsulston>
David Montag dmontag <https://github.com/dmontag>
Marlon Richert marlonrichert <https://github.com/marlonrichert>
Hugo Josefson hugojosefson <https://github.com/hugojosefson>
Vivek Prahlad vivekprahlad <https://github.com/vivekprahlad>
Adriano Almeida adrianoalmeida7 <https://github.com/

adrianoalmeida7>
Benjamin Gehrels BGehrels <https://github.com/BGehrels>
Christopher Schmidt FaKod <https://github.com/FaKod>
Pascal Rehfeldt prehfeldt <https://github.com/prehfeldt>
Björn Söderqvist cybear <https://github.com/cybear>
Abdul Azeez Shaik abdulazeezsk <https://github.com/abdulazeezsk>
James Thornton espeed <https://github.com/espeed>
Radhakrishna Kalyan nrkkalyan <https://github.com/nrkkalyan>
Michel van den Berg promontis <https://github.com/promontis>

https://github.com/johan-neo
https://github.com/johan-neo
https://github.com/emileifrem
https://github.com/emileifrem
https://github.com/peterneubauer
https://github.com/peterneubauer
https://github.com/peterneubauer
https://github.com/tinwelint
https://github.com/tinwelint
https://github.com/thobe
https://github.com/thobe
https://github.com/nawroth
https://github.com/nawroth
https://github.com/systay
https://github.com/systay
https://github.com/jakewins
https://github.com/jakewins
https://github.com/jimwebber
https://github.com/jimwebber
https://github.com/jadell
https://github.com/jadell
https://github.com/akollegger
https://github.com/akollegger
https://github.com/digitalstain
https://github.com/digitalstain
https://github.com/tbaum
https://github.com/tbaum
https://github.com/apcj
https://github.com/apcj
https://github.com/jexp
https://github.com/jexp
https://github.com/jespernilsson
https://github.com/jespernilsson
https://github.com/tomsulston
https://github.com/tomsulston
https://github.com/dmontag
https://github.com/dmontag
https://github.com/marlonrichert
https://github.com/marlonrichert
https://github.com/hugojosefson
https://github.com/hugojosefson
https://github.com/vivekprahlad
https://github.com/vivekprahlad
https://github.com/adrianoalmeida7
https://github.com/adrianoalmeida7
https://github.com/adrianoalmeida7
https://github.com/BGehrels
https://github.com/BGehrels
https://github.com/FaKod
https://github.com/FaKod
https://github.com/prehfeldt
https://github.com/prehfeldt
https://github.com/cybear
https://github.com/cybear
https://github.com/abdulazeezsk
https://github.com/abdulazeezsk
https://github.com/espeed
https://github.com/espeed
https://github.com/nrkkalyan
https://github.com/nrkkalyan
https://github.com/promontis
https://github.com/promontis

Contributing to Neo4j

513

name GIThub ID

Brandon McCauslin bm3780 <https://github.com/bm3780>
Hendy Irawan ceefour <https://github.com/ceefour>
Luanne Misquitta luanne <https://github.com/luanne>
Jim Radford radford <https://github.com/radford>
Axel Morgner amorgner <https://github.com/amorgner>
Taylor Buley editor <https://github.com/editor>
Alex Smirnov alexsmirnov <https://github.com/alexsmirnov>
Johannes Mockenhaupt jotomo <https://github.com/jotomo>
Pablo Pareja Tobes pablopareja <https://github.com/pablopareja>
Björn Granvik bjorngranvik <https://github.com/bjorngranvik>
Julian Simpson simpsonjulian <https://github.com/

simpsonjulian>
Pablo Pareja Tobes pablopareja <https://github.com/pablopareja>
Rickard Öberg rickardoberg <https://github.com/rickardoberg>
Stefan Armbruster sarmbruster <https://github.com/sarmbruster>
Stephan Hagemann shageman <https://github.com/shageman>
Linan Wang wangii <https://github.com/wangii>
Ian Robinson iansrobinson <https://github.com/iansrobinson>
Marko Rodriguez okram <https://github.com/okram>
Saikat Kanjilal skanjila <https://github.com/skanjila>
Craig Taverner craigtaverner <https://github.com/craigtaverner>
David Winslow dwins <https://github.com/dwins>
Patrick Fitzgerald paddydub <https://github.com/paddydub>
Stefan Berder hrbonz <https://github.com/hrbonz>
Michael Kanner SepiaGroup <https://github.com/SepiaGroup>
Lin Zhemin miaoski <https://github.com/miaoski>
Christophe Willemsen kwattro <https://github.com/kwattro>
Tony Liu kooyeed <https://github.com/kooyeed>
Michael Klishin michaelklishin <https://github.com/

michaelklishin>
Wes Freeman wfreeman <https://github.com/wfreeman>
Chris Leishman chrisleishman <https://github.com/chrisleishman>
Brian Levine blevine <https://github.com/blevine>
Ben Day benday280412 <https://github.com/

benday280412>
Davide Savazzi svzdvd <https://github.com/svzdvd>

https://github.com/bm3780
https://github.com/bm3780
https://github.com/ceefour
https://github.com/ceefour
https://github.com/luanne
https://github.com/luanne
https://github.com/radford
https://github.com/radford
https://github.com/amorgner
https://github.com/amorgner
https://github.com/editor
https://github.com/editor
https://github.com/alexsmirnov
https://github.com/alexsmirnov
https://github.com/jotomo
https://github.com/jotomo
https://github.com/pablopareja
https://github.com/pablopareja
https://github.com/bjorngranvik
https://github.com/bjorngranvik
https://github.com/simpsonjulian
https://github.com/simpsonjulian
https://github.com/simpsonjulian
https://github.com/pablopareja
https://github.com/pablopareja
https://github.com/rickardoberg
https://github.com/rickardoberg
https://github.com/sarmbruster
https://github.com/sarmbruster
https://github.com/shageman
https://github.com/shageman
https://github.com/wangii
https://github.com/wangii
https://github.com/iansrobinson
https://github.com/iansrobinson
https://github.com/okram
https://github.com/okram
https://github.com/skanjila
https://github.com/skanjila
https://github.com/craigtaverner
https://github.com/craigtaverner
https://github.com/dwins
https://github.com/dwins
https://github.com/paddydub
https://github.com/paddydub
https://github.com/hrbonz
https://github.com/hrbonz
https://github.com/SepiaGroup
https://github.com/SepiaGroup
https://github.com/miaoski
https://github.com/miaoski
https://github.com/kwattro
https://github.com/kwattro
https://github.com/kooyeed
https://github.com/kooyeed
https://github.com/michaelklishin
https://github.com/michaelklishin
https://github.com/michaelklishin
https://github.com/wfreeman
https://github.com/wfreeman
https://github.com/chrisleishman
https://github.com/chrisleishman
https://github.com/blevine
https://github.com/blevine
https://github.com/benday280412
https://github.com/benday280412
https://github.com/benday280412
https://github.com/svzdvd
https://github.com/svzdvd

