2 "?

LN

EE

The Eight Requirements of Real-

Time Stream Processing:
STREAM vs Storm

Presentation by:
Alex Galakatos
John Meehan
Tianyu Qian

BROWN

Introduction to Streams
e \Why streaming processing?

e [wo ideas

O High-volume streams of real-time data
O Low-latency

LN

BROWN

Applications

® Stream filters

® Stream-relation joins

O Select Rstream(ltem.id, PriceTable.price)
From Item [Now], PriceTable
Where Item.id = PriceTable.itemld
O Stream items with current price appended
e Sliding-window joins
O Select Istream(*)
From s1[rows 5], s2[rows 10]
Where s1.A =s2.A

O natural join of s1 and s2 with 5-tuple window on s1 and 10-tuple
window on s2

e Streaming aggregations
O produce relation, not streams

Introduction to Streams(cont)

e Streaming Softwares

e Two Types
o DB-based
o Application-based

LN

BROWN

Introduction to STREAM / CQL

e DSMS (data stream management system)
designed by Stanford in the early/mid 2000's

e [hree main goals
o Exploit well-understood relational semantics
o Queries performing simple tasks are easy to write
o Simple yet expressive

e SQL-like language

LN

BROWN

=] ’l,?

Streams and Relations

e Streams
o Continuous, possibly
infinite multiset of ToliSt

elements {tuple, / \

tl m eSta m p} VehicleSegEntryStr SegVolRel CongestedSegRel
. ctiveVehicleSegRe
e Relations
. _ . SegSpeedStr
o Static, finite multiset of T

PosSpeedStr

tuples belonging to a
given timestamp

Example: Moving vehicles
through tolls

¥
¥ 4

|
D:

w N

BROWN

£E,
EE

Streams vs Relations

¥
¥ 4

a wwn

|
D:

£ E
EE

CQL is designed to perform all
transformative operations on relations
Streams are converted into relations before
operations are performed, and then back
Into streams

Tuples with the same timestamp are treated
as a relation, similar to a "batch”

Relation—to—Relation

=3 =1

Relation—to—Stream

BROWN

Transform Relations to Streams

[Toc [S [asiow | For | e Three methods of

H generating a new stream

' e [stream (insert stream)
o new tuple at present

e Dstream (delete

stream)
o tuple removed at present

e Rstream (relation

stream)
o tuple exists at present

Introduction to Storm

"Workflow engine" or "Computation Graph"
Distributed, fault tolerant stream processing

¥
¥ 4

|
D:

a wwn

£ E
EE

Hadoop : MapReduce Job :: Storm : Topology

Scales horizontally
No single point of failure

BROWN

[|

Supervisor

Zookeeper Supervisor

=

Supervisor
Zookeeper

Supervisor

Topology

e Topology
o network of spouts & bolts

o runs indefinitely
e Spout -- source of a stream (Twitter API, queue)
e Bolt -- processes input stream(s) and can produce

output stream(s)

¥
Y

|
D:

a wwn

BROWN

£ E
EE

Example

Spout Bolt Bolt
(words) (exclaim1) (exclaim2)

Dog ——— Dog!! ——— Dogl!!!!

TopologyBuilder builder = new TopologyBuillder () ;
builder.setSpout ("words", new TestWordSpout())

builder.setBolt ("exclaiml", new ExclamationBolt ()).
shuffleGrouping ("words") ;

builder.setBolt ("exclaim2", new ExclamationBolt ()).
shuffleGrouping ("exclaiml") ;

15

?

EHY

1@ BROWN

£ E
\E!

Features

e Guarantees
o EVERY tuple will be processed
o At-least-once & exactly once processing

e Fault Tolerant
o Worker failures (Supervisor)
o Coordinator failures (Nimbus)

e Scalable on commodity hardware
e Open Source
e Bolts defined in any language

%Y
o 4

|
D

LN

BROWN

£E,
EE

Rule 1: Keep the Data Moving

e Latency of Storage

Operatlons and pO”Iﬂg Stream Processing Application "
e Process messages
" i n -Stre a m " | Optional Storage

and Queries

e No requirement to
store to perform
any operations

® Active processing
model(non-polling)

Figure 1: “Straight-through” processing of messages
with optional storage.

e

BROWN

£E;
EE

Rule 1: STREAM / CQL

e Push-based system
o Actively processes data as it arrives

e Able to output results as streams

e Stores data as a relation once operations
are performed (joins, aggregates, etc.)

e Designed to facilitate incremental processing

LN

BROWN

=] ’l,?

