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ABSTRACT 

Relational query optimizers have traditionally relied upon table 
cardinalities when estimating the cost of  the query plans they 
consider. While this approach has been and continues to be 
successful, the advent of  the Internet and the need to execute 
queries over streaming sources requires a different approach, since 
for streaming inputs the cardinality may not be known or may not 
even be knowable (as is the case for an unbounded stream.) In 
view of  this, we propose shifting from a cardinality-based 
approach to a rate-based approach, and give an optimization 
framework that aims at maximizing the output rate o f  query 
evaluation plans. This approach can be applied to cases where the 
cardinality-based approach cannot be used. It may also be useful 
for cases where cardinalities are known, because by focusing on 
rates we are able not  only to optimize the time at which the last 
result tuple appears, but also to optimize for the number of  
answers computed at any specified time after the query evaluation 
commences. We present a preliminary validation o f  our rate- 
based optimization framework on a prototype XML query engine, 
though it is generic enough to be used in other database contexts. 
The results show that rate-based optimization is feasible and can 
indeed yield correct decisions. 

1 I N T R O D U C T I O N  

For the past twenty years, query optimization has been an 
intensively studied area of  database system research. Most 
modern optimizers are cost-based in that they decide between 
execution plans by minimizing the estimated cost of  evaluating the 
query. A fundamental technique used in cost estimation is 
cardinality estimation - optimizers take as input the cardinalities 
of  tables at the leaves of  a query tree, and then use selectivities of  
operators in the tree to estimate the cardinality of  the input to 
operators further up in the tree. To convert cardinalities to costs, 
optimizers use functions that estimate the cost per tuple of  each 
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operator. While this approach is not  perfect, it is very effective 
in most traditional DBMS applications. However, as we move to 
the Intemet  domain, this approach, in its current form, may n o t  

even apply. The reason for this is that if  the leaves o f  the query 
tree correspond to incoming network streams, not only is their 
cardinality often not known, in some cases it may not even be 
well defined (e.g., in the case o f  infinite streams.) 

To allow the optimization of  queries in the presence o f  
streaming data, a new approach is needed. In this paper we 
propose rate-based optimization for such applications. As we will 
describe, in rate-based optimization the fundamental statistics 
used are estimates of  the rates of  the streams in the quer/  
evaluation tree (rather than the sizes o f  intermediate results.) 
Cardinality estimates, when present, aid us in making better 
decisions but they are not  required. 

As a concrete example motivating our approach, consider a 

situation in which we have two selection operators cyl and ere 
that have comparable selectivities but are very different in how 
quickly they can transmit an input to the output. To put 
numbers to the example, assume each predicate's selectivity is 
0.1; inputs to the system arrive at a rate of  500 per second; and 

or1 is able to process 50 inputs per second, while ere is so fast that 
for all practical purposes it can process data as fast as it receives 
it. Finally, assume we wish to run a query that applies the two 
selections in series to an infinite stream. Figure 1 presents a trace 
of  the two possible execution plans. 

The interesting parameter to note in Figure 1 is the Transmitted 
column, which represents the output rate. Even in this simple a 
case, we obtain a ten-fold performance improvement in terms of  
output rate with a simple switch o f  their execution orders. 
Moreover, the first execution plan creates an ever-increasing 

backlog of  delayed inputs at c~I, while the second plan does not  
delay its inputs. 

A traditional cardinality-based optimizer would not be in a 
position to distinguish one plan from the other. This can be 
seen as follows. Using a standard cardinality-based model, the 

cost o f  the first plan is ]II .c,+ III .~.ce, where III denotes the 
input's size, fi  the predicate's selectivity factor and ci the cost per 
mple for predicate i. Similarly, the second plan's cost is 

III.c2+lll.fl.cl. Unfortunately, since the size o f  the input is 
infinite, the cost for each plan is infinite, both wil_l be of  equal 
cost, and the optimizer will have no way to choose between 
them. 
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Figure  1: T w o  p o s s i b l e  e x e c u t i o n  p lans  over t ime.  T h e  
T r a n s m i t t e d  c o l u m n  d e s i g n a t e s  the output  rate. 

In this simple case, there is a way to "hack" existing technology 
to make it apply. We could start with an optimization framework 
for queries with expensive methods, like the one in [8], and choose 
an arbitrary constant K as the input cardinality. Then the 
optimizer will choose the right plan, since the correct plan is 
independent of  K. However, in general, this approach will fail. In 
particular, in plans that combine multiple input streams, or 
combine local files and input streams, an arbitrary choice for K 
will not  suffice, because combining multiple branches of a plan 
with arbitrary "faked" input sizes will only find a good overall plan 
by dumb luck. 

Basing our optimization on rates rather than cardinalities solves 
this problem in a systematic way. Rather than asking, "What is the 
cost of  evaluating this query plan?" we ask, "what is the expected 
output rate of this query plan?" By optimizing for output rate, we 
can choose the correct plan in the preceding example; as we will 
show, we can also optimize more complex plans with multiple 
branches. 

A rate-based framework has other advantages in addition to 
working in the "infinite input stream" case. As one example, a 
rate-based optimizer can make better decisions than traditional 
optimizers if the inputs are finite streams that are accessed at 
widely differing rates. For another example, as we will show, for 
many query plans, even with fixed uniform input rates the output 

rate of plans vary with time. Since our framework lets us 
estimate rates as a function of  time, the rate-based approach 
allows us to optimize for any desired point during the execution 
- we can optimize for the most possible outputs in the first 10 
seconds. Furthermore, since the number of  tuples produced by 
time t is just the integral of  the rate from time zero to t, we can 
also use rate-based optimization to optimize for the first k 
results, for arbitrary k. This ability may render rate-based 
optimization useful even in traditional database applications 
(since a scan of  a disk-based table can certainly be viewed as a 
streaming input.) 

