
The Eight Requirements of Real-
Time Stream Processing:

STREAM vs Storm

Presentation by:
Alex Galakatos
John Meehan
Tianyu Qian

Introduction to Streams

● Why streaming processing?

● Two ideas
○ High-volume streams of real-time data
○ Low-latency

Applications
● Stream filters
● Stream-relation joins

○ Select Rstream(Item.id, PriceTable.price)
From Item [Now], PriceTable
Where Item.id = PriceTable.itemId

○ Stream items with current price appended
● Sliding-window joins

○ Select Istream(*)
From s1[rows 5], s2[rows 10]
Where s1.A = s2.A

○ natural join of s1 and s2 with 5-tuple window on s1 and 10-tuple
window on s2

● Streaming aggregations
○ produce relation, not streams

Introduction to Streams(cont)

● Streaming Softwares

● Two Types
○ DB-based
○ Application-based

Introduction to STREAM / CQL

● DSMS (data stream management system)
designed by Stanford in the early/mid 2000's

● Three main goals
○ Exploit well-understood relational semantics
○ Queries performing simple tasks are easy to write
○ Simple yet expressive

● SQL-like language

Streams and Relations
● Streams

○ Continuous, possibly
infinite multiset of
elements {tuple,
timestamp}

● Relations
○ Static, finite multiset of

tuples belonging to a
given timestamp

Example: Moving vehicles
 through tolls

Streams vs Relations
● CQL is designed to perform all

transformative operations on relations
● Streams are converted into relations before

operations are performed, and then back
into streams

● Tuples with the same timestamp are treated
as a relation, similar to a "batch"

Transform Relations to Streams

Three methods of
generating a new stream
● Istream (insert stream)

○ new tuple at present
● Dstream (delete

stream)
○ tuple removed at present

● Rstream (relation
stream)
○ tuple exists at present

Introduction to Storm
● "Workflow engine" or "Computation Graph"
● Distributed, fault tolerant stream processing
● Hadoop : MapReduce Job :: Storm : Topology
● Scales horizontally
● No single point of failure

Topology
● Topology

○ network of spouts & bolts
○ runs indefinitely

● Spout -- source of a stream (Twitter API, queue)
● Bolt -- processes input stream(s) and can produce

output stream(s)

Example

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("words", new TestWordSpout());

builder.setBolt("exclaim1", new ExclamationBolt()).
shuffleGrouping("words");

builder.setBolt("exclaim2", new ExclamationBolt()).
shuffleGrouping("exclaim1");

Features
● Guarantees

○ EVERY tuple will be processed
○ At-least-once & exactly once processing

● Fault Tolerant
○ Worker failures (Supervisor)
○ Coordinator failures (Nimbus)

● Scalable on commodity hardware
● Open Source
● Bolts defined in any language

Rule 1: Keep the Data Moving
● Latency of Storage

operations and polling
● Process messages

"in-stream"
● No requirement to

store to perform
any operations

● Active processing
model(non-polling)

Rule 1: STREAM / CQL

● Push-based system
○ Actively processes data as it arrives

● Able to output results as streams

● Stores data as a relation once operations
are performed (joins, aggregates, etc.)

● Designed to facilitate incremental processing

Rule 1: Storm

● Data processed in real-time

● ZeroMQ used for messaging
○ Asynchronous messaging library
○ Push based communication
○ Automatic batching of messages

● No data is written during processing

Rule 2: Query using SQL on Streams

● Low-level language VS high-level "StreamSQL"
language

● Built-in extensible stream-oriented primitives and
operators
○ Window, Aggregate, joins

Rule 2: STREAM / CQL

● All comparisons are
done between
relations

● CQL is very SQL-like
in its design

● Uses sliding window
system

Rule 2: STREAM / CQL (cont)
Types of sliding windows:

● Time-based
○ Uses only tuples from

recent timestamps

● Tuple-based
○ Uses the last n tuples

provided by the stream

● Partitioned windows
○ "Group-by" window

that returns the latest
n aggregated tuples

● Windows with a
"slide" parameter
○ Time-based, but with

a specified range

Rule 2: Storm

● All functionality defined in a general purpose
language
○ Bolts
○ Spouts

● More control but more complex

● Basic functionality must be defined by user
○ Windowing
○ Joins
○ Aggregates

Rule 2 : Storm (cont.)