Rule 1: Storm

e Data processed in real-time

e ZeroMQ used for messaging
o Asynchronous messaging library
o Push based communication
o Automatic batching of messages

e No data is written during processing

15

a W

BROWN

£ B
EE

Rule 2: Query using SQL on Streams

e Low-level language VS high-level "StreamSQL"
language

e Built-in extensible stream-oriented primitives and
operators
o Window, Aggregate, joins

Al time 01NN DLW 2010 XELY A0 WS LT WS U0 RTN XD W00 RPN

| 8350 | 535 1‘;‘20: 50.20 m 10| 2190 | 830 | 7710 l: 40.9of 15.35 | 90.63

Figure 2: Windows define the scope of operations. The
window has a size of 5 messages and slides by 1 each time the
associated operator is executed. Consecutive windows
overlap.

Rule 2: STREAM / CQL

e All comparisons are rrom Ttems (Rows 5] as I
done between PriceTable as P

Where I.itemID = P.itemID

relations

o CQL |S Very SQL_“ke Select *

From PosSpeedStr

in ItS deS|gn Where speed > 65

e Uses sliding window EpT—
SyStem From ActiveVehicleSegRel

|
D:

%)
o 4

a wwn

BROWN

£ E
EE

Rule 2: STREAM / CQL (cont)

Types of sliding windows:

e Time-based e Partitioned windows
O Uses only tuples from O "Group-by" window
recent timestamps that returns the latest
n aggregated tuples
e Tuple-based e \Windows with a
O Uses the last n tuples "slide" parameter

provided by the stream o Time-based, but with
a specified range

|
D

a W

BROWN

%Y
— ¥ 4
=

£ E
EE

Rule 2: Storm

o All functionality defined in a general purpose
language
o Bolts
o Spouts

e More control but more complex

e Basic functionality must be defined by user
o Windowing
o Joins
o Aggregates

LN

BROWN

Rule 2 : Storm (cont.)

e Central window manager

e Using stream grouping to achieve windowing
o Shuffle Grouping
o Field Grouping
o All Grouping

|
D:

a W

BROWN

%)
— ¥ 4
=

£ E
EE

Rule 3: Handle Stream Imperfections

e Delayed data & time out
e Out of order data & stay open

e Time out vs. data moving

LN

BROWN

=] ’1,?

Rule 3: STREAM / CQL

e Processes each timestamp as a "batch”

e Must be able to recognize that all tuples for
one "batch" have arrived

e Uses meta-input called "heartbeats™
o Indicates that no new tuples will arrive with that
timestamp

LN

BROWN

=] ’l,?

Rule 3: STREAM / CQL (cont)

Methods by which heartbeats are generated:

e Assigned using the DSMS clock when
stream tuples arrive

e Stream source can generate its own
heartbeats (only if tuples arrive in order)

e Properties of stream sources and the system
environment can be used

LN

BROWN

=] ’l,?

Rule 3: Storm

o Manually handle imperfections in spout
definition
o Missing data
o Qut of order data

e Timeouts for blocking calculations specified
In bolt definition

LN

BROWN

Rule 4: Generate Predictable
Outcomes

e Time-ordered, deterministic processing
o example:

TICKS(stock symbol, volume, price, time)
SPLITS(symbol, time, split_factor)
o process in ascending order

out-of-order process result in wrong ticks
o sort-order messages are insufficient

O

e Fault tolerance and recovery
o replay & reprocess

%)
o 4

a W

D:

BROWN

£ E
EE

Rule 4: STREAM / CQL

e [ime-based windowing is

deterministic
o All tuples within a window of
timestamps are processed

e Tuple-based windowing is
NOT deterministic

o No guarantee which tuples are
processed

|
D:

%)
Y 4

a wwn

Timestamp Tuple

BROWN

£ E
EE

Rule 4: Storm

e Non-deterministic processing

o Use stream grouping to ensure deterministic

processing
o Field Grouping -- same tuple goes to same node

1N

a wwn

BROWN

£ B
EE

Rule 5: Integrated Stored and
Streaming Data

e Compare "Present" with "Past"
o Store, access, and modify state information

e [wo motives
o Switch to a live feed seamlessly(Trading app)
o Compute from past and catch up to real time

e Low Latency
o State stored in the same OS address space as
application using an embedded database system

