Spanner : Google's
Globally-Distributed
Database

James Sedgwick and Kayhan Dursun

Spanner

- A multi-version, globally-distributed,
synchronously-replicated database

- First system to
- Distribute data globally
- Externally-consistent distributed Xacts.

Introduction

- Spanner ?

- System that shards data across Paxos
machines into data centers all around the
world.

- Designed to scale up to millions of
machines and trillions of database rows.

Features

- Dynamic replication configurations
- Constraints to manage
- Read latency
- Write latency
- Durabillity, availability
- Balancing

Features cont.

- Externally consistent reads and writes
- Globally consistent reads

Why consistency matters ?

T3: view Jerry’s profile

|
l
’ | T1: unfriend Tom |
‘ T2: post comment

physical time

Implementation

- Set of zones = set of locations of dist. data
- Can be more than one zone in a datacenter

universemaster placement driver
Zone 1 Zone 2 Zone N
zonemaster zonemaster zonemaster
1 1
location location location
L proxy Ll proxy Ll proxy
J_ spanserver J_ spanserver J_ spanserver

Spanserver Software Stack

Tablet: (key:String’ other'g'roup's participant other.gfoup's
timestamp:int) -> string PR T | leader [T M
Paxos: Replication sup. §tf;gj;§gn§
- Writes initiate protocol
at Ieader . lock table

leader
- Reads from the tablet _ , ,
directly replica replica replica
- Lock table Paxos =» Paxos c= Paxos .
- Trans. manager tablet tablet tablet

i Colossus i E Colossus E i Colossus

Data Center X Data Center Y Data Center Z

Directories

- A bucketing abstraction
- Unit of data placement

- Movement

- Load balancing
- Access patterns
- Accessors

Group 2

dir1

Zone 1

Zone 4

Data model

- A data model based on schematized
semi-relational tables

- With popularity of Megastore
- Query language
- With popularity of Dremel
- General-purpose Xacts.
- Experienced the lack with BigTable

Data Model cont.

- Not purely relational (rows have names)
- DB must be partitioned into hierarchies

CREATE TABLE Users {
uid INT64 NOT NULL, email STRING
} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {
uid INT64 NOT NULL, aid INT64 NOT NULL,
name STRING
} PRIMARY KEY (uid, aid),
INTERLEAVE IN PARENT Users ON DELETE CASCADE;

Users(1)
Albums(1,1)
,,,,, Albums(1,2)
Users(2)
Albums(2,1)

Albums(2,2)

TrueTime

Method Returns
TT.now() TTinterval: [earliest, latest]
TT.after(t) true if t has definitely passed
TT.before(t) true if t has definitely not arrived
e Represents time as intervals with bounded uncertainty
e Letinstantaneous error be e (half of interval width)
e |etaverage error be é
e Formal guarantee:

Let{ , (e) be the absolute time of event e
For tt = TT.now(), tt.earliest <=t_, (e) <= tt.latest

where e is the invocation event

TrueTime implementation

® Two underlying time references, used together because they have disjoint
failure modes

O GPS: Antenna/receiver failures, interference, GPS system outage
O Atomic clock: Drift, etc

Set of time masters per datacenter (mixed GPS and atomic)
Each server runs a time daemon

Masters cross-check time against other masters and rate of local clock

Masters advertise uncertainty

O GPS uncertainty near zero, atomic uncertainty grows based on worst
case clock drift

® Masters can evict themselves if their uncertainty grows too high

TrueTime implementation, contd.

® Time daemons poll a variety of masters (local and remote GPS masters as
well as atomic)

® Use variant of Marzullo's algorithm to detect liars

Sync local clocks to non-liars

® Between syncs, daemons advertise slowly increasing uncertainty

O Derived from worst-case local drift, time master uncertainty, and
communication delay to masters

® ¢ as seen by TrueTime client thus has sawtooth pattern
O varies from about 1 to 7 ms over each poll interval

® Time master unavailability and overloaded machines/network can cause
spikes in e

Spanner Operations

® Read-write transactions
O Standalone writes are a subset

® Read-only transactions
O Non-snapshot standalone reads are a subset

O Executed at system-chosen timestamp without locking, such that
writes are not blocked.