We evaluate our rate-based framework in an experimental 
study, which yields satisfactory results regarding the validity of  
our approach. Moreover, our study demonstrates that when 
optimizing for rates in a stream processing environment, 
choosing one plan over another is non-trivial, since simple 
heuristics such as "put the fastest streams at the leaf levels of  the 
plan", or "pull expensive operators higher in the execution 
pipeline" have situations where they fail. However, an 
unfortunate challenging aspect of our framework is that using 
rates and integrating them over time yields mathematical 
expressions that appear difficult to evaluate. To address this 
problem, we provide heuristics by which we can effectively 
approximate the cost of  an evaluation plan, and show that these 
approximations appear good enough to be useful in query 
optimization. 

The rest of  the paper is organized as follows: Section 2 
presents related work. Section 3 deals with the estimation of 
output rates for the most important operators appearing in a 
query execution plan, while Section 4 presents our general 
framework for rate-based query optimization. Section 5 presents 
an experimental study and validation of  the optimization 
framework. Finally, Section 6 summarizes our conclusions and 
identifies future research directions. 

2 R E L A T E D  WORK 

The seminal paper on cost-based query optimization was [16]. 
Other optimization models have been proposed, especially in the 
areas of parallel query optimization, using cost models that are 
not  cardinality-based but instead deal with resource scheduling 
and allocation [7], [13]. The Britton-Lee optimizer could 
optimize for the first result tuple [18], while in Mariposa [17] the 
optimization criterion was a combination of  execution time and 
resource utilization. Modeling streaming behavior through input 
rates and modeling network traffic as Poisson random processes 
have appeared in many contexts, including [3], although to our 
knowledge it has not  been applied in the context of query 
optimization. 

A lot of  work has been carried out in the areas of  non-  
blocking symmetric join algorithms [2], [22], [24], which aim at 
producing plans that do not  block their execution because of 
slow input streams. Our framework indicates that with variable 
rate sources it is beneficial to employ such algorithms. In the 
same context, methodologies aiming at avoiding blocked parts of 
an execution plan at runtime [23] can benefit from our 
framework of rate optimization by starting with and/or  
switching to plans for which the predicted output rate is 
maximized. 
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The most closely related areas of  work come from the adaptive 
query execution and dynamic re-optimization frameworks of  [2] 
and [10]. In these frameworks, the main concern is to dynamically 
monitor an execution plan and identify points of sub-optimal 
performance. Once such points are identified, the system can 
choose to reorganize the plan in a way that is expected to yield 
better performance. In [10], such points are detected by 
incrementally measuring the cardinalities of  partial outputs and 
comparing them to the optimizer's estimates. If  the measured and 
estimated cardinalities differ by a substantial amount, the 
optimizer is called to generate a better execution plan under the 
new information. In [2], the objective is to dynamically adapt and 
improve performance by rerouting inputs to particular operators 
thus improving overall performance. They initially choose an 
execution plan through a heuristic pre-optimizer and then 
continuously monitor the executing plan's performance. They also 
use rundme deviations from selectivity estimates as a criterion to 
identify sub-optimal performance. 

We view both of these frameworks as complementary to our 
work. Our rate-based optimization framework may be useful in 
conjunction with both these techniques - it could be used to 
choose an initial plan in cases where rate-based optimization is 
more appropriate than cost-based optimization. Then instead of  
switching plans when the runtime detects that the optimizer has 
botched a cardinality estimate, we would switch plans when the 
runfime detects that the optimizer has botched a rate estimate. 

Work has also been done in the context of continuous queries 
over data streams in two directions: the first one aims at 
characterizing the behavior of  these queries with respect to their 
memory requirements [1], [4]. Additionally, [6] deals with 
identifying and maintaining stream stalisl#s for sliding window queries. 
We expect most queries over streams to fit into such a window- 
based operation framework. Our work is, again, complementary, 
since we deal with plan enumeration and selection. Window-based 
operation is conducive in choosing the amount memory the 
execution framework allocates to the various join operators. It can 
therefore provide better estimates for the cost of  a join operator 
to our optimization framework. 

Finally, our work fits also into the re-optimization frameworks 
of [12], [15], which focus on identifying performance bottlenecks 
of an already executing plan and ways to overcome them. In that 
direction, we provide insight into why these bottlenecks may 
appear when dealing with network-resident, streaming data, while 
our cost model could be used to make run time decisions when re- 
optimizing. Moreover, in a re-optimization framework like the one 
of [12], the performance crossing points our framework identifies 
can aid in scheduling when re-optimization should take place. 

3 E S T I M A T I O N  OF O U T P U T  RATES 

We are interested in estimating the output rates of various 
operators as a function of the rates of  their input. In this paper 
we will concentrate on some important and basic operations that 
are used in relational, object-relational, object-oriented and semi- 
structured database systems: (possibly generalized) selections, 
projections and joins. 

Throughout this section we will make a number of simplifying 
assumptions. Our experimental evaluation suggests that while 
these assumptions may reduce the absolute accuracy of  our 
estimates, the estimates so derived are good enough to be useful 
for rate-based query optimization. However, it is certainly 
possible (indeed, likely) that future work wiU discover better 
approximations that can be used with our framework to further 
increase its accuracy. 

All of  our subsequent computations build on one simple 
observation: the rate of a stream is defined to be the number of  
data objects transmitted, divided by the time needed to make this 
transmission. For clarity of  exposition we will concentrate on 
the transmissions made within approximately one time unit. The 
general formula is as follows: 

Number of ou~uts transmitted E q u a t i o n  1 
Ouqmt rate 

Time needed to make the transmission 

In what follows, we will use the cost variables of Table 1 to 
model an operation, expanding upon them as we present the 
cost model. Whenever we need to refer to an input rate, we will 
refer to it by using the symbol ri, while ro refers to an output rate. 
In the case of  joins, we will refer to the pak of  inputs with r/for 
the left input and r, for the right input. 

