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Abstract

Event stream processing (ESP) applications target the

real-time processing of huge amounts of data. Events tra-

verse a graph of stream processing operators where the

information of interest is extracted. As these applications

gain popularity, the requirements for scalability, availability,

and dependability increase. In terms of dependability and

availability, many applications require a precise recovery,

i.e., a guarantee that the outputs during and after a re-

covery would be the same as if the failure that triggered

recovery had never occurred. Existing solutions for precise

recovery induce prohibitive latency costs, either by requiring

continuous checkpoint or logging (in a passive replica-

tion approach) or perfect synchronization between replicas

executing the same operations (in an active replication

approach). We introduce a novel technique to guarantee

precise recovery for ESP applications while minimizing the

latency costs as compared to traditional approaches. The

technique minimizes latencies via speculative execution in a

distributed system. In terms of scalability, the key component

of our approach is a modified software transactional memory

that provides not only the speculation capabilities but also

optimistic parallelization for costly operations.

1. Introduction

Most modern computing systems produce huge amounts

of information, making the storage of all generated data

unrealistic, if not impossible. Often, data has to be processed

in real time to sort the important items that must be

preserved from those that can be discarded. We refer to this

task as Event Stream Processing (ESP). The main goal of

ESP is to process and extract useful information from large

amounts of real-time data. The resulting information, with

greatly reduced size but much higher value, can then be

stored and/or used to trigger actions [1].

ESP systems have attracted significant attention in recent

years and have established a new field of research. Besides

throughput and processing latency, availability is a major

requirement for ESP systems. An ESP system typically runs

on network of computers. According to studies on the avail-

ability and failure rates in large computer clusters, one can

expect that several computers crash every day. Only recently

have researchers started to design and implement fault-

tolerant distributed event stream processing systems [2].

In order to implement fault tolerant ESP systems, transient

information like internal states and decisions must be recov-

erable after a crash. To that end, one can apply a combination

of logging and checkpointing: message logs can be used to

replay messages and in this way, regenerate internal state.

Of course, message logs might grow without bounds and

hence, one typically combines logging with checkpointing

of the internal state to be able to prune the logs. One trivial

approach is to log messages at the source components that

inject the event streams into a system, and use checkpointing

within the stateful processing components. However, this

approach will not work for ESP systems that are non-

deterministic and have external interactions.

To understand how ESP systems work, we need to look

at the types of operations involved and how these opera-

tions interact with each other. ESP applications are usually

architected in the form of an acyclic graph of computing

operators (see Figure 1). In such a graph, operators execute

different types of computations, for example: filtering, trans-

formation/conversion, enrichment (e.g., addition of offline

information), aggregation (i.e., combine multiple events in a

time/count window in order to generate a single event with

higher-level information, e.g., averages), join (combination

of events from multiple streams to produce a new event

with the combined information), and union (merge multiple

streams into a single one that contains all individual events).

Each of these operations has different requirements. For

example, filters normally discard or forward events based

only on their attributes. Thus, such operators do not depend

on any local state (i.e., they are stateless) and are completely

deterministic. Computing the average (an aggregate) of all

the events that occur within a given time interval, however,

depends on the current local state of the operator (i.e., the

events seen so far), but not directly on the order of the

events. A time window aggregation is therefore typically

stateful, but deterministic. At the other end of the scope,

join operators are both stateful and non-deterministic. They
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may depend both on a local state (i.e., which events have

already been seen and are waiting to be matched) and on the

order of the events (e.g., if one event from stream S1 can

be matched with more than one event from stream S2, then

the first event from S2 that arrives will trigger the join).

For stateless deterministic components, fault tolerance can

be provided by being able to replay the stream. This can be

implemented by having upstream components save all pro-

duced events until the next downstream components confirm

that the event has been processed and forwarded further. For

stateful deterministic components, it is necessary to replay

all the events to reconstruct the state, not only the ones that

were being processed. In general, a good approach is to have

stateful components execute periodic checkpoints of their

local state so that upstream components only need to keep

the events that have been processed after the last checkpoint.