Contributing to Neo4j

514

name GIThub ID

Nigel Small nigelsmall <https://github.com/nigelsmall>
Lasse Westh-Nielsen lassewesth <https://github.com/lassewesth>
Wujek Srujek wujek-srujek <https://github.com/wujek-srujek>
Alexander Yastrebov AlexanderYastrebov <https://github.com/

AlexanderYastrebov>

https://github.com/nigelsmall
https://github.com/nigelsmall
https://github.com/lassewesth
https://github.com/lassewesth
https://github.com/wujek-srujek
https://github.com/wujek-srujek
https://github.com/AlexanderYastrebov
https://github.com/AlexanderYastrebov
https://github.com/AlexanderYastrebov

515

Appendix A. Manpages

The Neo4j Unix manual pages are included on the following pages.

Manpages

516

Name
neo4j — Neo4j Server control and management

Synopsis
neo4j <command>

DESCRIPTION
Neo4j is a graph database, perfect for working with highly connected data.

COMMANDS

console
Start the server as an application, running as a foreground proces. Stop the server using CTRL-C.

start
Start server as daemon, running as a background process.

stop
Stops a running daemonized server.

restart
Restarts the server.

status
Current running state of the server.

install
Installs the server as a platform-appropriate system service.

remove
Uninstalls the system service.

info
Displays configuration information, such as the current NEO4J_HOME and CLASSPATH.

Usage - Windows
Neo4j.bat

Double-clicking on the Neo4j.bat script will start the server in a console. To quit, just press control-C
in the console window.

Neo4j.bat install/remove

Neo4j can be installed and run as a Windows Service, running without a console window. You’ll
need to run the scripts with Administrator priveleges. Just use the Neo4j.bat script with the proper
argument:

• Neo4j.bat install - install as a Windows service
• will install the service

• Neo4j.bat remove - remove the Neo4j service
• will stop and remove the Neo4j service

• Neo4j.bat start - will start the Neo4j service
• will start the Neo4j service if installed or a console
• session otherwise.

• Neo4j.bat stop - stop the Neo4j service if running

Manpages

517

• Neo4j.bat restart - restart the Neo4j service if installed
• Neo4j.bat status - report on the status of the Neo4j service

• returns RUNNING, STOPPED or NOT INSTALLED

FILES

conf/neo4j-server.properties
Server configuration.

conf/neo4j-wrapper.conf
Configuration for service wrapper.

conf/neo4j.properties
Tuning configuration for the database.

Manpages

518

Name
neo4j-shell — a command-line tool for exploring and manipulating a graph database

Synopsis
neo4j-shell [REMOTE OPTIONS]

neo4j-shell [LOCAL OPTIONS]

DESCRIPTION
Neo4j shell is a command-line shell for browsing the graph, much like how the Unix shell along
with commands like cd, ls and pwd can be used to browse your local file system. The shell can
connect directly to a graph database on the file system. To access local a local database used by other
processes, use the readonly mode.

REMOTE OPTIONS

-port PORT
Port of host to connect to (default: 1337).

-host HOST
Domain name or IP of host to connect to (default: localhost).

-name NAME
RMI name, i.e. rmi://<host>:<port>/<name> (default: shell).

-readonly
Access the database in read-only mode.

LOCAL OPTIONS

-path PATH
The path to the database directory. If there is no database at the location, a new one will e created.

-pid PID
Process ID to connect to.

-readonly
Access the database in read-only mode.

-c COMMAND
Command line to execute. After executing it the shell exits.

-config CONFIG
The path to the Neo4j configuration file to be used.

EXAMPLES
Examples for remote:
 neo4j-shell

 neo4j-shell -port 1337

 neo4j-shell -host 192.168.1.234 -port 1337 -name shell

 neo4j-shell -host localhost -readonly

Examples for local:
 neo4j-shell -path /path/to/db

 neo4j-shell -path /path/to/db -config /path/to/neo4j.config

 neo4j-shell -path /path/to/db -readonly

Manpages

519

Name
neo4j-backup — Neo4j Backup Tool

Synopsis
neo4j-backup {-full|-incremental} -from SourceURI -to Directory

DESCRIPTION
A tool to perform live backups over the network from a running Neo4j graph database onto a local
filesystem. Backups can be either full or incremental. The first backup must be a full backup, after that
incremental backups can be performed.

The source(s) are given as URIs in a special format, the target is a filesystem location.

BACKUP TYPE

-full
copies the entire database to a directory.

-incremental
copies the changes that have taken place since the last full or incremental backup to an existing
backup store.

SOURCE URI
Backup sources are given in the following format:

<running mode>://<host>[:<port>][,<host>[:<port>]]…

Note that multiple hosts can be defined.

running mode
'single' or 'ha'. 'ha' is for instances in High Availability mode, 'single' is for standalone databases.

host
In single mode, the host of a source database; in ha mode, the cluster address of a cluster member.
Note that multiple hosts can be given when using High Availability mode.

port
In single mode, the port of a source database backup service; in ha mode, the port of a cluster
instance. If not given, the default value 6362 will be used for single mode, 5001 for HA

IMPORTANT
Backups can only be performed on databases which have the configuration parameter
enable_online_backup=true set. That will make the backup service available on the default port (6362).
To enable the backup service on a different port use for example enable_online_backup=port=9999
instead.