Table  1: Cost  variables used  in  the es t imat ion  of ou tpu t  
rates 

Cost Meaning 
Vatiab k 

c .  

c~ 

G 

C 

T 

Cost of  projecting parts of an input object 

Cost of performing a selection on an input 
object 

Cost of handling an input coming from the left- 
hand side of a join 

Cost of handling an input coming from the 
right-hand side of  a join 

Cost of  making a single transmission 
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3.1 Projections 
Given that each input has a 
handling cost, there are two 
cases that we have to consider: 

1. The cost of  performing one 
projection is less than or 
equal to the rater-arrival 
time for input objects 

2. The cost of  performing one 
projection is greater than 
the inter-arrival time for 
input objects ( C ,  > / ~  ). 

In this discussion, we 
incorporate the transmission 
cost T into the handling cost. I f  
we want to distinguish between 
them, we can calculate the cost 
o f  handling an individual input 
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F i g u r e  2: R e l a t i o n  b e t w e e n  c o s t  a n d  inter-arrival  rate.  Variable  4" mode l s  an i n p u t  rate.  

as C~r+T. Figure 2 shows the consequences o f  each case. In the 
first case, the inter-transmission interval is equal to the inter- 
arrival interval, with the only difference being that the first output 

element appears after C~ time units, so ro=ri. In the second 
scenario, the situation is more complicated but we can figure out 
the inter-transmission interval from Figure 2 by observing that 
this interval has to be equal to the cost o f  handling one input. So, 
the transmission rate is the inverse o f  that, or ro = / ~ , .  In most 

cases we can safely assume, however, that the cost o f  making a 
projection is low, so for small values o f  C~e ro = ri. 

3.2 Selections 
For selections we need to incorporate the selectivity of  the 
predicate under evaluation. Given the input rate, the number o f  
input objects in one time unit will be ri. Assuming a uniform 
distribution, the number of  objects appearing in the output will be 

f ' r i ,  where f i s  the predicate selectivity. We can calculate the output 
rate in a way analogous to the calculation of  the projection output 

rate, with the only difference that we are using Ca instead o f  C~ 

The output rate will then be r0 = f . r  i i f  C a _</~ and r0 = / ~  if  

C a > / ~ .  Again, in most cases it is safe to assume that C a _</~, 

so ro=~ri. 

3.3 Joins and Cartesian Products 
Joins are more complex than projections and selections because 
they have two inputs. Before proceeding, we must first be clear 
about what it is that we are trying to derive. Our model seeks to 
answer the following question: at any point tt in the query 
execution, some left inputs and some right inputs may be arriving 
into the join. I f  rl is the left input rate, and r~ is the right input 
rate, what is the output rate that will be observed for results 
generated by the arrival o f  these input tuples? Note  that this rate 
may not be the observed rate at time t. In particular, if  the system 

spends time processing these arrivals, the output tuples 1 
corresponding to these arrivals may not appear until some point 
in the future. The rate our model predicts will be the rate at that 
point. Additionally, asking, "which tuples arrived at an arbitrary 
instant f '  does not  make sense, since time is continuous. So we 
instead ask about discrete time intervals, and then generalize 
from these discrete intervals to approximate the continuous case. 

First, we need to compute the number o f  answer tuples that 
will be generated by the arrivals in some specified time interval. 
The number o f  result objects generated by the arrivals in one 

time unit, given we begin at time t, will be frrr~ . t  2, w h e r e f i s  the 
selectivity factor. This can be seen as follows: Assuming input 
rates rt and rr for the two input streams, at time t the number o f  

elements read by the left stream will be rrt while for the right 

stream ret. How many result tuples will be generated from these 
inputs? I f  we assume that we started at time zero, the number o f  

result objects from these inputs will be f r r r ,  (This is just the 
number o f  tuples seen from the inputs times the selectivity o f  
the join.) 

Now consider the second time unit. At the end of  this 
second time unit, the contribution from the left stream to the 

output will b e f r r 2 . r ,  (the selectivity times the number o f  objects 
read from the left stream in the time unit from t to 2tt times the 
total number of  objects read from the right stream from time 

zero to 2t), while for the right stream it will be f re2 . r t .  Thus the 
total number o f  output elements 2 generated by arrivals during 

the second time unit will then be 2f2.rrrr-frrr~ (the subtracted 
term avoids double counting). The total number o f  outputs 
produced by arrivals during the first two time units will then be 

the  s u m f r r r r + 3 f r r r ,  Using the same logic, the total number o f  

i We use the term ttuple to signify an output result, since the 
database reader is more familiar with that term. The result does 
not  have to be a tuple in the relational sense, o f  course. 

2 In what follows, we will use the terms ttupple, output objectt, outputt 
and outputt elementt interchangeably to avoid repetition. 
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outputs generated by arrivals during the first three time units will 
be )Crrr,+3.~rrr,+5.~rrr,, We can take these inductive steps to 
compute the total output elements for any time t. 

We emphasize that we are talking about the elements generated 
due to arrivals during a time interval, not  about the elements 
generated during the time interval. In particular, again, if the 
elements take longer to process than the inter-arrival rate, the 
outputs will be delayed, perhaps substantially, by outputs 
corresponding to tuples that arrived during previous time 
intervals. 

Moving on to continuous time, we integrate these quantities 
over time. We need to solve the integral ro =jCrrrJ(2t-1)dt. Solving 
the integral for time yields the total number of output objects 
produced by a join operation for the input that arrives at any time 

t, which is aCrrrr.t.(t-1 ). 

