
Rate-Based Query Optimization for Streaming Information
Sources

Stratis D. Viglas Jeffrey F. Naughton
Department of Computer Sciences
University of Wisconsin-Madison

1210 W Dayton St.
Madison, WI, 53706, USA

{stratis, naughton}@cs.wisc.edu

ABSTRACT

Relational query optimizers have traditionally relied upon table
cardinalities when estimating the cost of the query plans they
consider. While this approach has been and continues to be
successful, the advent of the Internet and the need to execute
queries over streaming sources requires a different approach, since
for streaming inputs the cardinality may not be known or may not
even be knowable (as is the case for an unbounded stream.) In
view of this, we propose shifting from a cardinality-based
approach to a rate-based approach, and give an optimization
framework that aims at maximizing the output rate o f query
evaluation plans. This approach can be applied to cases where the
cardinality-based approach cannot be used. It may also be useful
for cases where cardinalities are known, because by focusing on
rates we are able not only to optimize the time at which the last
result tuple appears, but also to optimize for the number of
answers computed at any specified time after the query evaluation
commences. We present a preliminary validation o f our rate-
based optimization framework on a prototype XML query engine,
though it is generic enough to be used in other database contexts.
The results show that rate-based optimization is feasible and can
indeed yield correct decisions.

1 I N T R O D U C T I O N

For the past twenty years, query optimization has been an
intensively studied area of database system research. Most
modern optimizers are cost-based in that they decide between
execution plans by minimizing the estimated cost of evaluating the
query. A fundamental technique used in cost estimation is
cardinality estimation - optimizers take as input the cardinalities
of tables at the leaves of a query tree, and then use selectivities of
operators in the tree to estimate the cardinality of the input to
operators further up in the tree. To convert cardinalities to costs,
optimizers use functions that estimate the cost per tuple of each

This work was supported by NSF awards CDA-9623632 and ITR-0086002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ACM SIGMOD'2002, June 4-6, Macedon, Wisconsin, USA
Copyright 2002 ACM 148113-497-5/02/06...$5.00.

operator. While this approach is not perfect, it is very effective
in most traditional DBMS applications. However, as we move to
the Intemet domain, this approach, in its current form, may n o t

even apply. The reason for this is that if the leaves o f the query
tree correspond to incoming network streams, not only is their
cardinality often not known, in some cases it may not even be
well defined (e.g., in the case o f infinite streams.)

To allow the optimization of queries in the presence o f
streaming data, a new approach is needed. In this paper we
propose rate-based optimization for such applications. As we will
describe, in rate-based optimization the fundamental statistics
used are estimates of the rates of the streams in the quer/
evaluation tree (rather than the sizes o f intermediate results.)
Cardinality estimates, when present, aid us in making better
decisions but they are not required.

As a concrete example motivating our approach, consider a

situation in which we have two selection operators cyl and ere
that have comparable selectivities but are very different in how
quickly they can transmit an input to the output. To put
numbers to the example, assume each predicate's selectivity is
0.1; inputs to the system arrive at a rate of 500 per second; and

or1 is able to process 50 inputs per second, while ere is so fast that
for all practical purposes it can process data as fast as it receives
it. Finally, assume we wish to run a query that applies the two
selections in series to an infinite stream. Figure 1 presents a trace
of the two possible execution plans.

The interesting parameter to note in Figure 1 is the Transmitted
column, which represents the output rate. Even in this simple a
case, we obtain a ten-fold performance improvement in terms of
output rate with a simple switch o f their execution orders.
Moreover, the first execution plan creates an ever-increasing

backlog of delayed inputs at c~I, while the second plan does not
delay its inputs.

A traditional cardinality-based optimizer would not be in a
position to distinguish one plan from the other. This can be
seen as follows. Using a standard cardinality-based model, the

cost o f the first plan is]II .c,+ III .~.ce, where III denotes the
input's size, fi the predicate's selectivity factor and ci the cost per
mple for predicate i. Similarly, the second plan's cost is

III.c2+lll.fl.cl. Unfortunately, since the size o f the input is
infinite, the cost for each plan is infinite, both wil_l be of equal
cost, and the optimizer will have no way to choose between
them.

37

Timt

0

1

2

3

5 o.~i o

~o o

is o

20 o

" ° ° [

Processing abih~."
50 inputs per second

Sckai~i~0.1

Processing abih~:
same as input rate

3~kcttm~zO.l

l a , , ,

Incoming rate:
500 inputs per second

(a) Output rate = 0.5 outputs per second

Time Pmuwed Transmitted De@ed

0 50 5 450

I 100 10 900 i
2 150 15 1350

3 200 20 1800

Time Processed Tn~ardll~d Delayed

0 so 0 @ v~e,i,g abil~:
50 inputs per second

1 100 : [' i ~ 0 Selectivi~.O.1

2 ~ 50 i ~ o
3 200 0

Time

0

1

Selec~vi~O. 1 I

In rate..
500 inputs per second

Proa~ingabiliff:
same as input rate

Pmcessed Transmitted Dd~yed

500 50 0

1000 100 0

1500 150 0

200 0

(b) Output rate = 5 outputs per second

Figure 1: T w o p o s s i b l e e x e c u t i o n p lans over t ime. T h e
T r a n s m i t t e d c o l u m n d e s i g n a t e s the output rate.

In this simple case, there is a way to "hack" existing technology
to make it apply. We could start with an optimization framework
for queries with expensive methods, like the one in [8], and choose
an arbitrary constant K as the input cardinality. Then the
optimizer will choose the right plan, since the correct plan is
independent of K. However, in general, this approach will fail. In
particular, in plans that combine multiple input streams, or
combine local files and input streams, an arbitrary choice for K
will not suffice, because combining multiple branches of a plan
with arbitrary "faked" input sizes will only find a good overall plan
by dumb luck.

Basing our optimization on rates rather than cardinalities solves
this problem in a systematic way. Rather than asking, "What is the
cost of evaluating this query plan?" we ask, "what is the expected
output rate of this query plan?" By optimizing for output rate, we
can choose the correct plan in the preceding example; as we will
show, we can also optimize more complex plans with multiple
branches.

A rate-based framework has other advantages in addition to
working in the "infinite input stream" case. As one example, a
rate-based optimizer can make better decisions than traditional
optimizers if the inputs are finite streams that are accessed at
widely differing rates. For another example, as we will show, for
many query plans, even with fixed uniform input rates the output

rate of plans vary with time. Since our framework lets us
estimate rates as a function of time, the rate-based approach
allows us to optimize for any desired point during the execution
- we can optimize for the most possible outputs in the first 10
seconds. Furthermore, since the number of tuples produced by
time t is just the integral of the rate from time zero to t, we can
also use rate-based optimization to optimize for the first k
results, for arbitrary k. This ability may render rate-based
optimization useful even in traditional database applications
(since a scan of a disk-based table can certainly be viewed as a
streaming input.)