Usage - Windows
The Neo4jBackup.bat script is used in the same way.

EXAMPLES
Performing a full backup

neo4j-backup -full -from single://192.168.1.34 -to /mnt/backup/neo4j-backup

Manpages

520

Performing an incremental backup

neo4j-backup -incremental -from single://freja -to /mnt/backup/neo4j-backup

Performing an incremental backup where the service is registered on a custom port

neo4j-backup -incremental -from single://freja:9999 -to /mnt/backup/neo4j-backup

Performing a full backup from HA cluster, specifying two cluster members

./neo4j-backup -full -from ha://oden:5001,loke:5002 -to /mnt/backup/neo4j-backup

Performing an incremental backup from HA cluster, specifying only one cluster member

./neo4j-backup -incremental -from ha://oden:5002 -to /mnt/backup/neo4j-backup

RESTORE FROM BACKUP
The Neo4j backups are fully functional databases. To use a backup, replace your database directory
with the backup.

521

Appendix B. Questions & Answers

Q: What is the maximum number of nodes supported? What is the maximum number of edges
supported per node?

A: At the moment it is 34.4 billion nodes, 34.4 billion relationships, and 68.7 billion properties, in
total.

Q: What is the largest complete connected graph supported (i.e. every node is connecting to all
other nodes)?

A: Theoretical limits can be derived from numbers above: It basically comes out to a full graph of
262144 nodes and 34359607296 relationships. We have never seen this use case though.

Q: Are read/write depending on the number of nodes/edges in the DB?
A: This question can mean a couple of different things. The performance of a single read/write

operation does not depend on the size of the DB. Whether the graph has 10 nodes or 10 million
nodes does not matter. — There is however another facet here, which is that if your graph
is big on disk, you may not be able to fit it all into the cache in RAM. Therefore, you may
end up hitting disk more often. Most customers don’t have graphs of this size, but some do. If
you happen to reach these sizes, we have approaches for scaling out on multiple machines to
mitigate the performance impact by increasing the cache "surface area" across machines.

Q: How many concurrent read/write requests supported?
A: There is no limit on the number of concurrent requests. The amount of requests we can serve

per second depends very much on the operation performed (heavy write operation, simple read,
complex traversal, etc.), and the hardware used. A rough estimate is 1,000 hops per millisecond
while traversing the graph in the simplest way possible. After a discussion about the specific use
case, we would be able to give a better idea of the performance one can expect.

Q: How is data consistency maintained in cluster environment?
A: Master-slave replication. Slaves pull changes from the master. The pull interval can be

configured per slave, from subsecond to minutes, as necessary. HA can also write through
slaves. When that happens, the slave that is being written through catches up with the master,
and then the write is made durable on the slave and the master. The other slaves then catch up as
normal.

Q: How is the latency in updating all the servers when there is an update on the DB from one of
them?

A: Pull interval can be configured per slave, from subsecond to minutes, as necessary. When
writing through a slave, the slave is immediately synchronized with the master before the write
is committed on the slave and the master. In general, read/write load does not affect slaves
syncing up. A heavy write load will however put pressure on the filesystem of the master, which
is also required for reading changes for the slaves. In practice, we have however not seen this
become a notable issue.

Q: Will the latency increase proportional to the number of servers in the cluster?
A: When scaling beyond 10s of slaves in a cluster, we anticipate that the number of pull requests

coming from slaves will reduce the performance of the master. Only write performance on the
cluster would be affected. Read performance would continue to scale linearly.

Q: Is online expansion supported? In other words, do we need to bring down all the servers and the
DB if we want to add new servers to the cluster?

A: New slaves can be added to an existing cluster without having to stop and start the whole
cluster. Our HA protocol will bring a newly added slave up-to-date. Slaves can also be removed
simply by shutting them down.

Questions & Answers

522

Q: How long will it take for the newly joined servers to sync up?
A: We recommend providing a new slave with a recent snapshot of the database before bringing it

online. This is typically done from a backup. The slave will then only need to synchronize the
most recent updates, which will typically be a matter of seconds.

Q: How long does it take to reboot?
A: If by reboot, you mean take the cluster down and take it up again, it’s pretty much dependent on

how fast you can type. So it could be <10s. The Neo4j caches will however not auto-warm up,
but the OS filesystem cache will retain its data.

Q: Are there any backup and restore/recovery mechanisms?
A: Neo4j Enterprise Edition provides an online backup feature for full and incremental backups

during operation.
Q: Is cross-continental clustering supported? Say, can servers in the cluster be located in different

continents provided that the chance for inter-continental communication is much lower than the
intra one?

A: We have customers who have tested multi-region deployments in AWS. Cross-continental
latencies will have an impact, however on the efficiency of the cluster management and
synchronization protocols; large latencies in the cluster management can trigger frequent master
re-elections, which will slow down the cluster. Feature support in this area will be improving
over time.

Q: Is there any special handling/policy for this kind of setup?
A: We’d have to have a more in-depth discussion about the requirements pertaining to this specific

deployment.
Q: Is writing to the DB thread-safe? Or is it the application logic to protect writing to the same

nodes/edges?
A: Whether in single instance or HA mode, the database provides thread safety by way of locking

on nodes and relationships upon modification.
Q: What is the best strategy for reading back your writes on HA?
A: 1. Sticky sessions.

2. Send back data in response, removing the need to read back in a separate request.
3. Force a pull of updates from the master when required by the operation.

Q: What is the best strategy for get-or-create semantics?
A: 1. Single thread.

2. If not exists, pessimistically lock on a common node (or set of common nodes).
3. If not exists, optimistically create, and then double check afterwards.

Q: How does locking work?
A: Pessimistic locking. Locks are never required for reading. Writers will not block readers.

It’s impossible to make a read operation block without using explicit locking facilities. Read
locks prevent writes. Acquiring a read lock means consistent view for all holders while
held. Grabbing write locks is done automatically when a node/rel is modified/created, or
through explicit locking facilities. It can be used to provide read committed semantics and data
consistency when necessary.