This approach reduces the size of the log and speeds up

the recovery by not requiring the complete sequence of past

events to be replayed. Finally, non-deterministic components

(both stateless or stateful) require much more expensive

mechanism, the simplest approach being to do a complete

checkpoint before sending any event.

Because of the prohibitive cost of providing fault-tolerant

non-deterministic operators, fault-tolerant stream processing

systems often assume they can be replaced with weaker

deterministic versions [2], [3]. In [2], the authors explicitly

address only the deterministic operators. In [4], the authors

present how precise recovery1 can be achieve for non-

deterministic component through different fault tolerance

approaches (e.g., passive standby, active standby). However,

all the solutions have in common that they are extremely

costly in how they secure the non-deterministic decisions

before sending events downstream (e.g., by only forwarding

checkpointed tuples when using passive replicas, by having

consensus among replicas for every non-deterministic deci-

sions with active replication).

Despite the lack of efficient fault-tolerant support, non-

deterministic operators are important parts of an ESP appli-

cation. In general, non-determinism is caused by dependence

on time (either execution or arrival times), dependence

on arrival order of tuples on different input streams, or

usage of non-determinism in processing (e.g., Monte-Carlo

simulations, which are based on random numbers). As a

consequence, a simple union operator that joins two streams

and is followed by an order-sensitive component must log

the order in which events were selected from the input

streams. While aggregations are insensitive to ordering if

the aggregation window is based on the event timestamps,

aggregation windows based on system time depend on the

arrival times of the events. Furthermore, for count-based

windows, the order will always be important. Thus, many

1. Precise recovery means that the output results after recovering from a
failure will be the same as if no failure had occurred.

basic ESP applications may include non-deterministic oper-

ations and the respective non-deterministic decisions must

consequently be logged if the system must provide precise

recovery from faults.

It is important to also note that ESP systems must interact

with external systems like databases and Web services.

Hence, precise recovery is required to make sure that ex-

ternal systems do not see conflicting events. In this work,

we present the novel approach used in StreamMine [5],

[6], a distributed event stream processing framework in

development at the Technische Universität Dresden, to limit

the logging costs of non-deterministic fault-tolerant oper-

ators. StreamMine has the distinguishing feature of using

speculation to parallelize stateful components [7], which

allows us to send events speculatively before the log is com-

mitted to disk. The result is that all the logging operations

required along the computation graph can be executed in

parallel, reducing the processing latency by several orders

of magnitude.

This paper is structured as follows. In the next sec-

tion, we introduce a simple example application with non-

deterministic operators that we use through the paper to

illustrate our mechanisms, and we describe the system

model, including details of the workings of StreamMine.

In Section 3, we discuss the underlying speculation support.

We evaluate the benefits of our approach in Section 4 and

compare it with related work in Section 5. Finally, we

conclude in Section 6.

2. Background and system model

We introduce in this section important background infor-

mation about fault-tolerant even stream processing, includ-

ing an example application used throughout this paper. We

then discuss the system model considered in this work.

2.1. Distributed event stream processing

As previously mentioned, event stream processing appli-

cations are usually composed of a collection of components

(computing operators) organized in an acyclic graph. In

distributed settings, components are located on multiple ma-

chines and events are forwarded over the network between

the components.

In the paper, we will consider a typical ESP example

application (see Figure 1) divided into 5 processing steps.

In the first step, events are generated by Publisher

components (e.g., financial events in a stock exchange).

These two event streams are merged and processed (e.g.,

events are analyzed and aggregated with previous events)

by the stateful operator Processor. The third processing

step takes place at the Enrich component, which adds

some information to the event (e.g., data retrieved from

a database). This step is costly but, being stateless and
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Figure 1. A simple prototypical ESP application graph.

unaffected by the order of the events, it can be parallelized

by simply replicating the component. Next, the Split

component balances the processing load by splitting the

stream among several consumers. Finally, the events are

consumed in the last step.