● Central window manager
● Using stream grouping to achieve windowing

○ Shuffle Grouping
○ Field Grouping
○ All Grouping

Rule 3: Handle Stream Imperfections

● Delayed data & time out

● Out of order data & stay open

● Time out vs. data moving

Rule 3: STREAM / CQL

● Processes each timestamp as a "batch"

● Must be able to recognize that all tuples for
one "batch" have arrived

● Uses meta-input called "heartbeats"
○ Indicates that no new tuples will arrive with that

timestamp

Rule 3: STREAM / CQL (cont)

Methods by which heartbeats are generated:
● Assigned using the DSMS clock when

stream tuples arrive

● Stream source can generate its own
heartbeats (only if tuples arrive in order)

● Properties of stream sources and the system
environment can be used

Rule 3: Storm

● Manually handle imperfections in spout
definition
○ Missing data
○ Out of order data

● Timeouts for blocking calculations specified
in bolt definition

Rule 4: Generate Predictable
Outcomes

● Time-ordered, deterministic processing
○ example:

TICKS(stock_symbol, volume, price, time)
SPLITS(symbol, time, split_factor)

○ process in ascending order
○ out-of-order process result in wrong ticks
○ sort-order messages are insufficient

● Fault tolerance and recovery
○ replay & reprocess

Rule 4: STREAM / CQL

● Time-based windowing is
deterministic
○ All tuples within a window of

timestamps are processed

● Tuple-based windowing is
NOT deterministic
○ No guarantee which tuples are

processed

Rule 4: Storm

● Non-deterministic processing

● Use stream grouping to ensure deterministic
processing
○ Field Grouping -- same tuple goes to same node

Rule 5: Integrated Stored and
Streaming Data

● Compare "Present" with "Past"
○ Store, access, and modify state information

● Two motives
○ Switch to a live feed seamlessly(Trading app)
○ Compute from past and catch up to real time

● Low Latency
○ State stored in the same OS address space as

application using an embedded database system

Rule 5: STREAM / CQL

● All streams are processed as relations,
allowing easy comparison to other relations
○ Streams CANNOT be directly operated upon
○ Highly convenient for comparing stored data to

streaming data

● Uses sliding window system in order to
convert streams to relations

Rule 5: Storm

● Interact with database using a Bolt
○ Perform joins with stored data
○ Insert value into database
○ Modify existing stored data

● No common language
● JDBC / ODBC

Rule 6: Guarantee Data Safety and
Availability

● "Tandem-style" hot backup and failover
● Secondary system synchronization

Rule 6: STREAM / CQL

● Provides similar data security to DBMS

● No obvious form of data backup, but could
be accomplished with two separate systems
taking in the same stream

Rule 6: Storm
● Guaranteed tuple processing

○ At-least-once
○ Exactly-once (Trident)

● Highly available / Automatic recovery
○ Worker node failure
○ Supervisor failure
○ Nimbus failure

Rule 7: Partition and Scale
Applications Automatically

● Distribute processing across multiple
processors and machines

● Incremental scalability

● Facilitating low latency

Rule 7: STREAM / CQL

● No distributed system

● Load shedding
○ Dynamically degrades performance based on the

velocity of incoming data
○ Reduces load in order to minimize latency
○ Load manager chooses locations that will distribute

error evenly across all queries

Rule 7: STREAM / CQL (cont)

Load Shedding

Rule 7: Storm
● Distributed

○ set number of workers
○ set level of parallelism for each component

● Automatic rebalancing for adding nodes

Rule 8: Process and Respond
Instantaneously

● Low latency & real-time response

● Highly-optimized, minimal-overhead
execution engine
○ minimize the ratio of overhead to useful work
○ All system components to be designed with high

performance

Rule 8: STREAM / CQL

● Query plans are
merged with existing
plans when possible

● Heuristics to improve
efficiency
○ Push selections below

joins
○ Maintain and use indexes
○ Share synopses and

operators

Rule 8: Storm
● Disk write not in critical path

● ZeroMQ used for efficient network
communication

● Performance varies by topology

● One benchmark: 1m tuples per node per
sec

Conclusions

● Greatly depends on the application
○ Not one-size-fits-all

● Rules were made to be broken
○ SQL not necessarily required
○ Non-deterministic processing can be ok

● Some rules more important than others
○ Maintain velocity of data
○ Integrate stored and streaming data
○ Data availability/scalability

Works cited

● STREAM / CQL
○ http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf

○ http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf

○ http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf

● Storm
○ http://cs.brown.edu/~ugur/8rulesSigRec.pdf

○ http://www.doc.ic.ac.uk/teaching/distinguished-projects/2012/k.nagy.pdf

○ https://github.com/nathanmarz/storm/wiki/Tutorial

http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://ilpubs.stanford.edu:8090/657/1/2004-3.pdf
http://cs.brown.edu/~ugur/8rulesSigRec.pdf
http://cs.brown.edu/~ugur/8rulesSigRec.pdf
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2012/k.nagy.pdf
http://www.doc.ic.ac.uk/teaching/distinguished-projects/2012/k.nagy.pdf
https://github.com/nathanmarz/storm/wiki/Tutorial
https://github.com/nathanmarz/storm/wiki/Tutorial