Q: What about on-size storage?
A: Neo4j is currently not suitable for storing BLOBs/CLOBs. Nodes, relationships, and properties

are not co-located on disk. This might be introduced in the future.
Q: What about indexing?

Questions & Answers

523

A: Neo4j supports composite property indices. Promote index providers over in-graph indices.
Lucene engine manages index paging separately and requires some heap for itself Neo4j
currently supports one auto indexer and many individual indexes (search done via API)

Q: How do I query the database?
A: Core API, Traversal API, REST API, Cypher, Gremlin
Q: Does Neo4j use journaling?
A: Based on write change delta between master and slaves in HA cluster.
Q: How do I tune Neo4j for performance?
A: Uses memory-mapped store files Neo4j caching strategies need to be explained:

• Soft-ref cache: Soft references are cleaned when the GC thinks it’s needed. Use if app load
isn’t very high & needs memory-sensitive cache

• Weak-ref cache: GC cleans weak references whenever it finds it. Use if app is under heavy
load with lots of reads and traversals

• Strong-ref cache: all nodes & edges are fully cached in memory JVM needs pausing under
heavy load, e.g., 1/2 minutes pause interval. Larger heap sizes good, however 12G and
beyond is impractical with GC. 100x performance improvement with memory mapped file
cache and 1000 improvement with Java heap comparing to fetching from disk I/O

Q: ACID transactions between master & slaves
A: Synchronous between slave-initiated transaction to master, eventual from master to slaves.

Concurrent multi slave-initiated transaction support with deadlock detection. It’s fully
consistent from a data integrity point of view, but eventually consistent from sync point of view.

Q: What about the standalone server?
A: The REST API is completely stateless, but it can do batches for larger transaction scopes.

Thread pooling & thread per socket: For standalone server & HA nodes, Neo4j uses Jetty for
connection pooling (e.g., 25/node in HA cluster)

Q: How is a load balancer used with HA?
A: Typically a small server extension can be written to return 200 or 404 depending on whether the

machine is master or slave. This extension can then be polled by the load balancer to determine
the master and slave machine sets. Writing only to slaves ensures that committed transactions
exist in at least two places.

Q: What kind of monitoring support does Neo4j provide?
A: Neo4j does not currently have built-in tracing or explain plans. JMX is the primary interface for

statistics and monitoring. Thread dumps can be used to debug a malfunctioning system.
Q: How do I import my data into Neo4j?
A: The Neo4j batch inserter can be used to fill an initial database with data. After batch insertion,

the store can be used in an embedded or HA environment. Future data load/refresh should go
directly to Production server SQL Importer (built on top of Batch Inserter) is not officially
supported

	The Neo4j Manual v1.9.M04
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Neo4j Highlights
	Chapter 2. Graph Database Concepts
	2.1. What is a Graph Database?
	2.1.1. A Graph contains Nodes and Relationships
	2.1.2. Relationships organize the Graph
	2.1.3. Query a Graph with a Traversal
	2.1.4. Indexes look-up Nodes or Relationships
	2.1.5. Neo4j is a Graph Database

	2.2. Comparing Database Models
	2.2.1. A Graph Database transforms a RDBMS
	2.2.2. A Graph Database elaborates a Key-Value Store
	2.2.3. A Graph Database relates Column-Family
	2.2.4. A Graph Database navigates a Document Store

	Chapter 3. The Neo4j Graph Database
	3.1. Nodes
	3.2. Relationships
	3.3. Properties
	3.4. Paths
	3.5. Traversal

	Part II. Tutorials
	Chapter 4. Using Neo4j embedded in Java applications
	4.1. Include Neo4j in your project
	4.1.1. Add Neo4j to the build path
	4.1.2. Add Neo4j as a dependency
	Maven
	Eclipse and Maven
	Ivy
	Gradle

	4.1.3. Starting and stopping

	4.2. Hello World
	4.2.1. Prepare the database
	4.2.2. Wrap writes in a transaction
	4.2.3. Create a small graph
	4.2.4. Print the result
	4.2.5. Remove the data
	4.2.6. Shut down the database server

	4.3. User database with index
	4.4. Basic unit testing
	4.5. Traversal
	4.5.1. The Matrix
	Walking an ordered path

	4.5.2. Old traversal API
	4.5.3. Uniqueness of Paths in traversals
	4.5.4. Social network
	Simple social model
	Status graph instance
	Activity stream

	4.6. Domain entities
	4.7. Graph Algorithm examples
	4.8. Reading a management attribute
	4.9. OSGi setup
	4.9.1. Simple OSGi Activator scenario

	4.10. Execute Cypher Queries from Java

	Chapter 5. Neo4j Remote Client Libraries
	5.1. How to use the REST API from Java
	5.1.1. Creating a graph through the REST API from Java
	5.1.2. Start the server
	5.1.3. Creating a node
	5.1.4. Adding properties
	5.1.5. Adding relationships
	5.1.6. Add properties to a relationship
	5.1.7. Querying graphs
	5.1.8. Phew, is that it?
	5.1.9. What’s next?
	5.1.10. Appendix: the code

	Chapter 6. The Traversal Framework
	6.1. Main concepts
	6.2. Traversal Framework Java API
	6.2.1. TraversalDescription
	Relationships

	6.2.2. Evaluator
	6.2.3. Traverser
	6.2.4. Uniqueness
	Depth First / Breadth First

	6.2.5. Order — How to move through branches?
	6.2.6. BranchSelector
	BranchOrderingPolicy
	TraversalBranch

	6.2.7. Path
	6.2.8. PathExpander/RelationshipExpander
	6.2.9. Expander
	6.2.10. How to use the Traversal framework

	Chapter 7. Data Modeling Examples
	7.1. User roles in graphs
	7.1.1. Get the admins
	7.1.2. Get the group memberships of a user
	7.1.3. Get all groups
	7.1.4. Get all members of all groups

	7.2. ACL structures in graphs
	7.2.1. Generic approach
	Technique
	Constructing the ACL
	Top-down-Traversal
	Example

	7.2.2. Read-permission example
	Find all files in the directory structure
	What files are owned by whom?
	Who has access to a File?