2.2. Fault-tolerant distributed ESP

Consider again our example of Figure 1. The

Processor operator has a local state that was constructed

based on the events received so far. In order to provide

fault tolerance, we must be able to reconstruct this state in

case of a failure. The reconstruction of the state is based on

events received from the two sources and, because the order

of the events received from each source matters, the input

events (or at least their ids) are logged as they are received.

In addition, it is also possible that the computations depend

on some non-deterministic decisions, for example, random

numbers or physical time during the processing of the

event. These non-deterministic decisions are also logged.

Furthermore, to avoid that the log grows indefinitely the

Processor operator is also periodically checkpointed.

When a failure occurs, the operator restores its latest

checkpoint and replays the messages stored in the log, then

it asks the upstream nodes to replay messages starting at

the last logged messages from each source. Alternatively, if

the operator logs only the ids of the messages, it requests

a replay based on the messages that had been processed

until the latest checkpoint and use the logged ids so that

messages from different sources can be processed in the

same order.

The protocol for the logging procedure above is as fol-

lows: (i) when the Processor receives an event from

one of the sources (e.g., event 1 in Figure 1) it logs

the event (e.g., through control message 2 in the figure);

(ii) next, during the actual processing of the event, other

non-deterministic decisions may be taken and they also need

to be logged (e.g., through message 3); (iii) eventually, the

logged input events (step i) will get stable in the storage

(as notified by message 4) and if the complete events are

logged, the operator may notify (through control message

5) that such event will never be requested to be replayed

again and the upstream node may remove that event from

its output buffer; (iv) finally, the non-deterministic decisions

used during the processing will also get stable (as notified

by message 6) and the results of the processing can be sent

downstream (illustrated by event 7). Note that normally the

node must wait until the log is stable on disk, otherwise

events could be processed in different order during replay (or

use different non-deterministic decisions) and the operator

may reach a state different from the one expressed by the

previous outputs. Thus, although the new state would be also

valid, the inconsistency could have critical consequences.

Still during recovery process, the Processor compo-

nent may output duplicate events that had been already emit-

ted before the failure. Nevertheless, because any ordering or

additional non-determinism was logged before outputs were

sent, the duplicates will have the exact same information

as their first instances (including ids) and can be silently

dropped.

Now consider that the Split operator fails. If this

operator picks events from the inputs based on arrival order

and randomly selects one downstream node in order to

balance the load, the input order must be logged together

with the random decision in order to ensure a replayable

output. In this case, however, the operator is stateless and

no state must be rebuilt. The log keeps then only the

events that still may need to be replayed. Therefore, no

checkpoint is necessary and logs are truncated based on the

acknowledgments from downstream nodes (i.e., similar to

message 5 in the case of the Processor operator). This

example highlights the challenges of adding fault tolerance

to distributed ESP applications.
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2.3. System model

We assume an ESP application as an acyclic graph of

computing operators. Each operator can be configured as

being speculative or not. When executing, all events sent by

non-speculative operators are final. A final event is an event

that will not change anymore. In case of an failure, if a

final event reappears it will have the exact same content

as the original one and can be silently dropped. On the

other hand, a speculative operator runs under control of

a software transactional memory (STM), which will be

detailed later. During their execution, speculative operators

may issue events, which may be final or speculative. A

speculative event is an event that is not guaranteed to be

final, i.e., in case of a failure, it may not reflect the actual

state of the operator that generated it, and it may be later

revoked.

The specification of an operator is independent of its

configuration and is done by providing an optional initial-

ization method (which is called during the system start up,

to allocate and initialize resources), a required processing

method (which will be called for each event that arrives

in one of the input streams), and an optional termination

method (called once before system shutdown). In case of

a fault-tolerant application, the initialization method should

be able to handle the recovery process, with the help of

methods provided by the ESP system. The operator functions

are plain C source code enriched with some library methods

provided by the system. The insertion of the instrumentation

instructions in the speculative components, which is required

for speculation support, is done using TANGER [8] at

compile time.