We evaluate our rate-based framework in an experimental
study, which yields satisfactory results regarding the validity of
our approach. Moreover, our study demonstrates that when
optimizing for rates in a stream processing environment,
choosing one plan over another is non-trivial, since simple
heuristics such as "put the fastest streams at the leaf levels of the
plan", or "pull expensive operators higher in the execution
pipeline" have situations where they fail. However, an
unfortunate challenging aspect of our framework is that using
rates and integrating them over time yields mathematical
expressions that appear difficult to evaluate. To address this
problem, we provide heuristics by which we can effectively
approximate the cost of an evaluation plan, and show that these
approximations appear good enough to be useful in query
optimization.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 deals with the estimation of
output rates for the most important operators appearing in a
query execution plan, while Section 4 presents our general
framework for rate-based query optimization. Section 5 presents
an experimental study and validation of the optimization
framework. Finally, Section 6 summarizes our conclusions and
identifies future research directions.

2 R E L A T E D WORK

The seminal paper on cost-based query optimization was [16].
Other optimization models have been proposed, especially in the
areas of parallel query optimization, using cost models that are
not cardinality-based but instead deal with resource scheduling
and allocation [7], [13]. The Britton-Lee optimizer could
optimize for the first result tuple [18], while in Mariposa [17] the
optimization criterion was a combination of execution time and
resource utilization. Modeling streaming behavior through input
rates and modeling network traffic as Poisson random processes
have appeared in many contexts, including [3], although to our
knowledge it has not been applied in the context of query
optimization.

A lot of work has been carried out in the areas of non-
blocking symmetric join algorithms [2], [22], [24], which aim at
producing plans that do not block their execution because of
slow input streams. Our framework indicates that with variable
rate sources it is beneficial to employ such algorithms. In the
same context, methodologies aiming at avoiding blocked parts of
an execution plan at runtime [23] can benefit from our
framework of rate optimization by starting with and/or
switching to plans for which the predicted output rate is
maximized.

3 8

The most closely related areas of work come from the adaptive
query execution and dynamic re-optimization frameworks of [2]
and [10]. In these frameworks, the main concern is to dynamically
monitor an execution plan and identify points of sub-optimal
performance. Once such points are identified, the system can
choose to reorganize the plan in a way that is expected to yield
better performance. In [10], such points are detected by
incrementally measuring the cardinalities of partial outputs and
comparing them to the optimizer's estimates. If the measured and
estimated cardinalities differ by a substantial amount, the
optimizer is called to generate a better execution plan under the
new information. In [2], the objective is to dynamically adapt and
improve performance by rerouting inputs to particular operators
thus improving overall performance. They initially choose an
execution plan through a heuristic pre-optimizer and then
continuously monitor the executing plan's performance. They also
use rundme deviations from selectivity estimates as a criterion to
identify sub-optimal performance.

We view both of these frameworks as complementary to our
work. Our rate-based optimization framework may be useful in
conjunction with both these techniques - it could be used to
choose an initial plan in cases where rate-based optimization is
more appropriate than cost-based optimization. Then instead of
switching plans when the runtime detects that the optimizer has
botched a cardinality estimate, we would switch plans when the
runfime detects that the optimizer has botched a rate estimate.

Work has also been done in the context of continuous queries
over data streams in two directions: the first one aims at
characterizing the behavior of these queries with respect to their
memory requirements [1], [4]. Additionally, [6] deals with
identifying and maintaining stream stalisl#s for sliding window queries.
We expect most queries over streams to fit into such a window-
based operation framework. Our work is, again, complementary,
since we deal with plan enumeration and selection. Window-based
operation is conducive in choosing the amount memory the
execution framework allocates to the various join operators. It can
therefore provide better estimates for the cost of a join operator
to our optimization framework.

Finally, our work fits also into the re-optimization frameworks
of [12], [15], which focus on identifying performance bottlenecks
of an already executing plan and ways to overcome them. In that
direction, we provide insight into why these bottlenecks may
appear when dealing with network-resident, streaming data, while
our cost model could be used to make run time decisions when re-
optimizing. Moreover, in a re-optimization framework like the one
of [12], the performance crossing points our framework identifies
can aid in scheduling when re-optimization should take place.

3 E S T I M A T I O N OF O U T P U T RATES

We are interested in estimating the output rates of various
operators as a function of the rates of their input. In this paper
we will concentrate on some important and basic operations that
are used in relational, object-relational, object-oriented and semi-
structured database systems: (possibly generalized) selections,
projections and joins.

Throughout this section we will make a number of simplifying
assumptions. Our experimental evaluation suggests that while
these assumptions may reduce the absolute accuracy of our
estimates, the estimates so derived are good enough to be useful
for rate-based query optimization. However, it is certainly
possible (indeed, likely) that future work wiU discover better
approximations that can be used with our framework to further
increase its accuracy.

All of our subsequent computations build on one simple
observation: the rate of a stream is defined to be the number of
data objects transmitted, divided by the time needed to make this
transmission. For clarity of exposition we will concentrate on
the transmissions made within approximately one time unit. The
general formula is as follows:

Number of ou~uts transmitted E q u a t i o n 1
Ouqmt rate

Time needed to make the transmission

In what follows, we will use the cost variables of Table 1 to
model an operation, expanding upon them as we present the
cost model. Whenever we need to refer to an input rate, we will
refer to it by using the symbol ri, while ro refers to an output rate.
In the case of joins, we will refer to the pak of inputs with r/for
the left input and r, for the right input.

Table 1: Cost variables used in the es t imat ion of ou tpu t
rates

Cost Meaning
Vatiab k

c .

c~

G

C

T

Cost of projecting parts of an input object

Cost of performing a selection on an input
object

Cost of handling an input coming from the left-
hand side of a join

Cost of handling an input coming from the
right-hand side of a join

Cost of making a single transmission

3 9

3.1 Projections
Given that each input has a
handling cost, there are two
cases that we have to consider:

1. The cost of performing one
projection is less than or
equal to the rater-arrival
time for input objects

2. The cost of performing one
projection is greater than
the inter-arrival time for
input objects (C , > / ~).

In this discussion, we
incorporate the transmission
cost T into the handling cost. I f
we want to distinguish between
them, we can calculate the cost
o f handling an individual input

1/n
I~ ~1~

l/r,
,q

1/r,+C~ 2/ri +Cn
', ',
I I
o t
o I
I I

I; I"
l/r, 2/r,

3/r, +c . 1 +c. c,,a 1/t~
,, ,,
I I
I I
t I

3/n • • • I 1 time
I

!