	7.3. Linked Lists
	7.4. Hyperedges
	7.4.1. Find Groups
	7.4.2. Find all groups and roles for a user
	7.4.3. Find common groups based on shared roles

	7.5. Basic friend finding based on social neighborhood
	7.6. Co-favorited places
	7.6.1. Co-favorited places — users who like x also like y
	7.6.2. Co-Tagged places — places related through tags

	7.7. Find people based on similar favorites
	7.8. Find people based on mutual friends and groups
	7.9. Find friends based on similar tagging
	7.10. Multirelational (social) graphs
	7.11. Implementing newsfeeds in a graph
	7.12. Boosting recommendation results
	7.13. Calculating the clustering coefficient of a network
	7.14. Pretty graphs
	7.14.1. Star graph
	7.14.2. Wheel graph
	7.14.3. Complete graph
	7.14.4. Friendship graph

	7.15. A multilevel indexing structure (path tree)
	7.15.1. Return zero range
	7.15.2. Return the full range
	7.15.3. Return partly shared path ranges

	7.16. Complex similarity computations
	7.16.1. Calculate similarities by complex calculations

	7.17. The Graphity activity stream model
	7.17.1. Find Activity Streams in a network without scaling penalty

	Chapter 8. Languages
	Chapter 9. Using Neo4j embedded in Python applications
	9.1. Hello, world!
	9.2. A sample app using cypher and indexes
	9.2.1. Domain logic
	9.2.2. Creating data and getting it back

	Chapter 10. Extending the Neo4j Server
	10.1. Server Plugins
	10.2. Unmanaged Extensions

	Part III. Reference
	Chapter 11. Capabilities
	11.1. Data Security
	11.2. Data Integrity
	11.2.1. Core Graph Engine
	11.2.2. Different Data Sources

	11.3. Data Integration
	11.3.1. Event-based Synchronization
	11.3.2. Periodic Synchronization
	11.3.3. Periodic Full Export/Import of Data

	11.4. Availability and Reliability
	11.4.1. Operational Availability
	Online backup (Cold spare)
	Online Backup High Availability (Hot spare)
	High Availability cluster

	11.4.2. Disaster Recovery/ Resiliency
	Prevention
	Detection
	Correction

	11.5. Capacity
	11.5.1. File Sizes
	11.5.2. Read speed
	11.5.3. Write speed
	11.5.4. Data size

	Chapter 12. Transaction Management
	12.1. Interaction cycle
	12.2. Isolation levels
	12.3. Default locking behavior
	12.4. Deadlocks
	12.5. Delete semantics
	12.6. Creating unique nodes
	12.6.1. Single thread
	12.6.2. Get or create
	12.6.3. Pessimistic locking

	12.7. Transaction events

	Chapter 13. Data Import
	13.1. Batch Insertion
	13.1.1. Batch Inserter Examples
	13.1.2. Batch Graph Database
	13.1.3. Index Batch Insertion
	Best practices

	Chapter 14. Indexing
	14.1. Introduction
	14.2. Create
	14.3. Delete
	14.4. Add
	14.5. Remove
	14.6. Update
	14.7. Search
	14.7.1. Get
	14.7.2. Query

	14.8. Relationship indexes
	14.9. Scores
	14.10. Configuration and fulltext indexes
	14.11. Extra features for Lucene indexes
	14.11.1. Numeric ranges
	14.11.2. Sorting
	14.11.3. Querying with Lucene Query objects
	14.11.4. Compound queries
	14.11.5. Default operator
	14.11.6. Caching

	14.12. Automatic Indexing
	14.12.1. Configuration
	14.12.2. Search
	14.12.3. Runtime Configuration
	14.12.4. Updating the Automatic Index

	Chapter 15. Cypher Query Language
	15.1. Operators
	15.2. Expressions
	15.2.1. Note on string literals

	15.3. Parameters
	15.4. Identifiers
	15.5. Comments
	15.6. Updating the graph
	15.6.1. The Structure of Updating Queries
	15.6.2. Returning data

	15.7. Transactions
	15.8. Patterns
	15.8.1. Patterns for related nodes
	15.8.2. Working with relationships
	15.8.3. Optional relationships
	15.8.4. Controlling depth
	15.8.5. Assigning to path identifiers
	15.8.6. Setting properties

	15.9. Start
	15.9.1. Node by id
	15.9.2. Relationship by id
	15.9.3. Multiple nodes by id
	15.9.4. All nodes
	15.9.5. Node by index lookup
	15.9.6. Relationship by index lookup
	15.9.7. Node by index query
	15.9.8. Multiple starting points

	15.10. Match
	15.10.1. Introduction
	15.10.2. Related nodes
	15.10.3. Outgoing relationships
	15.10.4. Directed relationships and identifier
	15.10.5. Match by relationship type
	15.10.6. Match by multiple relationship types
	15.10.7. Match by relationship type and use an identifier
	15.10.8. Relationship types with uncommon characters
	15.10.9. Multiple relationships
	15.10.10. Variable length relationships
	15.10.11. Relationship identifier in variable length relationships
	15.10.12. Zero length paths
	15.10.13. Optional relationship
	15.10.14. Optional typed and named relationship
	15.10.15. Properties on optional elements
	15.10.16. Complex matching
	15.10.17. Shortest path
	15.10.18. All shortest paths
	15.10.19. Named path
	15.10.20. Matching on a bound relationship
	15.10.21. Match with OR

	15.11. Where
	15.11.1. Boolean operations
	15.11.2. Filter on node property
	15.11.3. Regular expressions
	15.11.4. Escaping in regular expressions
	15.11.5. Case insensitive regular expressions
	15.11.6. Filtering on relationship type
	15.11.7. Property exists
	15.11.8. Default true if property is missing
	15.11.9. Default false if property is missing
	15.11.10. Filter on null values
	15.11.11. Filter on patterns
	15.11.12. Filter on patterns using NOT
	15.11.13. IN operator

	15.12. Return
	15.12.1. Return nodes
	15.12.2. Return relationships
	15.12.3. Return property
	15.12.4. Return all elements
	15.12.5. Identifier with uncommon characters
	15.12.6. Column alias
	15.12.7. Optional properties
	15.12.8. Other expressions
	15.12.9. Unique results