One major limitation regards the usage of “non-

speculative external actions”, i.e., operations such as I/O

that cannot be performed speculatively. Due to the very

nature of the speculation, which may require rollbacks and

re-executions, non-speculative external actions should not

be performed in speculative operators, or explicit undo

functions must be provided.

The specification of a component also includes its network

address for listening to connections, as well as the ad-

dresses of its downstream neighbors. Except when explicitly

mentioned, operators are operating system processes that

communicate with their neighbors via TCP connections.

These processes are independent and can be placed on the

same host or across distributed machines.

2.4. The logging algorithm and its costs

The logging algorithm used in StreamMine works as

follows. When executing an operation in a component (using

one or more input events), the processing function issues

an asynchronous storage request for its non-deterministic

decisions. Later, when the processing is finished and the

resulting events are ready to be sent, they are blocked until

the non-deterministic decisions have been committed to disk.

The storage requests are handled by a set of threads that can

write to different data stores in parallel in order to maximize

throughput. Thus, if the user configures N storage points

(e.g., local disks, NFS mounted disks), there will be one

thread per point plus 1 extra thread that collects the requests

while the others are busy, thus, using N + 1 threads total.

When a thread finishes writing a set of decisions, it

releases its associated storage point and hands it to the

thread that was collecting requests, before taking over the

role of waiting for new requests. Eventually, when all the

storage requests associated with some output events are

written to the stable storage, these events may be forwarded

as final. In case of speculative components, the events are

output as soon as they are generated, but they are tagged as

speculative.

To get an idea of the logging costs, we have experimented

with a simple system composed of just two components.

Each component consumes one event at a time and outputs

one event per operation. For each event processed, the

component needs to log a 64-bit value as decision. In

Figure 2, we show the impact of the logging in a non-

speculative system for different configurations. We use three

logging configurations in which the system is equipped with

one, two, and three local hard drives (referred to as 1 disk,

2 disks, and 3 disks, respectively). In addition, we have

simulated two logging configurations, where we assume a

very fast disk that is able to store a set of event logs in 10
ms and 5 ms (referred to as Sim 10 and Sim 5). These last

two configurations serve the purpose of simulating multiple

disks in the machine used for our experiments: a SUN T1000

machine with eight cores and four hardware threads per core

(and thus, parallel processing capabilities), but with a single

disk that would represent a bottleneck.
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In this experiment, the two components are in two threads

of the same process and share the same logging queues

and storage. One can observe that the costs of logging in a

network with only two components is already very high. The

speculative approach provides considerable gains because

the logs of components can be written in parallel. A more

detailed evaluation will be presented in Section 4.

3. STM-based distributed speculation

It this section, we give an overview of how software

transactional memory (STM) is used to support specula-

tion in stream processing operators. STM is an optimistic

concurrency control mechanism that speculatively executes

lightweight transactions in multiple threads and, upon con-

flict, automatically aborts and restarts the offending trans-

action(s). For details on the STM and on the usage of

speculation to optimistically parallelize stream operators, we

refer the reader to [7], [9]. Without speculation, operators

have one or more working threads that collect events from

the input queue and call the operator’s process() method,

passing the input event as parameter and receiving an array

of output events as result. The processing method carries

out some computation and can generate output events. With

speculation, a transaction is created using as arguments

the operator’s process() method and the input events.

The modified software transactional memory will execute

the function under transactional support, which means that

all memory accesses (e.g., read, write, memory allocation,

memory release) that affect the local state of the component

will be intercepted by the STM. Memory accesses for

addresses with local scope do not need to be intercepted.

During the processing of an event, all writes are buffered

and no modification is performed to the actual data until

the transaction commits. Each time a memory location is

written, the STM looks in a shared metadata region, which

we call the “lock array” (see [9] for details), whether a

concurrent transaction is also updating the same location. If

that is not the case, the transaction registers itself as a writer

in the lock array. When reading a memory location, the

transaction will also check whether a concurrent update is

being performed. If no conflict is detected until commit time

and the transaction is final, it applies all buffered updates to

the shared memory and release all its locks. If the transaction

is speculative, it waits in pre-commit stage and does not

unregister itself from the lock array.