Next, to calculate the rate that will be observed for these 
output objects, we need to compute how long it will take for them 
to be generated. Over a time interval / the join operator will have 
received rrt inputs from the left stream and r,.t objects from the 
right stream. The time to handle each of  the left inputs is by 
definition Clwhile for each of  the right inputs the cost is C. Then 
the time to process these input tuples will be rrt.Cl+rel'C, = 

t.(rrC~-r,.C,). Substituting the above results into Equation 1 yields: 

f . r j  .r, . t . ( t - 1 )  = f . r ,  .r, . ( t - l )  
ro= 

t . (r  I .Cl  +r r .Cr) r l .C l  +r r . C  r 
f . r l • r r • t E q u a t i o n  2 

r t .C  1 +r, . C  r 

Finally, we note that we made the implicit assumption above 
that the time to process the tuples arriving during time t, which is 
t'(rrC/+r,'Cr), is greater than t, which means that (rrC~r,.C,) > 1. 
If  this is not the case, the denominator needs to be replaced by 1, 
since output tuples corresponding to a given input cannot be 
produced before the input itself arrives. The above holds for 
Cartesian products as well, with the only modification being t h a t f  
__1. 

From Equation 2 it is clear that the output rate of a join 
operation is time-dependent. The time dependence is actually 
subder than that formula indicates, because for some join operator 
implementations the constants Q and Cr also depend on time (e.g., 
if the cost of  handling an input depends upon the number of 
previous inputs handled.) 

Since the rate is a function of  time there are optimization 
opportunities having to do with either maximizing the total output 
rate, or optimizing for specific time points of the operation. We 
will present such a framework in Section 4. 

3.4 Cost Models for Join Operator 
Implementations 

The purpose of  this section is to derive specific cost expressions 
for different join methods as a function of  their input rates. The 
cost can be separated into two parts, namely the cost of  handling 
an input from the left stream and the cost of  handling a right 
stream input. We consider only non-blocking join algorithms, 
specifically the non-blocking symmetric nested loops and the 
symmetric hash join. The cost expressions we devise are 

dependent on the number of input elements read up to the time 
point under consideration. The subsequent analysis assumes a 
join between streams' R and S, with input rates ra and rs 
respectively. It also assumes the cost of  each algorithm is further 
dependent on the four cost variables given in Table 2. 

A subtle issue that needs to be addressed here is that of  the 
input sizes. For a join operation to generate the complete result, 
it has to compare each record in one of  its inputs to each record 
in the other input. When inputs grow, so will the memory a join 
operator needs in order to ensure correct operation. If  the inputs 
are unbounded, infinite storage is needed. Clearly, this is a 
problematic situation. We expect, however, most streaming 
applications to be accompanied by window predicates that will 
effectively bound memory requirements. 

Table  2: N o t a t i o n  for cost  formulas 

Cost Meaning 
Variable 

move 

comp 

hash 

probe 

Cost of moving an input object from the input 
buffers into main memory for processing 

Cost of performing an in-memory comparison 
between two different objects 

Cost of hashing an object into a hash table 

Cost of  probing a hash table in a lookup 
operation and producing the output 

3.4 .1  Nes ted  Loops  Join 
The nested-loops join algorithm traditionally needs all of  the 
inner source's input present to execute properly. The outer 
source may be streaming, since late arrivals can be thought of as 
additional executions of  the inner loop. I f  the inner stream is 
not bound at execution beginning, however, the algorithm has to 
be modified. A straightforward non-blocking extension would be 
to insert all newly arrived inputs from the inner stream into a set, 
and whenever an inner loop ends, a second inner loop is 
executed for all late arrivals. This fits into partial results 
architectures, like the one in [21]. 

The algorithm needs to loop over all inputs of  the outer 
stream moving them into memory, and for each input compare it 
against all inputs of  the inner stream. The cost of  handling one 

left input arrival is then: Ct=move+ JSl,.comp=move+rst.comp, 
where I Sit  is the number of inputs read from stream S at time t 
and is obviously equal to the stream's rate multiplied by time. 
For right input arrivals, a loop over all the left inputs has to be 

initiated. The cost is then: C,=move+ I R I ,-comp= 

move+rRt.comp. 

3 .4 .2  Symmetric  H a s h  Join 
Symmetric hash join is by definition non-blocking. It keeps two 
hash tables in memory and for each arrival it hashes it into the 
corresponding stream's hash table, while at the same time using 
it to probe the other stream's hash table. The cost is then the 
same for both streams of  the operation and is equal to 
CFC,=move+hash+probe :  first move the input element into 
main memory, then hash it into the appropriate hash table and 
finally use it to probe the other stream's hash table. 
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Table 3 summarizes the arrival cost formulas for the algorithms 
we have considered. Non-blocking nested loops has a time- 
dependent aspect to its cost, so, as time progresses, the cost 
increases. Symmetric hash join, on the other hand, has a constant 
cost to handle its inputs. 

Tab le  3: Cost formulas for the join algori thms 

Algorithm Left arrival cost (C) Rz~ght arrival cost (C~) 

Nested loops move+rs.t .comp move+rwt.comp 

Symmetric hash 
join move+hash+probe move+hash+probe 

4 U S I N G  E S T I M A T E S  T O  O P T I M I Z E  
Q U E R I E S  
In this section we first describe the general problem that arises 
when considering using our rate estimates to optimize queries. 
Next, we discuss two simple heuristics as examples of  how the 
general problem might be simplified in practice. 

4.1 General Framework for Rate-Based 
Optimizat ion 

Section 3 shows how to compute the output rate of  an operator as 
a function of  the rates of its inputs. In the case of  join operators, 
the output rate is time-dependent. When asked to evaluate a plan, 
we can combine its various operations to come up with a function 
of time that models its output rate. Given the output rate of  a plan 
r(t) then the number  of results the plan will produce at any point 
in time tp is given by the integral of  the rate over time: 

# Ou~uts = ~ P r( t )dt E q u a t i o n  3 

The integral of  Equation 3 provides the general framework for 
rate-based optimization. The problem then becomes: given a 
collection of  plans Pi and their output rate r~ (t) as a function of 

time, how do we decide which plan to employ? There are two 
important optimization opportunities. 