I

1/~ +C. ; C~, > llrt
1/~ +2C.

1/,~+r,C.

,-1
ca c ,

F i g u r e 2: R e l a t i o n b e t w e e n c o s t a n d inter-arrival rate. Variable 4" mode l s an i n p u t rate.

as C~r+T. Figure 2 shows the consequences o f each case. In the
first case, the inter-transmission interval is equal to the inter-
arrival interval, with the only difference being that the first output

element appears after C~ time units, so ro=ri. In the second
scenario, the situation is more complicated but we can figure out
the inter-transmission interval from Figure 2 by observing that
this interval has to be equal to the cost o f handling one input. So,
the transmission rate is the inverse o f that, or ro = / ~ , . In most

cases we can safely assume, however, that the cost o f making a
projection is low, so for small values o f C~e ro = ri.

3.2 Selections
For selections we need to incorporate the selectivity of the
predicate under evaluation. Given the input rate, the number o f
input objects in one time unit will be ri. Assuming a uniform
distribution, the number of objects appearing in the output will be

f ' r i , where f i s the predicate selectivity. We can calculate the output
rate in a way analogous to the calculation of the projection output

rate, with the only difference that we are using Ca instead o f C~

The output rate will then be r0 = f . r i i f C a _</~ and r0 = / ~ if

C a > / ~ . Again, in most cases it is safe to assume that C a _</~,

so ro=~ri.

3.3 Joins and Cartesian Products
Joins are more complex than projections and selections because
they have two inputs. Before proceeding, we must first be clear
about what it is that we are trying to derive. Our model seeks to
answer the following question: at any point tt in the query
execution, some left inputs and some right inputs may be arriving
into the join. I f rl is the left input rate, and r~ is the right input
rate, what is the output rate that will be observed for results
generated by the arrival o f these input tuples? Note that this rate
may not be the observed rate at time t. In particular, if the system

spends time processing these arrivals, the output tuples 1
corresponding to these arrivals may not appear until some point
in the future. The rate our model predicts will be the rate at that
point. Additionally, asking, "which tuples arrived at an arbitrary
instant f ' does not make sense, since time is continuous. So we
instead ask about discrete time intervals, and then generalize
from these discrete intervals to approximate the continuous case.

First, we need to compute the number o f answer tuples that
will be generated by the arrivals in some specified time interval.
The number o f result objects generated by the arrivals in one

time unit, given we begin at time t, will be frrr~ . t 2, w h e r e f i s the
selectivity factor. This can be seen as follows: Assuming input
rates rt and rr for the two input streams, at time t the number o f

elements read by the left stream will be rrt while for the right

stream ret. How many result tuples will be generated from these
inputs? I f we assume that we started at time zero, the number o f

result objects from these inputs will be f r r r , (This is just the
number o f tuples seen from the inputs times the selectivity o f
the join.)

Now consider the second time unit. At the end of this
second time unit, the contribution from the left stream to the

output will b e f r r 2 . r , (the selectivity times the number o f objects
read from the left stream in the time unit from t to 2tt times the
total number of objects read from the right stream from time

zero to 2t), while for the right stream it will be f re2 . r t . Thus the
total number o f output elements 2 generated by arrivals during

the second time unit will then be 2f2.rrrr-frrr~ (the subtracted
term avoids double counting). The total number o f outputs
produced by arrivals during the first two time units will then be

the s u m f r r r r + 3 f r r r , Using the same logic, the total number o f

i We use the term ttuple to signify an output result, since the
database reader is more familiar with that term. The result does
not have to be a tuple in the relational sense, o f course.

2 In what follows, we will use the terms ttupple, output objectt, outputt
and outputt elementt interchangeably to avoid repetition.

40

outputs generated by arrivals during the first three time units will
be)Crrr,+3.~rrr,+5.~rrr,, We can take these inductive steps to
compute the total output elements for any time t.

We emphasize that we are talking about the elements generated
due to arrivals during a time interval, not about the elements
generated during the time interval. In particular, again, if the
elements take longer to process than the inter-arrival rate, the
outputs will be delayed, perhaps substantially, by outputs
corresponding to tuples that arrived during previous time
intervals.

Moving on to continuous time, we integrate these quantities
over time. We need to solve the integral ro =jCrrrJ(2t-1)dt. Solving
the integral for time yields the total number of output objects
produced by a join operation for the input that arrives at any time

t, which is aCrrrr.t.(t-1).

Next, to calculate the rate that will be observed for these
output objects, we need to compute how long it will take for them
to be generated. Over a time interval / the join operator will have
received rrt inputs from the left stream and r,.t objects from the
right stream. The time to handle each of the left inputs is by
definition Clwhile for each of the right inputs the cost is C. Then
the time to process these input tuples will be rrt.Cl+rel'C, =

t.(rrC~-r,.C,). Substituting the above results into Equation 1 yields:

f . r j .r, . t . (t - 1) = f . r , .r, . (t - l)
ro=

t . (r I .Cl +r r .Cr) r l .C l +r r . C r
f . r l • r r • t E q u a t i o n 2

r t .C 1 +r, . C r

Finally, we note that we made the implicit assumption above
that the time to process the tuples arriving during time t, which is
t'(rrC/+r,'Cr), is greater than t, which means that (rrC~r,.C,) > 1.
If this is not the case, the denominator needs to be replaced by 1,
since output tuples corresponding to a given input cannot be
produced before the input itself arrives. The above holds for
Cartesian products as well, with the only modification being t h a t f
__1.

From Equation 2 it is clear that the output rate of a join
operation is time-dependent. The time dependence is actually
subder than that formula indicates, because for some join operator
implementations the constants Q and Cr also depend on time (e.g.,
if the cost of handling an input depends upon the number of
previous inputs handled.)

Since the rate is a function of time there are optimization
opportunities having to do with either maximizing the total output
rate, or optimizing for specific time points of the operation. We
will present such a framework in Section 4.

3.4 Cost Models for Join Operator
Implementations

The purpose of this section is to derive specific cost expressions
for different join methods as a function of their input rates. The
cost can be separated into two parts, namely the cost of handling
an input from the left stream and the cost of handling a right
stream input. We consider only non-blocking join algorithms,
specifically the non-blocking symmetric nested loops and the
symmetric hash join. The cost expressions we devise are

dependent on the number of input elements read up to the time
point under consideration. The subsequent analysis assumes a
join between streams' R and S, with input rates ra and rs
respectively. It also assumes the cost of each algorithm is further
dependent on the four cost variables given in Table 2.