By default, a transaction cannot commit if at least one of

the events it used is still speculative. When a transaction

generates events, the STM checks if the transaction is

speculative. If that is the case, any event generated by

the transaction is also marked as speculative. Once the

transaction receives the authorization to commit (by getting

an appropriate final message, and/or not depending on any

other still open transaction, as we will discuss later), it can

write its buffered updates. Thereafter, the events generated

during the processing are forwarded as final.

Now consider that a transaction is still open, i.e., it

finished processing and is just waiting for the commit

authorization, when a new speculative event arrives. If the

transaction that processes the new event does not conflict

with the first one, the reads and writes take place as

detailed above and there is no interference between the two

transactions. Otherwise, if the second transaction wants to

write to a memory location already written by a previous

transaction, the conflict will be detected when looking into

the lock array. Conflict resolution typically involves aborting

one of the offending transactions, possibly after waiting

some time in case the conflict would be transient.

In the context of this work, transactions remain open

because they are waiting for the confirmation that any

preceding logging operation in other components has suc-

cessfully committed. Taking this into account, we allow

a later transaction to read or overwrite buffered values of

a preceding transaction that has completed its execution

but is still open. The success of the second transaction is

then conditional to that of the first one. Even if the later

transaction receives a commit authorization, it must wait for

the preceding transaction to commit. In addition, if the first

transaction aborts, the second one must also abort.

If the operator is configured to process multiple events

at the same time, i.e., optimistic parallelization is enabled,

upon conflict we abort and restart the transaction associated

with the event that arrived last.

3.1. Example

In order to illustrate how speculation works and how the

fine grained control enabled by the STM can help, consider

an expanded version of our example from Figure 1. In

this expanded version, the publishers are in fact graphs of

operators that can also generate speculative events. Assume

also that the operator Processor executes some kind of

classification, e.g., assigns events to one of several classes

and outputs how many elements are currently on that class.

Consider now the case that publisher P1 generates a

speculative version of an event E1, namely E′

1
(e.g., some

information used during the computation of E1 needs to be

logged and is not yet stable). Then, publisher P2 generates

a final event E2 (i.e., no non-determinism, and thus, no

logging, was present during the computation of this event).

These two events cause transactions to be created in the

operator. First, assume no collisions occur. During the pro-

cessing, event E′

1
will be assigned a class and an output

will be generated, but also flagged as speculative. After that,

event E2 is processed and is assigned a different class and

an output is generated with the current counter for the class.

Because, event E2 is not speculative and did not use any

state that had been speculatively modified (i.e., E′

1
modified
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another class), the output will not be speculative, even if it

is out of order.

Alternatively, consider that there is a collision, i.e., events

E′

1
and E2 belong to the same class. In this case, the output

caused by E2 will be also marked as speculative because

it is not guaranteed that upon a failure the same E′

1
will

be generated and, thus, the same counter output would be

generated for E2. Later, if a failure occurs in the subgraph

P1 another (maybe again speculative) event E′′

1
may be

generated. Upon reception of E′′

1
, the transaction for E′

1

will be updated and if the differences are relevant, i.e., the

old values were used during the computation, the transaction

will rollback and re-execute. If during the re-execution, the

classification of E1 changes, the output for E2 must also

be regenerated. Therefore, the transaction for E2 is also be

re-executed.

The example above illustrates the cases where creating a

simple dependency relation between an output event and a

pending log operation does not suffice: (i) if a speculative

input of a component taints all component’s outputs until

the speculation is confirmed, more events would be marked

as speculative, tainting even more downstream components,

possibly delaying application’s outputs even when they are

in truth not affected; (ii) in an application with tens (or

even hundreds) of nodes, the failures will be frequent and

rollbacks should be done only when really needed and as

efficiently as possible.