• Optimize f i r  a specific time point in the execution process. The 
integral of  Equation 3 can be treated as an equation. Given 
a collection of plans and a time point to, by solving the 
integral we can estimate how many output elements the 
plan will have produced by that time. We can then pick the 
plan with the highest number  of  output elements produced. 
The question we are asking is "which plan will produce the 
most results by time to?" 

• Optimizeflr ou~utproduction size. In this case we reverse the 
procedure. Given an output size N we want to identify the 
plan that will reach the specified number of results the 
soonest and use it. In this situation we are asking: "which 
plan is the Rrst one to reach N results?" Notice that N can 
be the total number  of  results, or the first result, or any 
result size in between. 

The optimization opportunities we listed require computing 
the solution to an integral, which is inefficient for practical 
optimization purposes, as an optimizer can be expected to 
evaluate a large number of  plans, and numerically integrating 
each plan will be costly. Accordingly, we need to explore means 
to approximate the integral of  Equation 3. In the next section 
we will propose two such approximation heuristics for this 
purpose: local rate maximization and local time minimization. 

4.2 Examples  of  Heurist ics  
Devising efficiently applicable heuristics that generate good plans 
is a rich area for future research. In this section, our intent is to 
illustrate a general class of  heuristics rather than claim that these 
are the only heuristics tha t perform well in practice. Both of the 
heuristics we present aim at locally optimizing the plan under the 
premise that better local performance leads to better overall 
performance. We will concentrate on identifying plans with 
maximal rate over time, and plans that reach a specified number 
of  results as soon as possible. For the first case, we propose a 
performance estimate for each join operation of  the plan and we 
combine such estimates bottom-up to come up with an estimate 
for the whole plan. An optimizer will then aim at max4mizing that 
estimate. In the second case, we use the same performance 
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estimate, working top-down, to locally minimize the time needed to 
produce the estimated number o f  results required at each join for 
a total number o f  results to be reached. Both of  these heuristics 
can be used as performance metrics for existing optimizers. 

4.2.1 Local Rate Maximizat ion 
A local rate maximization framework builds on a simple heuristic: 
the plan with the maximum overall rate is the one that will have 
the maximum constituent rates. What we propose to do in a local 
rate maximization framework is to organize the plan in such a way 
that our rate estimates for each point o f  the plan are maximized. 
For join operations involving two primary sources o f  the query 
(i.e., joins that none o f  their inputs is the output o f  another join) 
we can devise an estimate for any given time interval tp, by treating 

the time variable as a constant and assigning it a value o f  t ~ ' ,  

thus assuming that the overall rate for the whole time interval is, 

according to Equation 2, equal to ,rc~+~,.c, z • As Figure 3 

shows, in making this choice we overestimate the rate for any time 
point x by as much as we underestimate it for a complementary 
time point tp-x. We then use this rate estimate to evaluate the 
whole plan performance 3 in the fashion Figure 4 depicts. After 
coming up with a heuristic estimate for all candidate plans we 
choose the most promising one. 

It is easy to incorporate this performance estimate in an 
optimizer. For instance, a dynamic programming optimizer 
dealing with streaming sources, instead of  calculating the 
traditional cost for a join operation, would use the heuristic 
estimate as a performance indicator, proceeding as in Figure 4. 
Notice that the estimate allows the incorporation of  any other 
CPU and I / O  metric by inserting it into the calculation through C: 
and C.  

f1(23)4 "~ "r(23)4 t/, 
r0 -- ~'C1+~23)4.C(23) 4 2 ~ ........... . 

.~ " '% 

[ 

"" ..... rt  ,/. '/"" ~x~ ~. 
• ..... j .... / \  , 

r23 -- ra'C2+r3.C3 2 ......................... " 

a v.. 
. :  .....,. ,: 
"'". . .  .............. ,.. " "  ,.. ,.... 

r2 r3 

Figure 4: Local  rate m a x i m i z a t i o n  for t ime  tp 

4.2.2 Local Time Minimization 
The local rate maximization heuristic identified an estimate o f  
how fast a join operation produces results in general. We can use 

this estimate as a further estimation of  how fast a join operation 
can produce a specific number of  results, when we wish to identify 
the plan that will produce that number o f  results as soon as 
possible. To devise this estimate we are based on a simple 
observation. The formula that connects output rate r, dme t and 

number of  outputs produced n is n=r.t. I f  we have an estimate 
of  the results we need to produce and an estimate o f  the rate at 
which we can produce them, then an estimate o f  bow soon we 
can generate them is the number o f  results divided by time, or in 
the previous formula, ~ .  

b 

t o = - ~  
.,.y......... .... r 0  ..,..........,..,.........,........... ,..... 

. : "  

/ \  / I/(23)4 / = • 
t ( 2 3 ) 4  * 

k r(23)4 "".....\ 

n (  r, N i 

_ P/23 
t 23 - - V  ~X1 r4 * 

~4 

b 
t / 2  r2 r3 h 

ll 3 

Figure  5: Requ i red  output  s ize  distribution for local  t ime 
m i n i m i z a t i o n  

We can incorporate this strategy into a more general 
optimization framework: suppose we are facing the operation 

At>4B~C. We wish to optimize for the time needed to reach 
25% of  the total output 4. We can tackle the problem by 
decomposing it into a number o f  equivalent sub-problems. To 
do so, we need to push down the number o f  elements each input 
to the final join should produce for the desired number of  
outputs to be produced. This can be done as follows. We know 
that the number of  overall outputs we optimize for is equal to 

0.25fAB'~C ]A t" ]B I • ] C]. Taking join sequence At>4(BNC) as 
an example, to reach our goal we approximately need to read 

40-25"fAB "fBc .]A] inputs from the base stream A and 

4 0 . 2 5 . f m . f B c  .]Bl.[Clfrom Bt:~C. Using this divide-and- 

conquer strategy we can handle arbitrarily complex join 
strategies. Figure 5 shows how we distribute the estimated 
number o f  required results between the various join operators o f  
the execution plan. We finally transform the problem into a 
minimization/maximization one" the plan that will reach the 
desired number of  outputs the soonest, is the one for which the 
latest time its constituents joins will reach their respective 
number o f  outputs is the smallest. The way we use the heuristic 
estimate o f  Section 4.2.1 is the following: We want an indication 

3 In fact it is possible, though not trivial, to come up with bounds 
as to how much we over- or underestimate each possible plan 
while heuristically evaluating it. 