A subtle issue that needs to be addressed here is that of the
input sizes. For a join operation to generate the complete result,
it has to compare each record in one of its inputs to each record
in the other input. When inputs grow, so will the memory a join
operator needs in order to ensure correct operation. If the inputs
are unbounded, infinite storage is needed. Clearly, this is a
problematic situation. We expect, however, most streaming
applications to be accompanied by window predicates that will
effectively bound memory requirements.

Table 2: N o t a t i o n for cost formulas

Cost Meaning
Variable

move

comp

hash

probe

Cost of moving an input object from the input
buffers into main memory for processing

Cost of performing an in-memory comparison
between two different objects

Cost of hashing an object into a hash table

Cost of probing a hash table in a lookup
operation and producing the output

3.4 .1 Nes ted Loops Join
The nested-loops join algorithm traditionally needs all of the
inner source's input present to execute properly. The outer
source may be streaming, since late arrivals can be thought of as
additional executions of the inner loop. I f the inner stream is
not bound at execution beginning, however, the algorithm has to
be modified. A straightforward non-blocking extension would be
to insert all newly arrived inputs from the inner stream into a set,
and whenever an inner loop ends, a second inner loop is
executed for all late arrivals. This fits into partial results
architectures, like the one in [21].

The algorithm needs to loop over all inputs of the outer
stream moving them into memory, and for each input compare it
against all inputs of the inner stream. The cost of handling one

left input arrival is then: Ct=move+ JSl,.comp=move+rst.comp,
where I Sit is the number of inputs read from stream S at time t
and is obviously equal to the stream's rate multiplied by time.
For right input arrivals, a loop over all the left inputs has to be

initiated. The cost is then: C,=move+ I R I ,-comp=

move+rRt.comp.

3 .4 .2 Symmetric H a s h Join
Symmetric hash join is by definition non-blocking. It keeps two
hash tables in memory and for each arrival it hashes it into the
corresponding stream's hash table, while at the same time using
it to probe the other stream's hash table. The cost is then the
same for both streams of the operation and is equal to
CFC,=move+hash+probe : first move the input element into
main memory, then hash it into the appropriate hash table and
finally use it to probe the other stream's hash table.

41

rate=~time)

a.tp

a ~
Underestimate: {

a. (tp-x) -a.tp/ 2=a. (tJ 2-x)

Overestimate: ~, a.tJ 2
a.tJ2-a.x=a.(tff 2-x)

a.x

i t " ro=a.t

x 6/2 6-x 6 time

X X

Figure 3: Ass ign ing a cons tan t value to the time variable as a m e a n s of approximat ion .

Table 3 summarizes the arrival cost formulas for the algorithms
we have considered. Non-blocking nested loops has a time-
dependent aspect to its cost, so, as time progresses, the cost
increases. Symmetric hash join, on the other hand, has a constant
cost to handle its inputs.

Tab le 3: Cost formulas for the join algori thms

Algorithm Left arrival cost (C) Rz~ght arrival cost (C~)

Nested loops move+rs.t .comp move+rwt.comp

Symmetric hash
join move+hash+probe move+hash+probe

4 U S I N G E S T I M A T E S T O O P T I M I Z E
Q U E R I E S
In this section we first describe the general problem that arises
when considering using our rate estimates to optimize queries.
Next, we discuss two simple heuristics as examples of how the
general problem might be simplified in practice.

4.1 General Framework for Rate-Based
Optimizat ion

Section 3 shows how to compute the output rate of an operator as
a function of the rates of its inputs. In the case of join operators,
the output rate is time-dependent. When asked to evaluate a plan,
we can combine its various operations to come up with a function
of time that models its output rate. Given the output rate of a plan
r(t) then the number of results the plan will produce at any point
in time tp is given by the integral of the rate over time:

Ou~uts = ~ P r(t)dt E q u a t i o n 3

The integral of Equation 3 provides the general framework for
rate-based optimization. The problem then becomes: given a
collection of plans Pi and their output rate r~ (t) as a function of

time, how do we decide which plan to employ? There are two
important optimization opportunities.

• Optimize f i r a specific time point in the execution process. The
integral of Equation 3 can be treated as an equation. Given
a collection of plans and a time point to, by solving the
integral we can estimate how many output elements the
plan will have produced by that time. We can then pick the
plan with the highest number of output elements produced.
The question we are asking is "which plan will produce the
most results by time to?"

• Optimizeflr ou~utproduction size. In this case we reverse the
procedure. Given an output size N we want to identify the
plan that will reach the specified number of results the
soonest and use it. In this situation we are asking: "which
plan is the Rrst one to reach N results?" Notice that N can
be the total number of results, or the first result, or any
result size in between.

The optimization opportunities we listed require computing
the solution to an integral, which is inefficient for practical
optimization purposes, as an optimizer can be expected to
evaluate a large number of plans, and numerically integrating
each plan will be costly. Accordingly, we need to explore means
to approximate the integral of Equation 3. In the next section
we will propose two such approximation heuristics for this
purpose: local rate maximization and local time minimization.

4.2 Examples of Heurist ics
Devising efficiently applicable heuristics that generate good plans
is a rich area for future research. In this section, our intent is to
illustrate a general class of heuristics rather than claim that these
are the only heuristics tha t perform well in practice. Both of the
heuristics we present aim at locally optimizing the plan under the
premise that better local performance leads to better overall
performance. We will concentrate on identifying plans with
maximal rate over time, and plans that reach a specified number
of results as soon as possible. For the first case, we propose a
performance estimate for each join operation of the plan and we
combine such estimates bottom-up to come up with an estimate
for the whole plan. An optimizer will then aim at max4mizing that
estimate. In the second case, we use the same performance

42

estimate, working top-down, to locally minimize the time needed to
produce the estimated number o f results required at each join for
a total number o f results to be reached. Both of these heuristics
can be used as performance metrics for existing optimizers.

4.2.1 Local Rate Maximizat ion
A local rate maximization framework builds on a simple heuristic:
the plan with the maximum overall rate is the one that will have
the maximum constituent rates. What we propose to do in a local
rate maximization framework is to organize the plan in such a way
that our rate estimates for each point o f the plan are maximized.
For join operations involving two primary sources o f the query
(i.e., joins that none o f their inputs is the output o f another join)
we can devise an estimate for any given time interval tp, by treating

the time variable as a constant and assigning it a value o f t ~ ' ,

thus assuming that the overall rate for the whole time interval is,

according to Equation 2, equal to ,rc~+~,.c, z • As Figure 3

shows, in making this choice we overestimate the rate for any time
point x by as much as we underestimate it for a complementary
time point tp-x. We then use this rate estimate to evaluate the
whole plan performance 3 in the fashion Figure 4 depicts. After
coming up with a heuristic estimate for all candidate plans we
choose the most promising one.