O Executed on any replica that is sufficiently up to date w.r.t. chosen
timestamp

® Snapshot reads
O Client provided timestamp or upper time bound

Paxos Invariants

Spanner's Paxos implementation used timed (10 second) leader leases to
make leadership long lived

Candidate becomes leader after receiving quorum of timed lease votes

Replicas extend lease votes implicitly on writes. Leader requests a lease
extension from a replica if its vote is close to expiration.

Define a lease interval as starting when a quorum is achieved, and ending
when a quorum is lost

Spanner requires monotonically increasing Paxos write timestamps across
leaders in a group, so it is critical that leader lease intervals are disjoint

To achieve disjointness, a leader could log its interval via Paxos, and
subsequent leaders could wait for this interval before taking over.

Spanner avoids this Paxos communication and preserves disjointness via
a TrueTime-based mechanism described in Appendix A.

It's in an appendix because it's complicated.

Also: leaders can abdicate, but must wait until TT.after(s__) is true, where

S, ., IS the maximum timestamp used by a leader, to preserve disjointness

Proof of Externally Consistent RW Transactions

® External consistency: if the start of T, occurs after the commit of T, then
the commit timestamp of T, is after the commit timestamp of T,

® | et start, commit request, and commit events be e, e

i, start> ~i server’ and ei, commit

Thus, formally:ift_, (e,)<t (e, .) thens <s,

tabs

® Start: Coordinator leader assigns timestamp S; to transaction T s.t. s;is no
less than TT.now().latest, computed after e,

1, server

® Commit wait: Coordinator leader ensures clients can't see effects of T,.

before TT.after(s) is true. That is, s, <t , (e, . .)

S, <t, (e . commit (commit wait)
tabs(e1, commit) N tabs(e2, start) assumption)
tabs(ez N <=t causality)

start)

transitivity)

tabs(ez serve/) g S2

81 & S2

(
abs(ez server) (
(
(

Serving Reads at a Timestamp

Each replica tracks safe time t__. , which is the maximum timestamp at

which it is up to date. Replica canread at tif t <=¢__

t

safe

b os.sare 1S JUSE the timestamp of the highest applied Paxos write on the

replica. Paxos write times increase monotonically, so writes will not occur

at or below tP w.r.t. Paxos
axos-safe

3 mm(tPaxos-safe, tTM—safe)

t1.saro @CCOUNts for uncommitted transactions in the replica's group. Every
participant leader (of group g) for transaction T. assigns prepare timestamp

- to its record. This timestamp is propagated to g via Paxos.

The coordinator leader ensures that commit time S; of T, >= 8 for

- ' i,g - prepare
each participant group g. Thus, t,, . =min(s, _ _.J)-1

Thus, t_ - is guaranteed to be before all prepared but uncommitted

transactions in the replica's group

Assigning Timestamps to RO Transactions

To execute a read-only transaction, pick timestamp s __ , then execute as
snapshot reads at s __ at sufficiently up to date replicas.

Picking TT.now().latest after the transaction start will definitely preserve

external consistency, but may block unnecessarily long while waiting for

tsafe to advance.

Choose the oldest timestamp that preserves external consistency: LastTS.
Can do better than now if there are no prepared transactions

If the read's scope is a single Paxos group, simply choose the timestamp
of the last committed write at that group.

If the read's scope encompasses multiple groups, a negotiation could
occur among group leaders to determine maxg(LastTSg)

O Current implementation avoids this communication and simply uses
T'T.now().latest

Details of RW Transactions, pt. 1

® Client issues reads to leader replicas of appropriate groups. These acquire
read locks and read the most recent data.