4. Evaluation

As previously explained, the greatest potential of specula-

tion in fault-tolerant ESP systems is the ability to parallelize

the writing of the logs to stable storage. We have seen

already in Figure 2 that in a network with two operators, the

logging costs are approximately halved in the execution with

speculation activated. To evaluate the impact of speculation

in a more complex processing graph such as the one in

Figure 1, we analyze the impact of the checkpoint in a graph

with 2 to 7 operators that need to log their decisions. This

experiment was executed in a single SUN T1000 machine,

with each operator running as a separate process connected

to its neighbors through a TCP connection. The machine

has enough hardware threads for not having contention on

the processor and, to avoid bottlenecks on disk accesses, we

used the simulated checkpoint as discussed in Section 2.

As expected, the latency for the speculative executions is

nearly constant regardless of the number of operators (see

Figure 3). In a real distributed scenario, for each remote

TCP connection there would be a latency increase from a

few hundreds of microseconds in LAN settings to up to tens

of milliseconds in WAN settings. Nevertheless, these added

latencies would still be shorter to the delays produced by

the logging and, thus, the graph would have a similar shape.
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Figure 3. End-to-end latency for a network with different

number of operators and logging times.

In the experiments above, the processing costs inside the

operators were very low, i.e., in the range of microseconds.

The optimistic parallelization of operators by StreamMine

becomes even more interesting when processing costs are

high. This is the case, for example, when data requires

sophisticated analysis such as deriving models through com-

puter learning algorithms, or when costly stream analysis

operators (e.g., top-k [10]) are used.
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execution in which the event inter-arrival time drops

below the sequential processing time during interval

[15, 25] from the start of the execution.

We first consider a scenario with a short burst in the

event rate, when the inter-arrival time of the events becomes

slightly lower than the processing costs: for a 10 seconds

interval (from time 15 to time 25) the processing costs of

the events is 10% higher than the inter-arrival time. In such

a case, the latency will grow sharply, and the system needs

a long time to recover as seen in Figure 4. Nevertheless,
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if we enable optimistic parallelization (by simply increasing

the maximum number of threads an operator may use), the

processing latency remains unaffected.
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It is important to notice that the benefits shown in Figure 4

can only be enjoyed if the operator semantics and/or the load

allow such parallelism. This is common, for example, in

stream analysis operators that uses sketches to represent the

stream and extract information (e.g., to answer continuous

queries). A sketch (e.g., count sketch [10]) is a limited

representation of the stream. When an event is received,

only parts of the sketch need to be updated or read. In

addition, because the part accessed may depend on runtime

information, opportunities for parallelism cannot be explored

by automatic static analyzers.

On the other hand, if the semantics of the operator or

the current workload do not allow for parallelism, even with

the optimistic parallelization enabled the system still offers

a performance equivalent to the non-parallelized execution,

as depicted in Figure 5. In this experiment, we vary the

number of fields in the component state, as depicted in the

lower part of the figure: if the state contains only one field

(the minimum values in this sub-figure), any two concurrent

operator executions will interfere because they modify the

same field and, thus, there is no available parallelism; in

contrast, if there are several fields, the probability that

some events can execute in parallel without interferences

quickly raises. The middle part of the figure shows the

amount of computations that had to be rolled back because

of interferences or missed data dependencies. The upper

part shows the speed-up when up to 8 threads could be

used by the speculative component. As can be observed

by the increase in the abort rate (middle figure), a high

number of speculative executions are aborted when there is

no parallelism. If resources should be used with parsimony,

the system can be configured to trade promptness to explore

parallelism (i.e., how fast parallelism can be found and

exploited) against the amount of resources wasted when

there is none.

The speculation benefits for handling logging latencies

and exploiting available parallelism with sketch operators

can be seen by looking at how the system responds to

different event input rates (Figures 6 and 7). In this sce-

nario, we consider two operators, a union and a sketch

(in this case the count sketch from [10]), and evaluate

how this application responds to different intensities of

workloads. The union operator is computationally cheap, it

simply merge the two streams into a single one and does

not need to be parallelized. The count sketch, however,

requires a considerable amount of computation and is, thus,

parallelized using the speculative approach. The end-to-end

latency in this application when only the union does logging

is shown in the left-hand side of Figure 6. The case in

which both components do logging is shown at the right-

hand side. The latency added by having the sketch operator

do logging is clear before the system is overloaded with

messages (around 2500 events per second). Furthermore, the

throughput response of the system is shown in Figure 7. This

figure also highlights the overhead of the speculation: with a

single thread, the speculative operator is almost half as fast

as the non-speculative. Nevertheless, if the sketch operator is

allowed to use more threads this overhead is compensated by

the parallelization. For the scenario where both components

do logging, the throughput is not affected by the additional

logging.