It is easy to incorporate this performance estimate in an
optimizer. For instance, a dynamic programming optimizer
dealing with streaming sources, instead of calculating the
traditional cost for a join operation, would use the heuristic
estimate as a performance indicator, proceeding as in Figure 4.
Notice that the estimate allows the incorporation of any other
CPU and I / O metric by inserting it into the calculation through C:
and C.

f1(23)4 "~ "r(23)4 t/,
r0 -- ~'C1+~23)4.C(23) 4 2 ~

.~ " '%

[

"" rt ,/. '/"" ~x~ ~.
• j / \ ,

r23 -- ra'C2+r3.C3 2 "

a v..
. : ,. ,:
"'". ,.. " " ,.. ,....

r2 r3

Figure 4: Local rate m a x i m i z a t i o n for t ime tp

4.2.2 Local Time Minimization
The local rate maximization heuristic identified an estimate o f
how fast a join operation produces results in general. We can use

this estimate as a further estimation of how fast a join operation
can produce a specific number of results, when we wish to identify
the plan that will produce that number o f results as soon as
possible. To devise this estimate we are based on a simple
observation. The formula that connects output rate r, dme t and

number of outputs produced n is n=r.t. I f we have an estimate
of the results we need to produce and an estimate o f the rate at
which we can produce them, then an estimate o f bow soon we
can generate them is the number o f results divided by time, or in
the previous formula, ~ .

b

t o = - ~
.,.y......... r 0 ..,..........,..,.........,........... ,.....

. : "

/ \ / I/(23)4 / = •
t (2 3) 4 *

k r(23)4 "".....\

n (r, N i

_ P/23
t 23 - - V ~X1 r4 *

~4

b
t / 2 r2 r3 h

ll 3

Figure 5: Requ i red output s ize distribution for local t ime
m i n i m i z a t i o n

We can incorporate this strategy into a more general
optimization framework: suppose we are facing the operation

At>4B~C. We wish to optimize for the time needed to reach
25% of the total output 4. We can tackle the problem by
decomposing it into a number o f equivalent sub-problems. To
do so, we need to push down the number o f elements each input
to the final join should produce for the desired number of
outputs to be produced. This can be done as follows. We know
that the number of overall outputs we optimize for is equal to

0.25fAB'~C]A t"]B I •] C]. Taking join sequence At>4(BNC) as
an example, to reach our goal we approximately need to read

40-25"fAB "fBc .]A] inputs from the base stream A and

4 0 . 2 5 . f m . f B c .]Bl.[Clfrom Bt:~C. Using this divide-and-

conquer strategy we can handle arbitrarily complex join
strategies. Figure 5 shows how we distribute the estimated
number o f required results between the various join operators o f
the execution plan. We finally transform the problem into a
minimization/maximization one" the plan that will reach the
desired number of outputs the soonest, is the one for which the
latest time its constituents joins will reach their respective
number o f outputs is the smallest. The way we use the heuristic
estimate o f Section 4.2.1 is the following: We want an indication

3 In fact it is possible, though not trivial, to come up with bounds
as to how much we over- or underestimate each possible plan
while heuristically evaluating it.

4 Obviously, this strategy is not only appficable for fractions of
the total output size, it can be used to optimize for the total
number of outputs.

43

of how much time each sub-problem needs to be completed. An
estimate of this time is the predicted number of outputs for the
sub-problem, divided by the rate estimate.

We can provide the solution in a more formal fashion: Assume
we have a recursive definition of possible join execution trees.
This definition consists of a set of join strategies, with each join
strategy annotated with the desired number of outputs to be
reached as fast as possible, the value of its metric, and the fastest
time for this number to be reached. For instance, given join

strategy A~(B~CC), the information about it is encapsulated into

{(A,nA,rz,tA), (B~xaC, nB~c, rB~c, tB~c) }. The notation here is that
we encapsulate each point of interest P (which can be a source
stream, or the output of a join) in the structure (P, np, ~, tp), in
which np is the number of results we wish to reach, rp is the value
of our rate estimate and tp is the estimation of time we need to

reach that number of results. Bt>~C can be further decomposed
into {(B, nB, rB, tB), (C, nc, re, tc)}. It is up to us to decide how far
down the execution plan we wish to descend. For instance, we
may not want to descend all the way to stream level, but rather

stop at the joins of pairs of streams (i.e., not decompose BtxaC in
B and C since we have an estimate for the rate of the join
operation). The notation here is that for an input B, the fastest
time to generate the desired number of nB outputs is tn. A
grammar for the structures is then:

Info ~-- (Stream,ns, rs,ts)

Tree ~ Info I ({Tree u Info})

Stream <-- S [Tree

The input to our decision algorithm is a set of such structures.
Solving the problem involves three steps: (i) for each strategy in
the set, find the maximum time needed to complete it, recursively
going into the Tree structures; (ii) find the strategy with the
minimum such time; ('fii) choose the join strategy that corresponds
to the minimum time. The following algorithm presents a simple
recursive program to perform the calculation over these
structures, in which rain returns the best execution tree while max
returns the maximum execution time within a single tree.

ma.~(O, 0).

max(Info v_) Tree, M) ~ Info = (S, ns, rs, ts),
ma.~Tree, M,),
ts = ns/rs,
(M, > ts ? M = M, : M = ts).

rain(O, .1_, oo).

rain(Tree u Forest,
BestTree, Cb)

m,~,~Tree, Q,
min(Forest, BestInForest, C9,
(c,> c/?

[BestTree = Tree, Cb = Ct] :
[BestTree = BestlnForest,
cb= c~)

The algorithm provides for substantial flexibility with regards
to the cost of an operator.

44

5 EXPERIMENTAL VALIDATION OF
T H E FRAMEWORK
In this section we provide experimental results to explore the
validity of our rate-based cost model. We focus our attention on
two questions:

1. Does the cost model correct~ estimate individualplan pe~ormance?

2. Is the framework capable of providing correct derisions regarding the
best choice among a set of plans~

As is the case with traditional cardinality-based
optimization, it would be unrealistic to expect the optimizer to
be accurate to the granularity of seconds. We did expect it,
however, to be correct in terms of identifying points of interest
in an execution plan. For instance, if two plans "cross" in terms
of which is best at some point, the optimizer should predict such
a crossing point and roughly identify where it occurs.

