
Graph Databases

Chao Chen
Bryce Richards

Meng Wang
Alfred Zhong

Roadmap

• Introduction to Graph DB

• Neo4j

• GraphLab: A New Framework For Parallel
Machine Learning

NoSQL Database Categories

• document-oriented databases (a.k.a
document-store) store data in document.

– MongoDB

• Key-Value stores

– Dynamo, Cassandra

• Graph Database
– Apply graph theory in the storage of information about the

relationship between entries

Graph DB Model:representation

• Core Abstractions:

– Nodes

– Relationships between nodes (edges)

– Properties on both

Image source: http://en.wikipedia.org/wiki/File:GraphDatabase_PropertyGraph.png

Example: Internet

Example: Social Network

TAO: how facebook serves the social graph

Recommendation Systems

Computational Biology

Protein Interaction

“Relational database is not good for
relationship data” - JOIN

• Friend links on a social network

• “People who bought this also bought…”
Amazon-style recommendation

User_Id name Gender Age

00 Neo M 29

01 Trinity F 28

02 Reagan M 32

03 Agent Smith M 30

04 The Architect M 35

05 Morpheus M 69

People

Friendship

ID Friend since relation User1_Id User2_Id

1 1990 knows 00 05

2 1991 Loves 01 00

3 1992 knows 02 01

4 1993 Coded by 03 02

5 1995 knows 05 06

6 1996 knows 05 04

Image source: http://readwrite.com/2011/04/20/5-graph-databases-to-consider

Players in the Field

• Pregel (Google)

• TAO (Facebook)

• FlockDB (Twitter)

• GraphLab (CMU)

• GraphChi (CMU)

• Neo4j (neotechnology)

• …

http://www.neotechnology.com/customers/

ACID
Java

http://www.neotechnology.com/customers/

RDBMS and Graph Database

RDBMS

Graph Database

An Example:

Neo4j code example

Transaction, Index, …

Create Index

Begin Transaction

Index loopup

Cypher Query Language

Neo4J Architecture

Neo4j High Availability

• Enterprise Edition only

• Read: Slaves are replicas of the master, therefore
the whole system can handle more read
operations than a single server - horizontal
scaling

• Write: Any slave can handle write operation.
Writing on slave will synchronize with the master
(locking?); writing on master will synchronize to
slaves – eventual consistency (configurable)

GraphLab

System for performing parallel (machine
learning) graph algorithms

Multi-processor/cluster setting -- NOT fault
tolerant or distributed (newer paper adds
these features...)

Example: Pairwise MRF

source: http://grapeot.me/?tag=/markov+random+field

Example: Pairwise MRF

source: http://grapeot.me/?tag=/markov+random+field

Example: Loopy BP

 Loopy Belief Propagation on Pairwise Markov
Random Field.

 A message passing algorithm for performing
inference on graphical models.

 Calculates the marginal distribution for each
unobserved node, conditional on any observed
nodes.

User Defined Computation

 Update Functions

 Defines the local computation

 Sync Mechanism

 Defines global aggregation

Update Function

 Operates on the data associated with small
neighborhoods(scope) in the graph

 Scope: one vertex, its adjacent edges and neighboring vertices

 Yucheng Low et al 2010

Update Function

 Read-only access to the Shared Data Table.

 Application of the update function to the vertex

 A GraphLab program may consist of multiple update
functions

 Scheduling Model decides which updates functions apply to
which vertices.

Sync Mechanism

 Aggregates data across all vertices in the graph

 The result is associated with a particular entry in
the Shared Data Table.

 User provides a key and an initial value r

 Yucheng Low et al 2010

Data Consistency

 The simultaneous execution of two update
functions can result in data inconsistency or
corruption

 GraphLab provides a choice of three data
consistency models, which enable user to
balance performance and consistency

Data Consistency Models

Data Consistency Models

 Full consistency
 Parallel execution may only occur on vertices that do

not share a common neighbor

 Edge consistency
 Parallel execution may only occur on non-adjacent

vertice

 Vertex consistency
 During the execution of f(v), no other function will be

applied to v

Sequential Consistency

 A GraphLab program is sequentially
consistent if for every parallel execution,
there exists a sequential execution of update
functions that produces an equivalent result

Sequential consistency guaranteed if:

 1. The full consistency model is used

 2. The edge consistency model is used and f(v)
 does not modify v's neighbors

 3. The vertex consistency model is used and f(v)
 only accesses v's data

Scheduling

 Update schedule describes the order in which
update functions are applied to vertices

 Represented by a parallel data structure
called the scheduler

 GraphLab provides several degrees of
scheduling control

Base Schedulers

 Synchronous scheduler
 All vertices updated simultaneously

 Round-robin scheduler
 Vertices updated sequentially, using most recently

available data

Task Schedulers

Permit update functions to add and/or reorder
tasks

 FIFO schedulers
 Permit task creation, not reordering

 Prioritized schedulers
 Permit task creation and reordering

Set Scheduler

 User specifies a sequence of vertex set and
update function pairs:

((S1, f1), (S2, f2), ..., (Sk, fk))

for i = 1...k do:

Execute fi on all vertices in Si in parallel

Wait for all updates to complete

Set Scheduler Execution Plan

 Waiting for all updates in i'th iteration to
complete before moving onto (i+1)'th
iteration = latency

 Execution plan improves this

 Rewrite execution sequence as DAG

 Vertex represents update task, edge represents
execution dependency

 Execute update tasks greedily

Set Scheduler Execution Plan

Termination Assessment

 Two methods:

1. Scheduler: terminate when there are no
 remaining tasks

2. SDT: terminate when shared data indicates
 convergence

GraphLab Summary

1. Data graph -- represents data and
computational dependencies

2. Update function -- local computation

3. Sync mechanism -- aggregates global state

4. Consistency model -- determines how parallel

5. Scheduling primitives -- expresses order of
computation

6. Termination conditions -- halts program

Summary

• Neo4j

– Good for: ACID graph DB

– Limit: HA mode won’t increase the capacity

• GraphLab

– Good for: Multi-processor/cluster parallel
computing

– Limit: No fault tolerance, no shared memory in
distributed environment

