
Spanner : Google's 
Globally-Distributed 

Database
James Sedgwick and Kayhan Dursun



Spanner

- A multi-version, globally-distributed, 
synchronously-replicated database
- First system to 

- Distribute data globally
- Externally-consistent distributed Xacts. 



Introduction

- Spanner ? 
- System that shards data across Paxos 

machines into data centers all around the 
world.

- Designed to scale up to millions of 
machines and trillions of database rows.



Features

- Dynamic replication configurations
- Constraints to manage

- Read latency
- Write latency
- Durability, availability
-   Balancing



Features cont.

- Externally consistent reads and writes
- Globally consistent reads

Why consistency matters ?



Implementation

- Set of zones = set of locations of dist. data
- Can be more than one zone in a datacenter



Spanserver Software Stack

Tablet: (key:string, 
timestamp:int) -> string
Paxos: Replication sup.
- Writes initiate protocol 
at leader 
- Reads from the tablet 
directly
- Lock table
- Trans. manager



Directories

- A bucketing abstraction
- Unit of data placement
- Movement

- Load balancing
- Access patterns
- Accessors



Data model

- A data model based on schematized 
semi-relational tables

- With popularity of Megastore
- Query language

- With popularity of Dremel
- General-purpose Xacts. 

- Experienced the lack with BigTable



Data Model cont.

- Not purely relational (rows have names)
- DB must be partitioned into hierarchies



TrueTime

● Represents time as intervals with bounded uncertainty
● Let instantaneous error be e (half of interval width)
● Let average error be ē
● Formal guarantee:

Let tabs(e) be the absolute time of event e

For tt = TT.now(), tt.earliest <= tabs(e) <= tt.latest

where e is the invocation event

Method Returns

TT.now() TTinterval: [earliest, latest]

TT.after(t) true if t has definitely passed

TT.before(t) true if t has definitely not arrived



TrueTime implementation

● Two underlying time references, used together because they have disjoint 
failure modes
○ GPS: Antenna/receiver failures, interference, GPS system outage
○ Atomic clock: Drift, etc

● Set of time masters per datacenter (mixed GPS and atomic)

● Each server runs a time daemon

● Masters cross-check time against other masters and rate of local clock

● Masters advertise uncertainty
○ GPS uncertainty near zero, atomic uncertainty grows based on worst 

case clock drift

● Masters can evict themselves if their uncertainty grows too high



TrueTime implementation, contd.

● Time daemons poll a variety of masters (local and remote GPS masters as 
well as atomic)

● Use variant of Marzullo's algorithm to detect liars

● Sync local clocks to non-liars

● Between syncs, daemons advertise slowly increasing uncertainty
○ Derived from worst-case local drift, time master uncertainty, and 

communication delay to masters

● e as seen by TrueTime client thus has sawtooth pattern
○ varies from about 1 to 7 ms over each poll interval

● Time master unavailability and overloaded machines/network can cause 
spikes in e 



Spanner Operations

● Read-write transactions
○ Standalone writes are a subset

● Read-only transactions
○ Non-snapshot standalone reads are a subset
○ Executed at system-chosen timestamp without locking, such that 

writes are not blocked.
○ Executed on any replica that is sufficiently up to date w.r.t. chosen 

timestamp

● Snapshot reads
○ Client provided timestamp or upper time bound



Paxos Invariants
● Spanner's Paxos implementation used timed (10 second) leader leases to 

make leadership long lived

● Candidate becomes leader after receiving quorum of timed lease votes

● Replicas extend lease votes implicitly on writes. Leader requests a lease 
extension from a replica if its vote is close to expiration.

● Define a lease interval as starting when a quorum is achieved, and ending 
when a quorum is lost

● Spanner requires monotonically increasing Paxos write timestamps across 
leaders in a group, so it is critical that leader lease intervals are disjoint

● To achieve disjointness, a leader could log its interval via Paxos, and 
subsequent leaders could wait for this interval before taking over.

● Spanner avoids this Paxos communication and preserves disjointness via 
a TrueTime-based mechanism described in Appendix A.

● It's in an appendix because it's complicated. 

● Also: leaders can abdicate, but must wait until TT.after(smax) is true, where 
smax is the maximum timestamp used by a leader, to preserve disjointness



Proof of Externally Consistent RW Transactions

● External consistency: if the start of T2 occurs after the commit of T1, then 
the commit timestamp of T2 is after the commit timestamp of T1

● Let start, commit request, and commit events be ei, start, ei, server, and ei, commit

● Thus, formally: if tabs(e1, commit) < tabs(e2, start), then s1 < s2

● Start: Coordinator leader assigns timestamp si to transaction Ti s.t. si is no 
less than TT.now().latest, computed after ei, server

● Commit wait: Coordinator leader ensures clients can't see effects of Ti 
before TT.after(si) is true. That is, si < tabs(ei, commit)

s1 < tabs(e1, commit) (commit wait)

tabs(e1, commit) < tabs(e2, start) (assumption)

tabs(e2, start) <= tabs(e2, server) (causality)

tabs(e2, server) <= s2 (start)

s1 < s2 (transitivity)