5.1 Experimental Setup
For our experiments we used a synthetically generated XML data
set for which we could vary the parameters of interest to the
execution process, such as the various selectivities of the join
predicates and the rates of the streaming sources. The sources
were essentially flat structures in a way they would appear if
exported from a relational database. To investigate streaming
behavior, we simply view the files as prefixes of (potentially
infinite) streams. The experimental data set consisted of five
such sources, with sizes ranging from 0.7MB to 9.3MB.

Our experiments involved queries built out of four equljoin
predicates, with selectivities ranging from 10 .5 to 5.10 -3. Table 4
presents the specifics of our sources, while Table 5 presents the
four join predicates and their respecuve selectivities. We treat the

join predicate ..4t>~C as an expensive one, assigning to it an
additional transmission delay, while for the rest of the predicates
their costs are equal to the cost of the evaluation algorithm.
Because of its natural fit with streaming environments, we have
used symmetric hash join as the evaluation algorithm for all join
predicates.

Tab le 4: Parameters of the s t reaming sources

Source Number of tuples Size

A

B

C

D

E

5,000 0.7 MB

10,000 1.5 MB

20,000 1.8 MB

50,000 5.9 MB

100,000 9.3 MB

All experiments were performed using the publicly available
Java prototype implementation of the Niagara Query Engine
[14]. The hardware setup involved a Pentium-III processor
operating at 500 MHz with 1GB of physical memory running
RedHat Linux 6.2. The data were read from flat XML files using
Apache's XML Parser and the parsing startup time was
subtracted from the results. Byte-code was generated by IBM's

t ikes Java compiler, while the runtime environment was SUN's
1.3.1 Java Virtual Machine. The operators were run in an
operator-per-thread fashion, using Linux's native threads. We
simulated network traffic by inserting random delays between

element reads. The arrivals were modeled as a Poisson process, as
is often the case for network traffic [3], with a mean arrival rate
equal to the stream's rate, which implies that the delays followed
an exponential distribution with a mean equal to the inverse of the
stream's rate (i.e., the inter-arrival delay.)

Tab le 5: Jo in predicates' parameters

Predicate Selectivity Handh'ng cost

A M B

A ~ C

B ~ D

D~xaE

2.10-3

5.10-3

10-4

10-s

5 ms

5.2 Validation of the Cost Model
As a first step towards validating our optimization framework, we
evaluated the performance of a three-way join query containing

the predicates A M B and AtxaC. We explored two execution

plans: (ANB)~xaC and (At>~CC)txaB (see Figure 6). We assigned an
inter-artival delay to each stream, with stream B being the fastest,
having an inter-arrival delay of 2 milliseconds, while streams A
and C were considerably slower with inter-arrival delays of 20 and
10 milliseconds. We then fed each plan's parameters into an
estimator we developed using the rate-based optimization
framework as the plan evaluation criterion. The issue was to
estimate the performance of each plan as a plot of output size vs.
time. We asked the estimator to generate the time, in seconds, of
each of the two plans for output sizes between 0 and 90,000 in
increments of 5,000 tuples. The estimator's prediction is shown in
Figure 7, while Figure 8 depicts the measured performance.
Observing that the two plans had comparable predicted
performance for the first 5000 result tuples, we decided to zoom
in on the first tuples, generating the predictions in Figure 9.

A ~ C A M B
/ \ / N

A ~ B C A M C B
/ N (20K, lOms) / N (lOK, ems) ..

A B A C
(SK, 20m~ (10K, 2ms) (5K, 20ms) (20K, 10ms)

Figure 6: T h e two plans used for initial experimentat ion. A
thicker l ine denotes a faster stream.

After predicting the performance of the plans, we ran them
through the execution engine, keeping track of the time at which
each result tuple appeared. Although not exactly matching the
predictions (the actual performance curve was more ragged than
the estimated curve) the general behavior of each plan was similar
to the prediction. More importantly, the cost model not only
predicted there were time intervals for which each one plan
outperformed the other, it also predicted the point, in terms of
number of output tuples, at which the performance would switch

between the two plans. As Figure 9 shows, plan (A~CC)MB was

predicted to start outperforming (AtxaB)txaC once roughly 2,000
result tuples appear, which is quite close to the real crossover
point in Figure 10. The prediction, though, was farther off when
predicting the actual time at which the switch occurred. As we
have noted, however, at this point it is more important for the

optimizer to identify crossing points in the graphs, rather than be
precise in the granularity of seconds of when these crossing
points appear.

100000

80000

2

60000~

S
&
.~ 40000

0
20000 -

0 (5 K,20ms)-(l 0K,2ms)-(20K, l 0ms)

(SK,20ms)- 20K,10ms)-(10K,2ms)

. _ _

I

i i - - -

I /
I
I
i

- r - - - -
I
I
I

i
i
I

50 100 150 200 250 300

Time (seconds)

Figure 7: Es t ima ted p lan performance unt i l the last result
tuple

I $ (SK,20ms)-(10K,2ms)-(20K,10ms) ~ (SK,20ms)-(20K,10ms)-(IOK,2ms) [

100000

8 0 0 0 0

60000.

40000

2 0 0 0 0

i 4

!
I I I

50 100 150 200 250

Time (seconds)

Figure 8: Measure p lan per formance unt i l the last tuple

5.3 Complex Plans
To further validate the optimization framework, we generated a
five-way join query over all streaming sources. In this experiment
we wanted to address two issues. The first was whether our
framework was effectively capturing the order among different
plans. That is, given a collection of more complex plans than
those of Section 5.2, would it still correcdy order the plans? The
second issue we wished to explore was whether there were
simple rules about stream placement in plans that could render
our optimization unnecessary. For instance, is it sufficient to
place fast streams at the lowest levels of the plan, or at the
highest levels of the plan?

45

(5K,20ms)-(10K,2ms)-(20K,10ms) 4 I (5K,20ms) - (201 ,L l0ms) - (10K,2ms) I
6000

5000

°~4000

3000

g

' ~ 2000

C

1000

p

[

I f ~ I

I I I I

I " I I I

I I t I

. . . . ? - - - 7
I I

I I

20 40 60 80 100

T u n g (s e c o n d s)

Figure 9: Est imated plan performance for the first
thousand tuples

Ill (5 K,20ms)-(10K.2ms) -(20K, I 0ms) • (5 K,20ms)I(20K, I 0ms) -(10K,2ms) J

6000

5000

~ 4 0 0 0

3000

g

• 2000

C

1 0 0 0

i i i i
I i I I

. I__L__L_ J

I : I I 1-71 '
r i i i i i

I I I I I I
I ~ I I I
I ~ I I I

----T---7-----I------F-- T- •

I I P ~ I I

I I ~ I r

I ; i I I

- - 7 - -] ~ - - I 7 - - 5

I i I I I I
i [[i ~ I

----*----4---- ~ - - I ~ - - - - 4 I ~ - - I - - - -

I l I I I I
L i I I I I

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

T u n e (s e c o n d s)

few

Figure 10: Measured plan performance for the first few
thousand tuples

We organized the plans in three different ways, depicted in
Figure 11, in which a thicker line denotes a faster stream. The first
plan was a deep plan, with the fastest stream kept at the top end