In the last experiment, illustrated in Figure 8, we evaluated

the costs of a speculative execution and a rollback and con-

sequent re-execution (fixed transaction creation and commit

costs are not considered here). Two sets of three curves are

depicted. The upper set of curves correspond to an operation

that does expensive computations (around 800 µs, referred

to as T1), while the lower set corresponds to a much cheaper

operation (around 1 µs). In both cases, an increase in the

number of shared-memory accesses (horizontal axis) reduces

the ratio of computation to memory accesses. Note that

we do not limit that number of non-shared memory access

(e.g., local variables), only the memory accesses that are

potentially shared. As shown in the figure, there is a constant

overhead per memory access. Nevertheless, the rollback and

re-execution of the task takes approximately the same time

as the first execution, which confirms our argument that

the rollback is fast. In fact, in this experiment we consider

that an execution reads random positions from a large local

state and therefore, that a re-execution will not benefit from

caching effects of the first execution (which would be the

case if the new event caused only small changes in the

computation).
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Figure 6. Latency response for different input rates with speculation for parallelism and reduced logging costs in an

application with 2 operators.
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Figure 7. Throughput response for different input rates

with speculation for parallelism and reduced logging

costs in an application with 2 operators.

Finally, we want to point out one more scenario. In

some cases, an ESP system might be permitted to output

speculative results. For example, let us assume that the

ESP application analyzes huge amounts of events from a

large number of sensors and writes the analysis result to

an external resource like a file or database. Furthermore,

another application periodically looks at this resource to

take some action. If we allow that the records written to

the file be marked as “speculative” and we let the reading

application filter out speculative records that are not finalized

(e.g., with the help of a library), the total processing latency

will be independent of the logging latency. Using this

approach, processing latencies can be as low as a few tens

of microseconds with all components running on a single

multi-core machine or a few hundreds of microseconds when

running in a cluster.
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Figure 8. Comparison among the execution times of

non-speculative, speculative and rollback followed by

re-execution.

5. Related work

The problem of highly available distributed event stream

processing application is a topic that has only recently been

addressed. The most closely related work is from Flux [2]

and Borealis [4]. Flux applies the well-known process-

pair approach and focuses on deterministic operators. In

Borealis, the authors classify operator graphs in four classes

(repeatable, convergent-capable, deterministic, and arbitrary)

and present four types of recovery protocols (amnesia,

passive standby, upstream backup, and active standby). They

advocate that many applications do not require precise

recovery and they classify how precise each of the recovery

protocols is for the different operator graph types. Finally,

they discuss how three of the protocols could be adapted

to provide precise recovery for arbitrary (which is the only
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class that includes non-determinism) graphs. In the passive

standby approach, based on checkpoints, the operator can

only forward checkpointed tuples downstream. The active

standby approach, based like Flux on the process-pair model,

requires that primaries send the non-deterministic decisions

to the secondaries and then wait for the acknowledgment

before sending events downstream. In this paper, we address

the problems of the precise recovery of arbitrary operator

graphs and we provide a constant latency cost by using

speculation in the execution of the operators.

In general, rollback-recovery protocols using checkpoints

and logs are well understood [11]. Closely related to this

work is optimistic logging, which also assumes that nodes do

not need to wait for logging to become stable. Nevertheless,

optimistic logging was never popular in practice for several

reasons: (1) complex garbage collection protocols to main-

tain the required checkpoints (it may require multiple check-

points to be kept); (2) multi-host coordination to commit

output to the external world due to the asynchronous logging

of the determinants; and, (3) complex rollback protocols

that can need multi-host coordination or may cause multiple

rollbacks to be triggered.

