
Graph Databases

Chao Chen
Bryce Richards

Meng Wang
Alfred Zhong

Roadmap

• Introduction to Graph DB

• Neo4j

• GraphLab: A New Framework For Parallel
Machine Learning

NoSQL Database Categories

• document-oriented databases (a.k.a
document-store) store data in document.

– MongoDB

• Key-Value stores

– Dynamo, Cassandra

• Graph Database
– Apply graph theory in the storage of information about the

relationship between entries

Graph DB Model:representation

• Core Abstractions:

– Nodes

– Relationships between nodes (edges)

– Properties on both

Image source: http://en.wikipedia.org/wiki/File:GraphDatabase_PropertyGraph.png

Example: Internet

Example: Social Network

TAO: how facebook serves the social graph

Recommendation Systems

Computational Biology

Protein Interaction

“Relational database is not good for
relationship data” - JOIN

• Friend links on a social network

• “People who bought this also bought…”
Amazon-style recommendation

User_Id name Gender Age

00 Neo M 29

01 Trinity F 28

02 Reagan M 32

03 Agent Smith M 30

04 The Architect M 35

05 Morpheus M 69

People

Friendship

ID Friend since relation User1_Id User2_Id

1 1990 knows 00 05

2 1991 Loves 01 00

3 1992 knows 02 01

4 1993 Coded by 03 02

5 1995 knows 05 06

6 1996 knows 05 04

Image source: http://readwrite.com/2011/04/20/5-graph-databases-to-consider

Players in the Field

• Pregel (Google)

• TAO (Facebook)

• FlockDB (Twitter)

• GraphLab (CMU)

• GraphChi (CMU)

• Neo4j (neotechnology)

• …

http://www.neotechnology.com/customers/

ACID
Java

http://www.neotechnology.com/customers/

RDBMS and Graph Database

RDBMS

Graph Database

An Example:

Neo4j code example

Transaction, Index, …

Create Index

Begin Transaction

Index loopup

Cypher Query Language

Neo4J Architecture

Neo4j High Availability

• Enterprise Edition only

• Read: Slaves are replicas of the master, therefore
the whole system can handle more read
operations than a single server - horizontal
scaling

• Write: Any slave can handle write operation.
Writing on slave will synchronize with the master
(locking?); writing on master will synchronize to
slaves – eventual consistency (configurable)

GraphLab

System for performing parallel (machine
learning) graph algorithms

Multi-processor/cluster setting -- NOT fault
tolerant or distributed (newer paper adds
these features...)

Example: Pairwise MRF

source: http://grapeot.me/?tag=/markov+random+field

Example: Pairwise MRF

source: http://grapeot.me/?tag=/markov+random+field

Example: Loopy BP

 Loopy Belief Propagation on Pairwise Markov
Random Field.

 A message passing algorithm for performing
inference on graphical models.

 Calculates the marginal distribution for each
unobserved node, conditional on any observed
nodes.

User Defined Computation

 Update Functions

 Defines the local computation

 Sync Mechanism

 Defines global aggregation

Update Function

 Operates on the data associated with small
neighborhoods(scope) in the graph

 Scope: one vertex, its adjacent edges and neighboring vertices

 Yucheng Low et al 2010

Update Function

 Read-only access to the Shared Data Table.

 Application of the update function to the vertex

 A GraphLab program may consist of multiple update
functions

 Scheduling Model decides which updates functions apply to
which vertices.

Sync Mechanism

 Aggregates data across all vertices in the graph

 The result is associated with a particular entry in
the Shared Data Table.

 User provides a key and an initial value r

 Yucheng Low et al 2010

Data Consistency

 The simultaneous execution of two update
functions can result in data inconsistency or
corruption

 GraphLab provides a choice of three data
consistency models, which enable user to
balance performance and consistency

Data Consistency Models

Data Consistency Models

 Full consistency
 Parallel execution may only occur on vertices that do

not share a common neighbor

 Edge consistency
 Parallel execution may only occur on non-adjacent

vertice

 Vertex consistency
 During the execution of f(v), no other function will be

applied to v

Sequential Consistency

 A GraphLab program is sequentially
consistent if for every parallel execution,
there exists a sequential execution of update
functions that produces an equivalent result

Sequential consistency guaranteed if:

 1. The full consistency model is used

 2. The edge consistency model is used and f(v)
 does not modify v's neighbors

 3. The vertex consistency model is used and f(v)
 only accesses v's data

Scheduling

 Update schedule describes the order in which
update functions are applied to vertices

 Represented by a parallel data structure
called the scheduler

 GraphLab provides several degrees of
scheduling control

Base Schedulers

 Synchronous scheduler
 All vertices updated simultaneously

 Round-robin scheduler
 Vertices updated sequentially, using most recently

available data

Task Schedulers

Permit update functions to add and/or reorder
tasks

 FIFO schedulers
 Permit task creation, not reordering

 Prioritized schedulers
 Permit task creation and reordering

Set Scheduler

 User specifies a sequence of vertex set and
update function pairs:

((S1, f1), (S2, f2), ..., (Sk, fk))

for i = 1...k do:

Execute fi on all vertices in Si in parallel

Wait for all updates to complete

Set Scheduler Execution Plan

 Waiting for all updates in i'th iteration to
complete before moving onto (i+1)'th
iteration = latency

 Execution plan improves this

 Rewrite execution sequence as DAG

 Vertex represents update task, edge represents
execution dependency

 Execute update tasks greedily

Set Scheduler Execution Plan

Termination Assessment

 Two methods:

1. Scheduler: terminate when there are no
 remaining tasks

2. SDT: terminate when shared data indicates
 convergence

GraphLab Summary

1. Data graph -- represents data and
computational dependencies

2. Update function -- local computation

3. Sync mechanism -- aggregates global state

4. Consistency model -- determines how parallel

5. Scheduling primitives -- expresses order of
computation

6. Termination conditions -- halts program

Summary

• Neo4j

– Good for: ACID graph DB

– Limit: HA mode won’t increase the capacity

• GraphLab

– Good for: Multi-processor/cluster parallel
computing

– Limit: No fault tolerance, no shared memory in
distributed environment