	15.13. Aggregation
	15.13.1. Introduction
	15.13.2. COUNT
	15.13.3. Count nodes
	15.13.4. Group Count Relationship Types
	15.13.5. Count entities
	15.13.6. Count non-null values
	15.13.7. SUM
	15.13.8. AVG
	15.13.9. PERCENTILE_DISC
	15.13.10. PERCENTILE_CONT
	15.13.11. MAX
	15.13.12. MIN
	15.13.13. COLLECT
	15.13.14. DISTINCT

	15.14. Order by
	15.14.1. Order nodes by property
	15.14.2. Order nodes by multiple properties
	15.14.3. Order nodes in descending order
	15.14.4. Ordering null

	15.15. Limit
	15.15.1. Return first part

	15.16. Skip
	15.16.1. Skip first three
	15.16.2. Return middle two

	15.17. With
	15.17.1. Filter on aggregate function results
	15.17.2. Sort results before using collect on them
	15.17.3. Limit branching of your path search
	15.17.4. Alternative syntax of WITH

	15.18. Create
	15.18.1. Create single node
	15.18.2. Create single node and set properties
	15.18.3. Return created node
	15.18.4. Create a relationship between two nodes
	15.18.5. Create a relationship and set properties
	15.18.6. Create a full path
	15.18.7. Create single node from map
	15.18.8. Create multiple nodes from maps

	15.19. Create Unique
	15.19.1. Create relationship if it is missing
	15.19.2. Create node if missing
	15.19.3. Create nodes with values
	15.19.4. Create relationship with values
	15.19.5. Describe complex pattern

	15.20. Set
	15.20.1. Set a property
	15.20.2. Remove a property
	15.20.3. Copying properties between nodes and relationships

	15.21. Delete
	15.21.1. Delete single node
	15.21.2. Remove a node and connected relationships
	15.21.3. Remove a property

	15.22. Foreach
	15.22.1. Mark all nodes along a path

	15.23. Functions
	15.23.1. Predicates
	ALL
	ANY
	NONE
	SINGLE

	15.23.2. Scalar functions
	LENGTH
	TYPE
	ID
	COALESCE
	HEAD
	LAST

	15.23.3. Collection functions
	NODES
	RELATIONSHIPS
	EXTRACT
	FILTER
	TAIL
	RANGE
	REDUCE

	15.23.4. Mathematical functions
	ABS
	ROUND
	SQRT
	SIGN
	String functions
	STR
	REPLACE
	SUBSTRING
	LEFT
	RIGHT
	LTRIM
	RTRIM
	TRIM
	LOWER
	UPPER

	15.24. Compatibility
	15.25. From SQL to Cypher
	15.25.1. Start
	15.25.2. Match
	15.25.3. Where
	15.25.4. Return

	Chapter 16. Graph Algorithms
	16.1. Introduction

	Chapter 17. Neo4j Server
	17.1. Server Installation
	17.1.1. As a Windows service
	17.1.2. Linux Service
	17.1.3. Mac OSX
	via Homebrew
	as a Service

	17.1.4. Multiple Server instances on one machine
	First instance
	Second instance (testing, development)

	17.2. Server Configuration
	17.2.1. Important server configurations parameters
	17.2.2. Neo4j Database performance configuration
	17.2.3. Server logging configuration
	17.2.4. HTTP logging configuration
	17.2.5. Other configuration options
	Enabling logging from the garbage collector
	Disabling console types in Webadmin

	17.3. Setup for remote debugging
	17.4. Using the server (with web interface) with an embedded database
	17.4.1. Getting the libraries
	From the Neo4j Server installation
	Via Maven
	Via Scala SBT / Ivy

	17.4.2. Starting the Server from Java
	17.4.3. Providing custom configuration

	17.5. Server Performance Tuning
	17.5.1. Specifying Neo4j tuning properties
	17.5.2. Specifying JVM tuning properties

	17.6. Server Installation in the Cloud
	17.6.1. Heroku

	Chapter 18. REST API
	18.1. Service root
	18.1.1. Get service root

	18.2. Streaming
	18.3. Cypher queries
	18.3.1. Send queries with parameters
	18.3.2. Send a Query
	18.3.3. Return paths
	18.3.4. Nested results
	18.3.5. Server errors

	18.4. Property values
	18.4.1. Arrays

	18.5. Nodes
	18.5.1. Create node
	18.5.2. Create node with properties
	18.5.3. Get node
	18.5.4. Get non-existent node
	18.5.5. Delete node
	18.5.6. Nodes with relationships can not be deleted

	18.6. Relationships
	18.6.1. Get Relationship by ID
	18.6.2. Create relationship
	18.6.3. Create a relationship with properties
	18.6.4. Delete relationship
	18.6.5. Get all properties on a relationship
	18.6.6. Set all properties on a relationship
	18.6.7. Get single property on a relationship
	18.6.8. Set single property on a relationship
	18.6.9. Get all relationships
	18.6.10. Get incoming relationships
	18.6.11. Get outgoing relationships
	18.6.12. Get typed relationships
	18.6.13. Get relationships on a node without relationships

	18.7. Relationship types
	18.7.1. Get relationship types

	18.8. Node properties
	18.8.1. Set property on node
	18.8.2. Update node properties
	18.8.3. Get properties for node
	18.8.4. Property values can not be null
	18.8.5. Property values can not be nested
	18.8.6. Delete all properties from node
	18.8.7. Delete a named property from a node

	18.9. Relationship properties
	18.9.1. Update relationship properties
	18.9.2. Remove properties from a relationship
	18.9.3. Remove property from a relationship
	18.9.4. Remove non-existent property from a relationship
	18.9.5. Remove properties from a non-existing relationship
	18.9.6. Remove property from a non-existing relationship

	18.10. Indexes
	18.10.1. Create node index
	18.10.2. Create node index with configuration
	18.10.3. Delete node index
	18.10.4. List node indexes
	18.10.5. Add node to index
	18.10.6. Remove all entries with a given node from an index
	18.10.7. Remove all entries with a given node and key from an index
	18.10.8. Remove all entries with a given node, key and value from an index
	18.10.9. Find node by exact match
	18.10.10. Find node by query