Dt~E A I ~ C

/ % / \
xMc u aMD c

Blxlo c

A~a o AIXlB DI~U

A B A B D E

(5K, 20ms) (10K. 1 0 m s) (5 K , 2 0 m s) (1 0 K , 1 0 m s) (50K. 5ms) (100K, 2ms)

of the pipeline. The other two plans were bushy plans with one
major difference. While in the first plan the fastest streams are at
the lowest levels of the plan, the second plan keeps the fastest
one in the middle of the join sequence, while the second fastest
stream is kept at the lowest level of the pipeline. In what follows
we will refer to the plans of Figure 11 (a), (b) and (c) as Left Deep,
Fast Leaves and Eve@ Spread respectively.

[, Lo De p = F ,tL • 1

6 0 0 0 0 0 i i i ~

P I & I A
I I I

5 0 0 0 0 0 - - - - - - ~ T - - - - - - - I - - - - - - I - - I - -

f I C

' I ~ 30~000 - - - - - - L - - - - - - a - - - - - - L - - . - ~ - - L I I I ~ - - - I - - - - _

I I I , i __ r~ / F A I
I I t ~ ~ I ' I

200000 I I I I I

O _
200 400 600 800 1000 1200

T i m e (s e c o n d s)

Figure 12: Est imated plan performance until the last result
tuple for complex plans

As in Section 5.2, we first asked the estimator to predict the
plans' performance in terms of output size vs. the time at which
that particular output size appeared. Figure 12 shows the result.
Again, we noticed intervals for which one plan outperformed the
others, so we zoomed in to the first few results tuples, producing
the plot of Figure 14. We then executed the plans, producing the
graphs of Figure 13 and Figure 15 for the entire plan execution
and for the first few tuples respectively.

The optimizer's predictions, as far as ordering the plans and
crossing points are concerned, were again correct. The plan
performance estimations were that I_2fi Deep would be the
slowest plan, while at the same time it would have comparable
performance to Fast Leaves. Evens Spread on the other hand,
would clearly outpeform the other two, starting to do so from
the initial stages of execution.

Figure 14 shows the optimizer predicting that Left Deep would
have marginally better performance than Fast Leaves for the first
20,000 tuples, which is the actual case as Figure 15 depicts.

A M B

/ \
A N C DNE

. 4 C D

(5K., 20ms) (20K, 15ms) E ,00 2m,> / X
B D

(t0K, tOm,) (50K, Sms)

(a) Left Deep (b) Fast Leaves (c) Evenly Spread

Figure 11: The plans used for our experimentation. Each plan is annotated with the join predicates it computes, A thicker
line denotes a faster stream.

46

I 0

60O0OO

5OOO00

2 40000O

~ 3oo~oo

2~o~o

100000-

Left Dgcp ~ Fast Leaves ~ Evenly SpEnd I

..... i---/---,
- - / i

I i

_ _ _ ~ _ i

I i

I i

_ _ _ L _ I

I I

I

500 1000 1500

Time (s e c o n d s)

2000

Figure 13: Measured plan performance until the last result
tuple for complex plans

What is also important is that there does not seem to emerge a
clear heuristic. We cannot say that fast streams should be kept
away from the highest levels o f the plan, as is the case in Le E Deep,
nor that should be pushed to the lowest levels, as is the case in
Fast Leaves. The best plan is Eve@ Spread, which keeps the fastest
in the middle of the plan, while the second fastest is at the leaf
level. A lot more experimentation has to be carried out before a
heuristic, if any exists, can be devised. Our intuition is that the
nature o f the problem is too complex for simple heuristics to
uniformly affect performance. The reason is that the interaction
between streams in rate-based optimization is not as simple as the
one between input and output sizes in cardinality-based
optimization is.

[° ~f, Doop • F~,Le E~0.~p~d]

25000

0
0

20000 -

"E 15000.

&
.~ 10000.

C
5000

I I
I I

. ± ~ y i
I

I

I

. T j i I

I I
I

.

I

100 200 300 400 500

Time (s e c o n d s)

Figure 14: Estimated plan performance for the first few
thousand tuples for complex plans

25000

20000 - - -

1500o

&

• ~ 1(3900

C
5000

$ Left Deep ~ Fast Leaves Jk Evenly Spread [

i

i

I

i

. 1_ _ _ _

. . . . I - - - T - - - I t - ~ T - - -

I I t ~ I

I I t I

I i ~ r i I

I I t I I

I I ~ I t

. . . . ~____~ ___P L__ ~___

I

i i

10 20 30 40 50 60

Tmae (s e c o n d s)

Figure 15: Measured plan performance for the first few
thousand tuples for complex plans

5 . 4 C o m p a r i s o n to t h e T r a d i t i o n a l C o s t

M o d e l

We now turn to a final issue. In the presence of infinite input
streams, it does not make sense to compare our rate-based
approach with the traditional cardinali V based approach, since
the cardinality-based approach does not apply. However, even
in cases where traditional optimization does apply (that is, over
finite input streams or files) there may be cases where rate-based
optimization is preferred. For this to be true, we need to find
cases where, for some query and some optimization metric, the
rate-based approach made different and better decisions than the
cardinality based approach.

To explore this issue, we assumed finite input streams of
known cardinality and generated a plan estimator using the
traditional cost model. We then passed the three plans of Section
5.2 (see also Figure 11) through the traditional cost model's
estimator. To compare, we asked the rate-based estimator to cost
the plans in terms of final result output performance, i.e., time
needed until complete results are produced. Table 6 summarizes
the results. From that table it is clear that the rate-based
estimator could distinguish between the plans, predicting which
would be the first to reach the final result size. The traditional
estimator, on the other hand, although it successfully managed to
identify Left Deep as the most expensive plan, it failed to
distinguish between the two bushy plans, costing Fast Leaves as
the cheapest one.

Tab le 6: Comparison between the t radit ional and the rate-
based cost model

P/an Traditional Estimation Rate-Based estimation

Left Deep 104 1.3"103

Fast Leaves 2.1 0 3 9.7.1 0 z

Even~ Spread 5" 1 0 3 8 .8" 1 0 2

47

In this case, the reason why the cost-based optimizer orders the
plans incorrectly is that it assumes all of its input is present when
execution commences. This is, however, not the case. The size of
the input is time-dependent, which is essentially what the rate-
based optimization framework captures by optimizing for output
rate. In our example, and between the Fast Leaves and Evenlj Spread
plans, the earliest time point by which a single input's source will
be entirely present will be after 100 seconds (sources A and B will
have been completely read in by then.) At this time, though, only
33% of C, 40% of D and 50% of E will be present. The
cardinality-based estimator fails to identify that and assumes all of
the input is present at the same time, focusing on the handling
cost of each input, disregarding the fact that this input might not
be even present.