4 Obviously, this strategy is not  only appficable for fractions of  
the total output size, it can be used to optimize for the total 
number of  outputs. 
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of  how much time each sub-problem needs to be completed. An 
estimate of this time is the predicted number of outputs for the 
sub-problem, divided by the rate estimate. 

We can provide the solution in a more formal fashion: Assume 
we have a recursive definition of  possible join execution trees. 
This definition consists of  a set of  join strategies, with each join 
strategy annotated with the desired number of outputs to be 
reached as fast as possible, the value of its metric, and the fastest 
time for this number to be reached. For instance, given join 

strategy A~(B~CC),  the information about it is encapsulated into 

{(A,nA,rz,tA), (B~xaC, nB~c, rB~c, tB~c) }. The notation here is that 
we encapsulate each point of  interest P (which can be a source 
stream, or the output of  a join) in the structure (P, np, ~, tp), in 
which np is the number  of  results we wish to reach, rp is the value 
of our rate estimate and tp is the estimation of  time we need to 

reach that number of results. Bt>~C can be further decomposed 
into {(B, nB, rB, tB), (C, nc, re, tc)}. It is up to us to decide how far 
down the execution plan we wish to descend. For instance, we 
may not want to descend all the way to stream level, but rather 

stop at the joins of  pairs of  streams (i.e., not  decompose BtxaC in 
B and C since we have an estimate for the rate of  the join 
operation). The notation here is that for an input B, the fastest 
time to generate the desired number of nB outputs is tn. A 
grammar for the structures is then: 

Info ~-- (Stream,ns, rs,ts) 

Tree ~ Info I ({Tree u Info}) 

Stream <-- S [Tree 

The input to our decision algorithm is a set of  such structures. 
Solving the problem involves three steps: (i) for each strategy in 
the set, find the maximum time needed to complete it, recursively 
going into the Tree structures; (ii) find the strategy with the 
minimum such time; ('fii) choose the join strategy that corresponds 
to the minimum time. The following algorithm presents a simple 
recursive program to perform the calculation over these 
structures, in which rain returns the best execution tree while max 
returns the maximum execution time within a single tree. 

ma.~(O, 0). 

max(Info v_) Tree, M) ~ Info = (S, ns, rs, ts), 
ma.~Tree, M,), 
ts = ns/rs, 
(M, > ts ? M = M, : M = ts). 

rain(O, .1_, oo). 

rain(Tree u Forest, 
BestTree, Cb) 

m,~,~Tree, Q, 
min(Forest, BestInForest, C9, 
(c,> c/? 

[BestTree = Tree, Cb = Ct] : 
[BestTree = BestlnForest, 
cb= c~) 

The algorithm provides for substantial flexibility with regards 
to the cost of  an operator. 
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5 EXPERIMENTAL VALIDATION OF 
T H E  FRAMEWORK 
In this section we provide experimental results to explore the 
validity of our rate-based cost model. We focus our attention on 
two questions: 

1. Does the cost model correct~ estimate individualplan pe~ormance? 

2. Is the framework capable of providing correct derisions regarding the 
best choice among a set of plans~ 

As is the case with traditional cardinality-based 
optimization, it would be unrealistic to expect the optimizer to 
be accurate to the granularity of  seconds. We did expect it, 
however, to be correct in terms of identifying points of interest 
in an execution plan. For instance, if two plans "cross" in terms 
of  which is best at some point, the optimizer should predict such 
a crossing point and roughly identify where it occurs. 

5.1 Experimental Setup 
For our experiments we used a synthetically generated XML data 
set for which we could vary the parameters of interest to the 
execution process, such as the various selectivities of  the join 
predicates and the rates of the streaming sources. The sources 
were essentially flat structures in a way they would appear if 
exported from a relational database. To investigate streaming 
behavior, we simply view the files as prefixes of  (potentially 
infinite) streams. The experimental data set consisted of  five 
such sources, with sizes ranging from 0.7MB to 9.3MB. 

Our experiments involved queries built out of  four equljoin 
predicates, with selectivities ranging from 10 .5 to 5.10 -3. Table 4 
presents the specifics of  our sources, while Table 5 presents the 
four join predicates and their respecuve selectivities. We treat the 

join predicate ..4t>~C as an expensive one, assigning to it an 
additional transmission delay, while for the rest of  the predicates 
their costs are equal to the cost of  the evaluation algorithm. 
Because of  its natural fit with streaming environments, we have 
used symmetric hash join as the evaluation algorithm for all join 
predicates. 

Tab le  4: Parameters  of the s t reaming  sources 

Source Number of tuples Size 

A 

B 

C 

D 

E 

5,000 0.7 MB 

10,000 1.5 MB 

20,000 1.8 MB 

50,000 5.9 MB 

100,000 9.3 MB 

All experiments were performed using the publicly available 
Java prototype implementation of  the Niagara Query Engine 
[14]. The hardware setup involved a Pentium-III processor 
operating at 500 MHz with 1GB of  physical memory running 
RedHat Linux 6.2. The data were read from flat XML files using 
Apache's XML Parser and the parsing startup time was 
subtracted from the results. Byte-code was generated by IBM's 

t ikes  Java compiler, while the runtime environment was SUN's 
1.3.1 Java Virtual Machine. The operators were run in an 
operator-per-thread fashion, using Linux's native threads. We 
simulated network traffic by inserting random delays between 



element reads. The arrivals were modeled as a Poisson process, as 
is often the case for network traffic [3], with a mean arrival rate 
equal to the stream's rate, which implies that the delays followed 
an exponential distribution with a mean equal to the inverse of the 
stream's rate (i.e., the inter-arrival delay.) 