	18.11. Unique Indexes
	18.11.1. Get or create unique node (create)
	18.11.2. Get or create unique node (existing)
	18.11.3. Create a unique node or return fail (create)
	18.11.4. Create a unique node or return fail (fail)
	18.11.5. Get or create unique relationship (create)
	18.11.6. Get or create unique relationship (existing)
	18.11.7. Create a unique relationship or return fail (create)
	18.11.8. Create a unique relationship or return fail (fail)

	18.12. Automatic Indexes
	18.12.1. Find node by exact match from an automatic index
	18.12.2. Find node by query from an automatic index

	18.13. Configurable Automatic Indexing
	18.13.1. Create an auto index for nodes with specific configuration
	18.13.2. Create an auto index for relationships with specific configuration
	18.13.3. Get current status for autoindexing on nodes
	18.13.4. Enable node autoindexing
	18.13.5. Lookup list of properties being autoindexed
	18.13.6. Add a property for autoindexing on nodes
	18.13.7. Remove a property for autoindexing on nodes

	18.14. Traversals
	18.14.1. Traversal using a return filter
	18.14.2. Return relationships from a traversal
	18.14.3. Return paths from a traversal
	18.14.4. Traversal returning nodes below a certain depth
	18.14.5. Creating a paged traverser
	18.14.6. Paging through the results of a paged traverser
	18.14.7. Paged traverser page size
	18.14.8. Paged traverser timeout

	18.15. Built-in Graph Algorithms
	18.15.1. Find all shortest paths
	18.15.2. Find one of the shortest paths between nodes
	18.15.3. Execute a Dijkstra algorithm with similar weights on relationships
	18.15.4. Execute a Dijkstra algorithm with weights on relationships

	18.16. Batch operations
	18.16.1. Execute multiple operations in batch
	18.16.2. Refer to items created earlier in the same batch job
	18.16.3. Execute multiple operations in batch streaming

	18.17. WADL Support
	18.18. Gremlin Plugin
	18.18.1. Send a Gremlin Script - URL encoded
	18.18.2. Load a sample graph
	18.18.3. Sort a result using raw Groovy operations
	18.18.4. Send a Gremlin Script - JSON encoded with table results
	18.18.5. Returning nested pipes
	18.18.6. Set script variables
	18.18.7. Send a Gremlin Script with variables in a JSON Map
	18.18.8. Return paths from a Gremlin script
	18.18.9. Send an arbitrary Groovy script - Lucene sorting
	18.18.10. Emit a sample graph
	18.18.11. HyperEdges - find user roles in groups
	18.18.12. Group count
	18.18.13. Collect multiple traversal results
	18.18.14. Collaborative filtering
	18.18.15. Chunking and offsetting in Gremlin
	18.18.16. Modify the graph while traversing
	18.18.17. Flow algorithms with Gremlin
	18.18.18. Script execution errors

	Chapter 19. Python embedded bindings
	19.1. Installation
	19.1.1. Installation on OSX/Linux
	Prerequisites
	Installing neo4j-embedded

	19.1.2. Installation on Windows
	Prerequisites
	Installing neo4j-embedded
	Solving problems with missing DLL files

	19.2. Core API
	19.2.1. Getting started
	Creating a database
	Creating a database, with configuration
	JPype JVM configuration

	19.2.2. Transactions
	19.2.3. Nodes
	Creating a node
	Fetching a node by id
	Fetching the reference node
	Removing a node
	Removing a node by id
	Accessing relationships from a node
	Getting and/or counting all nodes

	19.2.4. Relationships
	Creating a relationship
	Fetching a relationship by id
	Removing a relationship
	Removing a relationship by id
	Relationship start node, end node and type
	Getting and/or counting all relationships

	19.2.5. Properties
	Setting properties
	Getting properties
	Removing properties
	Looping through properties

	19.2.6. Paths
	Accessing the start and end nodes
	Accessing the last relationship
	Looping through the entire path

	19.3. Indexes
	19.3.1. Index management
	Creating an index
	Retrieving a pre-existing index
	Deleting indexes
	Checking if an index exists

	19.3.2. Indexing things
	Adding nodes or relationships to an index
	Removing indexed items

	19.3.3. Searching the index
	Direct lookups
	Querying

	19.4. Cypher Queries
	19.4.1. Querying and reading the result
	Basic query
	Retrieve query result
	List the result columns

	19.4.2. Parameterized and prepared queries
	Parameterized queries
	Prepared queries

	19.5. Traversals
	19.5.1. Basic traversals
	Following a relationship
	Following a relationship in a specific direction
	Following multiple relationship types

	19.5.2. Traversal results
	19.5.3. Uniqueness
	19.5.4. Ordering
	19.5.5. Evaluators - advanced filtering

	Part IV. Operations
	Chapter 20. Installation & Deployment
	20.1. Deployment Scenarios
	20.1.1. Server
	20.1.2. Embedded

	20.2. System Requirements
	20.2.1. CPU
	20.2.2. Memory
	20.2.3. Disk
	20.2.4. Filesystem
	20.2.5. Software
	20.2.6. JDK Version

	20.3. Installation
	20.3.1. Embedded Installation
	20.3.2. Server Installation

	20.4. Upgrading
	20.4.1. Automatic Upgrade
	20.4.2. Explicit Upgrade
	20.4.3. Upgrade 1.8 → 1.9.M02
	20.4.4. Upgrade 1.7 → 1.8
	20.4.5. Upgrade 1.6 → 1.7
	20.4.6. Upgrade 1.5 → 1.6
	20.4.7. Upgrade 1.4 → 1.5

	20.5. Usage Data Collector
	20.5.1. Technical Information
	20.5.2. How to disable UDC

	Chapter 21. Configuration & Performance
	21.1. Introduction
	21.1.1. How to add configuration settings

	21.2. Performance Guide
	21.2.1. Try this first
	21.2.2. Neo4j primitives' lifecycle
	21.2.3. Configuring Neo4j
	Disks, RAM and other tips
	Write performance
	Second level caching