Serving Reads at a Timestamp

● Each replica tracks safe time tsafe, which is the maximum timestamp at 
which it is up to date. Replica can read at t if t <= tsafe

● tsafe = min(tPaxos-safe, tTM-safe)

● tPaxos-safe is just the timestamp of the highest applied Paxos write on the 
replica. Paxos write times increase monotonically, so writes will not occur 
at or below tPaxos-safe w.r.t. Paxos

● tTM-safe accounts for uncommitted transactions in the replica's group. Every 
participant leader (of group g) for transaction Ti assigns prepare timestamp 
si,g - prepare to its record. This timestamp is propagated to g via Paxos.

● The coordinator leader ensures that commit time si  of Ti >=  si,g - prepare for 
each participant group g. Thus, tTM-safe = mini(si,g - prepare) - 1

● Thus, tTM-safe is guaranteed to be before all prepared but uncommitted 
transactions in the replica's group



Assigning Timestamps to RO Transactions

● To execute a read-only transaction, pick timestamp sread, then execute as 
snapshot reads at sread at sufficiently up to date replicas.

● Picking TT.now().latest after the transaction start will definitely preserve 
external consistency, but may block unnecessarily long while waiting for 
tsafe to advance.

● Choose the oldest timestamp that preserves external consistency: LastTS.

● Can do better than now if there are no prepared transactions

● If the read's scope is a single Paxos group, simply choose the timestamp 
of the last committed write at that group.

● If the read's scope encompasses multiple groups, a negotiation could 
occur among group leaders to determine maxg(LastTSg)

○ Current implementation avoids this communication and simply uses 
TT.now().latest



Details of RW Transactions, pt. 1

● Client issues reads to leader replicas of appropriate groups. These acquire 
read locks and read the most recent data.

● Once reads are completed and writes are buffered (at the client), client 
chooses a coordinator leader and sends the identity of the leader along 
with buffered writes to participant leaders.

● Non-coordinator participant leaders
○ acquire write locks

○ choose a prepare timestamp larger than any previous transaction 
timestamps

○ log a prepare record in Paxos

○ notify coordinator of chosen timestamp.



Details of RW Transactions, pt. 2

● Coordinator leader

○ acquires locks

○ picks a commit timestamp s greater than TT.now().latest, greater than 
or equal to all participant prepare timestamps, and greater than any 
previous transaction timestamps assigned by the leader

○ logs commit record in Paxos

● Coordinator waits until TT.after(s) to allow replicas to commit T, to obey 
commit wait

● Since s > TT.now().latest, expected wait is at least 2 * ē

● After commit wait, timestamp is sent to the client and all participant leaders

● Each leader logs commit timestamp via Paxos, and all participants then 
apply at the same timestamp and release locks



Schema-Change Transactions

● Spanner supports atomic schema changes

● Can't use a standard transaction, since the number of participants (number 
of groups in the database) could be in the millions

● Use a non-blocking transaction

● Explicitly assign a timestamp t in the future to the transaction in the 
prepare phase

● Reads and writes synchronize around this timestamp
○ If their timestamps precede t, proceed
○ If their timestamps are after t, block behind schema change



Refinements

● A single prepared transaction blocks TTM-safe from advancing.

● What if the prepared transactions don't conflict with the read?

● Augment TTM-safe with mappings from key ranges to prepare timestamps.

● When calculating TTM-safe as the minimum timestamp of prepared 
transactions in a group, consult these mappings and only consider 
transactions which conflict with the read

● Similar problem with LastTS - when assigning a timestamp to a read-only 
transaction, we must wait until after all previous commit timestamps, even 
if those commits don't conflict with the read.

● Similar solution - maintain mappings of key ranges to commit timestamps, 
and only consider conflicting commits when calculating a maximum



Refinements

● tPaxos-safe cannot advance without Paxos writes, so snapshots reads at t 
cannot proceed at groups whose last Paxos write occurred before t.

● Paxos leaders instead advance tPaxos-safe by keeping track of the timestamp 
above which future Paxos writes will occur.

● Maintain mapping MinNextTS(n) from Paxos sequence number n to the 
minimum timestamp that can be assigned to the Paxos write n + 1

● Leaders advance MinNextTS(n) s.t. it doesn't extend past their lease.

● Advances occur every 8 seconds by default, so in the worst case, replicas 
can serve reads no more recently than 8 seconds ago

● Advances can occur by a replica's request as well



Evaluation

- Availability
- TrueTime
- Running system F1



Availability

- Results of 3 experiments in the presence of 
datacenter failures.

- 5 zones, each has 25 spanservers.

- Data sharded into 1250 paxos groups.



Availability

- leader-hard kill:
10 sec. after killing, throughput is recovered



TrueTime



F1

- First was based on MySql
- Spanner removes the need to manually 
reshard
- Provides synchronous replication and 
automatic failover
- F1 requires strong transactional semantics



Thank you!