Tab le  5: Jo in  predicates'  parameters 

Predicate Selectivity Handh'ng cost 

A M B  

A ~ C  

B ~ D  

D~xaE 

2.10-3 

5.10-3 

10-4 

10-s 

5 ms 

5.2 Validation of the Cost Model  
As a first step towards validating our optimization framework, we 
evaluated the performance of a three-way join query containing 

the predicates A M B  and AtxaC. We explored two execution 

plans: (ANB)~xaC and (At>~CC)txaB (see Figure 6). We assigned an 
inter-artival delay to each stream, with stream B being the fastest, 
having an inter-arrival delay of 2 milliseconds, while streams A 
and C were considerably slower with inter-arrival delays of 20 and 
10 milliseconds. We then fed each plan's parameters into an 
estimator we developed using the rate-based optimization 
framework as the plan evaluation criterion. The issue was to 
estimate the performance of  each plan as a plot of  output size vs. 
time. We asked the estimator to generate the time, in seconds, of  
each of the two plans for output sizes between 0 and 90,000 in 
increments of 5,000 tuples. The estimator's prediction is shown in 
Figure 7, while Figure 8 depicts the measured performance. 
Observing that the two plans had comparable predicted 
performance for the first 5000 result tuples, we decided to zoom 
in on the first tuples, generating the predictions in Figure 9. 

A ~ C  A M B  
/ \  / N  

A ~ B  C A M C  B 
/ N (20K, lOms) / N (lOK, ems) .. 

A B A C 
(SK, 20m~ (10K, 2ms) (5K, 20ms) (20K, 10ms) 

Figure 6: T h e  two plans  used  for initial  experimentat ion.  A 
thicker l ine denotes  a faster stream. 

After predicting the performance of the plans, we ran them 
through the execution engine, keeping track of the time at which 
each result tuple appeared. Although not exactly matching the 
predictions (the actual performance curve was more ragged than 
the estimated curve) the general behavior of each plan was similar 
to the prediction. More importantly, the cost model not only 
predicted there were time intervals for which each one plan 
outperformed the other, it also predicted the point, in terms of 
number of output tuples, at which the performance would switch 

between the two plans. As Figure 9 shows, plan (A~CC)MB was 

predicted to start outperforming (AtxaB)txaC once roughly 2,000 
result tuples appear, which is quite close to the real crossover 
point in Figure 10. The prediction, though, was farther off when 
predicting the actual time at which the switch occurred. As we 
have noted, however, at this point it is more important for the 

optimizer to identify crossing points in the graphs, rather than be 
precise in the granularity of seconds of  when these crossing 
points appear. 

100000 

80000 

2 

60000~ 

S 
& 
.~ 40000 

0 
20000 - 

0 (5 K,20ms)-(l 0K,2ms)-(20K, l 0ms) 

(SK,20ms)- 20K,10ms)-(10K,2ms) 

. . . . . . .  _ _ 

I 

i i - - -  

I / 
I 
I 
i 

- r - - - -  
I 
I 
I 

i 
i 
I 

50 100 150 200 250 300 

Time (seconds) 

Figure  7: Es t ima ted  p lan  performance  unt i l  the last result 
tuple 
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Figure  8: Measure  p lan  per formance  unt i l  the last tuple 

5.3 Complex Plans  
To further validate the optimization framework, we generated a 
five-way join query over all streaming sources. In this experiment 
we wanted to address two issues. The first was whether our 
framework was effectively capturing the order among different 
plans. That is, given a collection of  more complex plans than 
those of  Section 5.2, would it still correcdy order the plans? The 
second issue we wished to explore was whether there were 
simple rules about stream placement in plans that could render 
our optimization unnecessary. For instance, is it sufficient to 
place fast streams at the lowest levels of  the plan, or at the 
highest levels of the plan? 

45 



(5K,20ms)-(10K,2ms)-(20K,10ms) 4 I (5K,20ms) - (201 ,L l0ms) - (10K,2ms)  I 
6000 

5000 

°~4000 

3000 

g 

' ~  2000 

C 

1000 

p 

[ 

I f ~ I 

I I I I 

I " I I I 

I I t I 

. . . .  ? - - - 7  . . . . . . . . . . .  
I I 

I I 

20 40 60 80 100 

T u n g  ( s e c o n d s )  

Figure 9: Est imated plan performance for the first 
thousand tuples 
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Figure 10: Measured plan performance for the first few 
thousand tuples 

We organized the plans in three different ways, depicted in 
Figure 11, in which a thicker line denotes a faster stream. The first 
plan was a deep plan, with the fastest stream kept at the top end 

Dt~E A I ~ C  

/ %  / \  
xMc u aMD c 

Blxlo c 

A~a o AIXlB DI~U 

A B A B D E 

(5K, 20ms) (10K. 1 0 m s )  ( 5 K ,  2 0 m s )  ( 1 0 K ,  1 0 m s )  (50K. 5ms) (100K, 2ms) 

of the pipeline. The other two plans were bushy plans with one 
major difference. While in the first plan the fastest streams are at 
the lowest levels of the plan, the second plan keeps the fastest 
one in the middle of the join sequence, while the second fastest 
stream is kept at the lowest level of the pipeline. In what follows 
we will refer to the plans of  Figure 11 (a), (b) and (c) as Left Deep, 
Fast Leaves and Eve@ Spread respectively. 
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Figure 12: Est imated plan performance until the last result 
tuple for complex  plans 

As in Section 5.2, we first asked the estimator to predict the 
plans' performance in terms of  output size vs. the time at which 
that particular output size appeared. Figure 12 shows the result. 
Again, we noticed intervals for which one plan outperformed the 
others, so we zoomed in to the first few results tuples, producing 
the plot of Figure 14. We then executed the plans, producing the 
graphs of  Figure 13 and Figure 15 for the entire plan execution 
and for the first few tuples respectively. 