6 C O N C L U S I O N S A N D F U T U R E WORK

In this paper we propose rate-based optimization as a way to
enable query optimizers to work with infinite input streams. For
more traditional applications, rate-based optimization may be
useful because it allows optimization for specific points in time
during query evaluation - e.g., find the first plan to generate 1000
answers, or the one that generates the most answers in the first
five seconds. We proposed a cost framework based upon rates,
and gave examples of how this framework applies to select-
project-join queries.

To evaluate our framework, we compared the predications an
optimizer would make using our framework with measured
execution times in a prototype version o f the Niagara Query
Engine. The results o f this experiment indicate that rate-based
optimization is indeed a potentially viable approach, worthy of
further exploration.

A great deal of room for future work exists - in fact, we think
that this initial work raises as many questions as it answers. In one
direction, our cost models are quite simple, with rough heuristics
to approximate integrals and naive assumptions about the costs o f
various operators as a function of their inputs. Clearly these can
be refined. In another direction, and the one we perhaps find
most interesting, there are potentially powerful synergies between
our rate-based approach and previous work on adaptive or
dynamic query processing and re-optimization. We plan to explore
both directions in future work.

B I B L I O G R A P H Y - R E F E R E N C E S
[1] A. Arasu, B. Babcock, S. Babu, J. McAlister andJ. Widom,

Characteriging Memo~7 Requirements for Queries over Continuous Data
Streams, Stanford Techinical Report, November 2001,
htm: //dboubs.stanford.edu/oub/2001-49.

[2] R. Avnur andJ. M. Hellerstein. Eddies." Conlz~uous~Adaptive
Query Processing, Proceedings of the 2000 ACM SIGMOD
Conference.

[3] D. Bertsekas and R. Gallager. Data Networks, Prentice Hall, 2 "e
edition, 1991.

[4] S. Babu, and J. Widom, ConlinuousQueries over Data Streams,
SIGMOD Record, Sept. 2001.

[5] J. Chen, D. J. DeWitt, F. Tian and Y. Wang. Niagara-CQ: A
Scalable Continuous Query System f ir Internet Databases, Proceedings
of the 2000 ACM SIGMOD Conference.

[6] M. Datar, A. Gionis, P. Indyk and R. Motwani, Maintaining
¢ , o , , : . , ~ o r s : t : . , w r , - l : , t . . . ~ ¢ x c x ~ A ! A r ~ r O T A X r

48

Stream Statistics over Sliding Windows, 2002 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002).

[7] M.N. Garofalakis and Y. E. Ioannidis. ParallelQue~y Scheduling
and Opl#Mzation with Time- and Space-Shared Resources,
Proceedings of the 23 rd International VLDB Conference.

[8] J.M. Hellerstein, Optimization Techniques for Queries with Expensive
Methods, TODS 23(2): 113-157 (1998).

[9] W. Hong and M. Stonebraker. Optimization of ParalklQuety
Execution Plans in XPRS, Distributed and Parallel Databases,
1993, (1) 1:9-32.

[10] Z.G. Ires, D. Florescu, M. Friedman, A. Le W and D. S. Weld.
An Adaplive Query Execution System f r Data Integration,
Proceedings of the 1999 ACM SIGMOD Conference.

[11] Z.G. Ires, A. Y. Le W and D. S. Weld. E~cient Evaluation of
Regular Path Expressions on Streaming XML Data, University of
Washington, Technical Report UW-CSE-2000-05-02.

[12] N. Kabra and D. J. DeWitt. EflMent Mid-Query Re-Optimiwtion of
Sub-OptimalQuep7 Execution Plans, Proceedings of the 1998
ACM SIGMOD Conference.

[13] C. Lee, C.-H. Ke, J.-B. Chang and Y.-H. Chen. Minimization of
Resource Consumption f ir Multidatabase Query Optimizall~n ,
Proceedings of the 3 'd IFCIS Conference.

[14] J. Naughton, D. J. DeWitt, D. Maier et al. The Niagara Intemet
Query System, IEEE Data Engineering Bulletin 24 (2): 27-33
(2001), http://www.cs.wisc.edu/niagara.

[15] K.W. Ng, Z. Wang, R. R. Muntz and S. Nittel. Dynamic Query
Re-Optimization , Proceedings of the 11 th SSDBM Conference.

[16] P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lofie
and T. G. Price. Access Path Selection in a Relational Database
Management System, Proceedings of the 1979 ACM SIGMOD
Conference.

[17] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J.
Sidell, C. Staelin and Andrew Yu. Mariposa.'A Wide-Area
Distributed Database System, VLDB Journal, 1996, (5) 1:48-63.

[18] G. Schumacher. GEI'sExperienceudthBritton-Lee'slDM, IWDM,
1983, pp. 233-241.

[19] L.D. Shapiro. Join Processing in Database Systems witb Large Main
Memories, TODS, 1986, (11) 3:239-264.

[20] J. Shanmugasundaram, E.J. Shekita, R. Barr, M. J. Carey, B. G.
Lindsay, H. Pirahesh and B. Reinwald. E~dent~ Publishing
Relational Data as X M L Documents, Proceedings of the 26 a~
VLDB Conference.

[21] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F. Naughton
and D. Maier. Arcbitecling a Network Que!y Engine f ir Produdng
Panqal Results, WebDB 2000.

[22] T. Urhan and M.J. Franklin. Xjoin: A Reactively-Scheduled
Pt~e#nedJoin Operator, IEEE Data Engineering Bulletin, June
2000, (23) 2:27-33.

[23] T. Urhan, M. J. Franklin and L. Amsaleg. Cost BasedQuety
Scramb#ngforlnitial Delqys, Proceedings of the 1998 ACM
SIGMOD Conference, Seattle, Washington, USA, June 1998,
pp. 130-141.

[24] A.N. Wilschut and P. M. G. Apers. Pt~eh'ning inQuety Execution,
Conference on Databases, Parallel Architectures and their
Applications, Miami, 1991.

[25] C' Zhang' J" F" Naught°n' D" J" DeWitt' Q' Lu° and G' M"
Lohman. On Suppor#ng Containment Queries in Relational Database
Management Systems, Proceedings of the 2001 ACM SIGMOD
Conference.