2}

a wwn

BROWN

£ E
EE

Rule 5: STREAM / CQL

e All streams are processed as relations,
allowing easy comparison to other relations
o Streams CANNOT be directly operated upon

o Highly convenient for comparing stored data to
streaming data

e Uses sliding window system in order to
convert streams to relations

15

a W

BROWN

£ E
EE

Rule 5: Storm

e Interact with database using a Bolt
o Perform joins with stored data
o Insert value into database
o Modify existing stored data

e No common language
o JDBC/ODBC

|
b:

a W

BROWN

)
=) Vi
B

£ B
EE

Rule 6: Guarantee Data Safety and
Availability

e "Tandem-style" hot backup and failover
e Secondary system synchronization

streaming
data

Figure 3: “Tandem-style” hot backup and failover
can ensure high availability for real-time stream
processing.

¥
¥ 4

|
D:

w N

BROWN

£E,
EE

Rule 6: STREAM / CQL

e Provides similar data security to DBMS

e No obvious form of data backup, but could
be accomplished with two separate systems
taking in the same stream

LN

BROWN

=] ’l,?

Rule 6: Storm

e Guaranteed tuple processing

o At-least-once
o Exactly-once (Trident)

o Highly available / Automatic recovery

o Worker node failure
o Supervisor failure
o Nimbus failure

¥
¥ 4

w N

|
D:

BROWN

£E,
EE

Rule 7: Partition and Scale
Applications Automatically

e Distribute processing across multiple
processors and machines

e Incremental scalability

e Facilitating low latency

LN

BROWN

=] ’1,?

Rule 7: STREAM / CQL

e No distributed system

e |oad shedding
o Dynamically degrades performance based on the
velocity of incoming data
o Reduces load in order to minimize latency
o Load manager chooses locations that will distribute
error evenly across all queries

15

a wwn

BROWN

£ E
EE

Rule 7: STREAM / CQL (cont)
Load Shedding

Statistics
Manager

: Statistics

TN - ‘- Shared
Load gzt Segment
Manager A

O Query Operator

Load Shedder

Data Stream

@ Aggregate Operator

BROWN

Rule 7: Storm
e Distributed

o set number of workers
o set level of parallelism for each component

o Automatic rebalancing for adding nodes

Spout B (1)

w N

e

BROWN

£ E
EE

Rule 8: Process and Respond
Instantaneously

e Low latency & real-time response

e Highly-optimized, minimal-overhead

execution engine

o minimize the ratio of overhead to useful work

o All system components to be designed with high
performance

LN

BROWN

Rule 8: STREAM / CQL

e Query plans are
merged with existing
plans when possible

e Heuristics to improve

efficiency

o Push selections below
joins

o Maintain and use indexes

o Share synopses and
operators

3}

LN

BROWN

£E,
EE

Rule 8: Storm

o Disk write not in critical path

o ZeroMQ used for efficient network
communication

e Performance varies by topology

e One benchmark: 1m tuples per node per
sec

LN

BROWN

=] ’l,?

Conclusions

e Greatly depends on the application
o Not one-size-fits-all

e Rules were made to be broken

o SQL not necessarily required
o Non-deterministic processing can be ok

e Some rules more important than others
o Maintain velocity of data
o Integrate stored and streaming data
o Data availability/scalability

%)
o 4

|
D:

a wwn

BROWN

£ E
EE

Works cited

e STREAM/CQL

O http/lilpubs.stanford.edu:8090/758/1/2003-67.pdf

O http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf

O http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf

e Storm

O http://cs.brown.edu/~ugur/8rulesSigRec.pdf

O http://www.doc.ic.ac.uk/teaching/distinguished-projects/2012/k.nagy.pdf

O https://github.com/nathanmarz/storm/wiki/Tutorial

%

?
’I

BROWN

£ B
G E

http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://cs.brown.edu/~ugur/8rulesSigRec.pdf
http://cs.brown.edu/~ugur/8rulesSigRec.pdf
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2012/k.nagy.pdf
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2012/k.nagy.pdf
https://github.com/nathanmarz/storm/wiki/Tutorial
https://github.com/nathanmarz/storm/wiki/Tutorial