Optimism is also the base of Virtual time [12]. There, the

author defines the meaning of speculation in a distributed

system, where instead of waiting for some message, nodes

can simply continue computing in the hope that later mes-

sages will not have earlier timestamps. In order to make it

possible, the nodes must keep checkpoints of the states and

log the messages they send or receive. In addition, they can

only discard these messages when a global consensus shows

that some old data is not necessary anymore. StreamMine

differs from Virtual Time (as well as from previous work

on optimistic logging) mainly in two ways. First, the usage

of the software transactional memory provides a way to not

only keep fine-grained checkpoints, but also to rollback only

when strictly necessary (e.g., even if a message changes, the

rollback and re-execution are not necessary when the change

does not affect a field that was read during the computation).

Second, because ESP applications are acyclic graphs, the

global consensus on a commit time (as with the thresholds

for garbage collection or the maximum available recovery

time, in the case of optimistic logging) is not necessary, it

is unilaterally determined by the upstream node that sent

the speculative messages. Other systems use the concept of

speculation to achieve parallelization in different contexts.

Pedone et al. [13] use optimistic delivery for atomic broad-

cast in distributed databases. The work from Ferretti [14]

uses speculation to hide latency in game servers but requires

application provided information to detect which events are

important for consistency. The system presented in [15]

enables an application relying on synchronous disk writes

to proceed before the writes are stable. In this work, the

overlap between writing and processing is enabled by having

the operating system to track the dependencies and hold any

externalization of data that is causally dependent on the not

yet stable write.

The parallelization of costly operations in an ESP is

addressed by Flux [16] using a partition-compute-combine

approach. Ivanova and Risch [17] also rely on this approach.

The main limitation is that it only works with operators

that can be processed according to this divide and conquer

pattern. Further, even in such cases, the merging phase can

be complex and limit the total speed up according Amgdahl’s

law. Streamflex [18] assumes stateless operators that can be

parallelized by simple replication. Borealis handles operator

scalability and latency management by applying coordinated

load shedding [19].

Software transactional memory [20] was introduced as

a synchronization mechanism that is easier to use and

potentially more scalable than locks. Instead of having the

programmer worry about acquiring and releasing locks,

blocks of code that must execute atomically are simply

encapsulated within specific programming constructs (trans-

actions). STM uses speculation to execute transactions in

parallel and detects conflicts at runtime, possibly rolling

back and restarting the execution of some transaction(s). We

extend the STM model by allowing transactions to perform

speculative operations that introduce dependencies with later

transactions. Then, not only executing a transaction in a

way that appears to be atomic is necessary, but also that

the order that transactions commit also obey the application

timestamps of the event. In addition, transactions may be

paused (e.g., because it is still too early to commit them)

and later, revalidated and committed by another thread.

6. Conclusions

In this work, we have addressed the problem of latencies

in a fault-tolerant event stream processing (ESP) system,

caused by the logging of messages and non-deterministic

decisions. Non-deterministic decisions need to be logged to

facilitate the replay of messages in the case of a failure. This

problem is of great importance as most event stream systems

need to perform non-deterministic operations, e.g., picking

events from one of two input streams or performing actions

based on random data. We have shown that with the help

of speculation, which is implemented as a layer below the

regular event processing operators, one can minimize the

impact of logging. The logging operations throughout the

stream processing graph can be performed in parallel without

compromising the precision of recovery or increasing their

costs. If the ESP system is permitted to output speculative

messages, our approach permits to hide all latencies intro-

duced by logging.

We have also shown the impact on the latency of paral-

lelizing computationally expensive operators in a processing

graph via speculative execution. We have illustrated this

aspect with the help of a sketch-based operator. Sketch-based
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operators are suitable for optimistic parallelization, but not

necessarily for more traditional compiler-based techniques.

In summary, speculation has proved to be a valuable tech-

nique for ESP systems and is a key feature in StreamMine,

an ESP processing framework currently in development at

TU Dresden.
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