	21.3. Kernel configuration
	21.4. Caches in Neo4j
	21.4.1. File buffer cache
	Configuration

	21.4.2. Object cache
	Configuration
	GC resistant cache configuration
	Heap memory usage

	21.5. Logical logs
	21.6. JVM Settings
	21.6.1. Configuring heap size and GC

	21.7. Compressed storage of short strings
	21.8. Compressed storage of short arrays
	21.9. Memory mapped IO settings
	21.9.1. Optimizing for traversal speed example
	21.9.2. Batch insert example

	21.10. Linux Performance Guide
	21.10.1. Setup
	21.10.2. Running the benchmark
	21.10.3. Fixing the problem

	21.11. Linux specific notes
	21.11.1. File system tuning for high IO
	21.11.2. Setting the number of open files

	Chapter 22. High Availability
	22.1. Architecture
	22.2. Setup and configuration
	22.2.1. Installation Notes
	22.2.2. Different methods for participating in a cluster
	Knowing at least one other member
	Discovery

	22.3. How Neo4j HA operates
	22.4. Upgrading a Neo4j HA Cluster
	22.4.1. Overview
	22.4.2. Step 1: On each slave perform the upgrade
	22.4.3. Step 2: Upgrade the master, complete the procedure
	22.4.4. Step 3: Cleanup, removing the coordinator services

	22.5. High Availability setup tutorial
	22.5.1. Background
	Download and unpack Neo4j Enterprise

	22.5.2. Start the Neo4j Servers in HA mode
	22.5.3. Start Neo4j Embedded in HA mode

	22.6. Setting up HAProxy as a load balancer
	22.6.1. Installing HAProxy
	22.6.2. Configuring HAProxy
	22.6.3. Configuring separate sets for master and slaves
	22.6.4. Cache-based sharding with HAProxy

	Chapter 23. Backup
	23.1. Embedded and Server
	23.2. Online Backup from Java
	23.3. High Availability
	23.4. Restoring Your Data

	Chapter 24. Security
	24.1. Securing access to the Neo4j Server
	24.1.1. Secure the port and remote client connection accepts
	24.1.2. Arbitrary code execution
	24.1.3. HTTPS support
	24.1.4. Server Authorization Rules
	Enforcing Server Authorization Rules
	Using Wildcards to Target Security Rules
	Using Complex Wildcards to Target Security Rules

	24.1.5. Hosted Scripting
	24.1.6. Security in Depth
	24.1.7. Rewriting URLs with a Proxy installation

	Chapter 25. Monitoring
	25.1. Adjusting remote JMX access to the Neo4j Server
	25.2. How to connect to a Neo4j instance using JMX and JConsole
	25.3. How to connect to the JMX monitoring programmatically
	25.4. Reference of supported JMX MBeans

	Part V. Tools
	Chapter 26. Web Administration
	26.1. Dashboard tab
	26.1.1. Entity chart
	26.1.2. Status monitoring

	26.2. Data tab
	26.3. Console tab
	26.4. The Server Info tab

	Chapter 27. Neo4j Shell
	27.1. Starting the shell
	27.1.1. Enabling the shell server
	27.1.2. Connecting to a shell server
	27.1.3. Pointing the shell to a path
	27.1.4. Read-only mode
	27.1.5. Run a command and then exit

	27.2. Passing options and arguments
	27.3. Enum options
	27.4. Filters
	27.5. Node titles
	27.6. How to use (individual commands)
	27.6.1. Current node/relationship and path
	27.6.2. Listing the contents of a node/relationship
	27.6.3. Creating nodes and relationships
	27.6.4. Setting, renaming and removing properties
	27.6.5. Deleting nodes and relationships
	27.6.6. Environment variables
	27.6.7. Executing groovy/python scripts
	27.6.8. Traverse
	27.6.9. Query with Cypher
	27.6.10. Indexing
	27.6.11. Transactions

	27.7. Extending the shell: Adding your own commands
	27.8. An example shell session
	27.9. A Matrix example

	Part VI. Community
	Chapter 28. Community Support
	Chapter 29. Contributing to Neo4j
	29.1. Contributor License Agreement
	29.1.1. Summary
	29.1.2. Common questions
	Am I losing the rights to my own code?
	What can you do with my contribution?
	What are the community benefits of this?
	Can we discuss some items in the CLA?
	I still don’t like this CLA.

	29.1.3. How to sign

	29.2. Areas for contribution
	29.2.1. Neo4j Distribution
	29.2.2. Maintaining Neo4j Documentation
	29.2.3. Drivers and bindings to Neo4j

	29.3. Writing Neo4j Documentation
	29.3.1. Overall Flow
	29.3.2. File Structure in docs.jar
	29.3.3. Headings and document structure
	29.3.4. Writing
	29.3.5. Gotchas
	29.3.6. Links
	29.3.7. Text Formatting
	29.3.8. Admonitions
	29.3.9. Images
	Images Files
	Static Graphviz/DOT

	29.3.10. Attributes
	29.3.11. Comments
	29.3.12. Code Snippets
	Explicitly defined in the document
	Fetched from source code
	Query Results

	29.3.13. A sample Java based documentation test
	29.3.14. Hello world Sample Chapter
	29.3.15. Integrated Live Console
	29.3.16. Toolchain

	29.4. Translating the Neo4j Manual
	29.4.1. Prerequisites
	29.4.2. Build flow and file layout
	29.4.3. Adding a chapter to a translation file
	29.4.4. Workflow
	29.4.5. Translation tools

	29.5. Contributing Code to Neo4j
	29.5.1. Intro
	29.5.2. Governance fundamentals
	29.5.3. Contributor roles
	29.5.4. Contribution workflow
	29.5.5. Pull request checklist
	29.5.6. Unit Tests
	29.5.7. Code Style
	29.5.8. Commit messages
	29.5.9. Signing the CLA
	29.5.10. Don’t merge, use rebase instead!
	29.5.11. Single commit

	29.6. Contributors

	Appendix A. Manpages
	neo4j
	neo4j-shell
	neo4j-backup

	Appendix B. Questions & Answers