The optimizer's predictions, as far as ordering the plans and 
crossing points are concerned, were again correct. The plan 
performance estimations were that I_2fi Deep would be the 
slowest plan, while at the same time it would have comparable 
performance to Fast Leaves. Evens Spread on the other hand, 
would clearly outpeform the other two, starting to do so from 
the initial stages of  execution. 

Figure 14 shows the optimizer predicting that Left Deep would 
have marginally better performance than Fast Leaves for the first 
20,000 tuples, which is the actual case as Figure 15 depicts. 

A M B  

/ \  
A N C  DNE 
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(a) Left Deep (b) Fast Leaves (c) Evenly Spread 

Figure 11: The plans used for our experimentation. Each plan is annotated with the join predicates it computes,  A thicker 
line denotes a faster stream. 
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Figure 13: Measured plan performance until the last result 
tuple for complex plans 

What is also important is that there does not  seem to emerge a 
clear heuristic. We cannot say that fast streams should be kept 
away from the highest levels o f  the plan, as is the case in Le E Deep, 
nor that should be pushed to the lowest levels, as is the case in 
Fast Leaves. The best plan is Eve@ Spread, which keeps the fastest 
in the middle of  the plan, while the second fastest is at the leaf 
level. A lot more experimentation has to be carried out before a 
heuristic, if  any exists, can be devised. Our intuition is that the 
nature o f  the problem is too complex for simple heuristics to 
uniformly affect performance. The reason is that the interaction 
between streams in rate-based optimization is not  as simple as the 
one between input and output sizes in cardinality-based 
optimization is. 
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Figure 14: Estimated plan performance for the first few 
thousand tuples for complex plans 
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Figure 15: Measured plan performance for the first few 
thousand tuples for complex plans 

5 . 4  C o m p a r i s o n  to  t h e  T r a d i t i o n a l  C o s t  

M o d e l  

We now turn to a final issue. In the presence of  infinite input 
streams, it does not  make sense to compare our rate-based 
approach with the traditional cardinali V based approach, since 
the cardinality-based approach does not  apply. However, even 
in cases where traditional optimization does apply (that is, over 
finite input streams or files) there may be cases where rate-based 
optimization is preferred. For this to be true, we need to find 
cases where, for some query and some optimization metric, the 
rate-based approach made different and better decisions than the 
cardinality based approach. 

To explore this issue, we assumed finite input streams of  
known cardinality and generated a plan estimator using the 
traditional cost model. We then passed the three plans of  Section 
5.2 (see also Figure 11) through the traditional cost model's 
estimator. To compare, we asked the rate-based estimator to cost 
the plans in terms of  final result output performance, i.e., time 
needed until complete results are produced. Table 6 summarizes 
the results. From that table it is clear that the rate-based 
estimator could distinguish between the plans, predicting which 
would be the first to reach the final result size. The traditional 
estimator, on the other hand, although it successfully managed to 
identify Left Deep as the most expensive plan, it failed to 
distinguish between the two bushy plans, costing Fast Leaves as 
the cheapest one. 

Tab le  6: Comparison between the t radit ional  and the rate- 
based cost model 

P/an Traditional Estimation Rate-Based estimation 

Left Deep 104 1.3"103 

Fast Leaves 2.1 0 3 9.7.1 0 z 

Even~ Spread 5" 1 0 3 8 .8"  1 0 2 
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In this case, the reason why the cost-based optimizer orders the 
plans incorrectly is that it assumes all of  its input is present when 
execution commences. This is, however, not  the case. The size of  
the input is time-dependent, which is essentially what the rate- 
based optimization framework captures by optimizing for output 
rate. In our example, and between the Fast Leaves and Evenlj Spread 
plans, the earliest time point by which a single input's source will 
be entirely present will be after 100 seconds (sources A and B will 
have been completely read in by then.) At this time, though, only 
33% of  C, 40% of  D and 50% of  E will be present. The 
cardinality-based estimator fails to identify that and assumes all of  
the input is present at the same time, focusing on the handling 
cost of  each input, disregarding the fact that this input might not  
be even present. 

6 C O N C L U S I O N S  A N D  F U T U R E  WORK 

In this paper we propose rate-based optimization as a way to 
enable query optimizers to work with infinite input streams. For 
more traditional applications, rate-based optimization may be 
useful because it allows optimization for specific points in time 
during query evaluation - e.g., find the first plan to generate 1000 
answers, or the one that generates the most answers in the first 
five seconds. We proposed a cost framework based upon rates, 
and gave examples of  how this framework applies to select- 
project-join queries. 

To evaluate our framework, we compared the predications an 
optimizer would make using our framework with measured 
execution times in a prototype version o f  the Niagara Query 
Engine. The results o f  this experiment indicate that rate-based 
optimization is indeed a potentially viable approach, worthy of  
further exploration. 

A great deal of  room for future work exists - in fact, we think 
that this initial work raises as many questions as it answers. In one 
direction, our cost models are quite simple, with rough heuristics 
to approximate integrals and naive assumptions about the costs o f  
various operators as a function of  their inputs. Clearly these can 
be refined. In another direction, and the one we perhaps find 
most interesting, there are potentially powerful synergies between 
our rate-based approach and previous work on adaptive or 
dynamic query processing and re-optimization. We plan to explore 
both directions in future work. 
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