® Once reads are completed and writes are buffered (at the client), client

chooses a coordinator leader and sends the identity of the leader along
with buffered writes to participant leaders.

® Non-coordinator participant leaders
O acquire write locks

O choose a prepare timestamp larger than any previous transaction
timestamps

log a prepare record in Paxos

notify coordinator of chosen timestamp.

Details of RW Transactions, pt. 2

Coordinator leader

O acquires locks

O picks a commit timestamp s greater than TT.now().latest, greater than

or equal to all participant prepare timestamps, and greater than any
previous transaction timestamps assigned by the leader

O logs commit record in Paxos

Coordinator waits until TT.after(s) to allow replicas to commit T, to obey
commit wait

Since s> TT.now().latest, expected wait is at least 2 * &
After commit wait, timestamp is sent to the client and all participant leaders

Each leader logs commit timestamp via Paxos, and all participants then
apply at the same timestamp and release locks

Schema-Change Transactions

@® Spanner supports atomic schema changes

® Can't use a standard transaction, since the number of participants (number
of groups in the database) could be in the millions

® Use a non-blocking transaction

® Explicitly assign a timestamp t in the future to the transaction in the
prepare phase

® Reads and writes synchronize around this timestamp
O If their timestamps precede t, proceed
O If their timestamps are after t, block behind schema change

Refinements

A single prepared transaction blocks T_, . from advancing.
What if the prepared transactions don't conflict with the read?

Augment T, . with mappings from key ranges to prepare timestamps.

When calculating T_,, . as the minimum timestamp of prepared

transactions in a group, consult these mappings and only consider
transactions which conflict with the read

Similar problem with LastTS - when assigning a timestamp to a read-only

transaction, we must wait until after all previous commit timestamps, even
if those commits don't conflict with the read.

Similar solution - maintain mappings of key ranges to commit timestamps,
and only consider conflicting commits when calculating a maximum

Refinements

® b 0s.safe CANNOL @dvance without Paxos writes, so snapshots reads at ¢

cannot proceed at groups whose last Paxos write occurred before .

® Paxos leaders instead advance b os.sare OY KEEPING track of the timestamp

above which future Paxos writes will occur.

® Maintain mapping MinNextTS(n) from Paxos sequence number n to the
minimum timestamp that can be assigned to the Paxos write n + 1

@® [eaders advance MinNextTS(n) s.t. it doesn't extend past their lease.

® Advances occur every 8 seconds by default, so in the worst case, replicas
can serve reads no more recently than 8 seconds ago

® Advances can occur by a replica's request as well

Evaluation

- Avallabllity
- TrueTime
- Running system F1

Availability

- Results of 3 experiments in the presence of
datacenter failures.

- 5 zones, each has 25 spanservers.

- Data sharded into 1250 paxos groups.

Availability

g 1.4M -
k> | oM] - -0 - - non-leader
E“ ' | leader-soft
---0 - - - o
S 1M — leader-hard P
z ‘ o™
S 800K - o
et i 0© s
= 600K - 0°«
2 — 0© o°
E 400K - ,0° o
- . °.@ o-0-°
g 200K - o,o'
r —.'o’
O N anam I |] |
0 5 10 15 20

Time in seconds

- leader-hard Kill:
10 sec. after killing, throughput is recovered

TrueTime

Epsilon (ms)

—_~

IIllIIIIIIIIIIIIII'IIIIIII I

| | |
Mar 29 Mar 30 Mar 31 Apr 1 6AM 8AM 10AM 12PM

Date Date (April 13)

F1

- First was based on MySq|

- Spanner removes the need to manually
reshard

- Provides synchronous replication and
automatic failover

- F1 requires strong transactional semantics

latency (ms)
operation mean | stddev | count

all reads 8.7 376.4 21.5B

single-site commit 72.3 112.8 | 31.2M
multi-site commit 103.0 52.2 32.1M

Thank you!

