E

Hancock: A Language for Extracting Signatures from Data
Streams

Corinna Cortes

Kathleen Fisher

Daryl Pregibon Anne Rogers

Frederick Smith*

AT&T Labs—Research
Shannon Laboratory
180 Park Avenue
Florham Park, NJ 07932, USA

ABSTRACT

Massive transaction streams present a number of opportu-
nities for data mining techniques. Transactions might rep-
resent calls on a telephone network, commercial credit card
purchases, stock market trades, or HT'TP requests to a web
server. While historically such data have been collected for
billing or security purposes, they are now being used to dis-
cover how customers or their intermediaries (called transac-
tors) use the underlying services.

For several years, we have computed evolving profiles (called
signatures) of the transactors in large data streams using
handwritten C code. The signature for each transactor cap-
tures the salient features of his transactions through time.
Programs for processing signatures must be highly opti-
mized because of the size of the data stream (several gi-
gabytes per day) and the number of signatures to maintain
(hundreds of millions). C programs to compute signatures
often sacrificed readability for performance. Consequently,
they are difficult to verify and maintain.

Hancock is a domain-specific language created to express
computationally efficient signature programs cleanly. In this
paper, we describe the obstacles to computing signatures
from massive streams and explain how Hancock addresses
these problems. For expository purposes, we present Han-
cock using a running example from the telecommunications
industry; however, the language itself is general and applies
equally well to other data sources.

1. INTRODUCTION

A transactional data stream is a sequence of records that log
interactions between entities. For example, a stream of stock
market transactions consists of buy/sell orders for particu-

*Department of Computer Science, Cornell University.

Permission to make digital or hard copies of part or al of this work or
personal or classroom useis granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or afee.
KDD 2000, Boston, MA USA
© ACM 2000 1-58113-233-6/00/08 ...$5.00

lar companies from individual investors. Likewise, a stream
of credit card transactions contains records of purchases by
consumers from merchants. Data mining techniques are
needed to exploit such transactional data streams because
these streams contain a huge volume of simple records, any
one of which is rather uninformative. When the records re-
lated to a single entity are aggregated over time, however,
the aggregate can yield a detailed picture of evolving behav-
ior, in effect, capturing the “signature” of that entity.

We have analyzed data streams from the telecommunica-
tions domain for the past four years. In our initial work, we
processed roughly five million (M) international call-detail
records per day, generated by approximately 12M customers.
In subsequent work, we have tackled larger and larger data
streams, including the complete AT&T long distance data
stream, which consists of approximately 300M records per
day from 100M customers.

For each data stream, we compute or update signatures
based on selected fields in each record in the data stream. A
signature for a phone number might contain directly measur-
able features such as when most telephone calls are placed
from that number, to what regions those calls are placed,
and when the last call was placed. It might also contain
derived information such as the degree to which the calling
pattern from the number is “business-like” [4].

Programs to compute signatures must be highly optimized
because of the size of the data stream and the number of
signatures tracked. Because of its size, the entire collec-
tion of signatures cannot be kept in memory. Consequently,
signature programs are very I/O intensive: they must read
from and write to the signature data on disk as they process
transactions.

Our initial C programs for computing telecommunication
signatures were efficient, but they often sacrificed readability
to obtain this efficiency. Regulatory changes force frequent
modifications to these programs. Consequently, program
maintenance and verification are important issues, both of
which require program readability. When we started work-
ing with the complete AT&T long distance data stream, we
realized that we needed software that could function at scale
and yet be maintained as changes were required.

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

Hancock is a C-based domain-specific programming language
that we designed and implemented in response to this need.
By design, the language makes time and space efficient sig-
nature programs easy to read and write, independent of the
quantity of data involved. Because Hancock manages scal-
ing issues, it allows data analysts to prototype new signa-
tures quickly. We introduce Hancock by describing the code
necessary to compute a signature from AT&T’s wireless ser-
vices (AWS) data stream. This stream contains call-detail
records, each of which stores information particular to one
call in AT&T’s wireless network.

The main goals of this paper are to discuss the computa-
tional difficulties in writing efficient signature code for mas-
sive data streams, to show how Hancock alleviates these dif-
ficulties, and to discuss the motivations behind the Hancock
design. In an earlier paper [1], we presented a preliminary
version of Hancock that handled only one particular form
of data (call-detail records from AT&T’s long distance net-
work). The version described in this paper handles arbitrary
data streams.

2. RUNNING EXAMPLE

In this section, we describe the Cell Tower signature, which
we will use as a running example to describe Hancock. This
signature mines information from a wireless call stream con-
taining records used to bill customers for calls sent and re-
ceived from their mobile telephones. This stream contains
approximately 80M records per day from 20M customers.
Although these records contain many fields, only the follow-
ing few are relevant for computing the Cell Tower signature:

e Mobile Phone Number (MPN)
e Dialed telephone number

e First and last cell tower used

Our illustrative application characterizes the “diameter” of
a mobile phone, i.e., is the phone used exclusively in one
or a few neighboring cells, or is it used in a much larger
region? Such information is useful for target marketing and
for developing new service offerings.

To compute this information, we designed the Cell Tower
signature. For each MPN, we track the five most frequently
(and most recently) used cell towers and another value that
captures the frequency with which calls placed from the
MPN do not involve the top five cell towers. As one might
expect, the top five list is dynamic, so the signature com-
putation includes a probabilistic bumping algorithm that
allows a new cell tower to enter the top five list as its fre-
quency of use increases. Earlier work describes how to design
signatures [2, 5, 6, 7).

Given the Cell Tower signature, any number of measures
of “diameter” can be computed, e.g., the area of the con-
vex hull defined by the geographical coordinates of the top
five cell towers. Maintaining the list allows us to experi-
ment with alternative measures before committing to any
specific measure that might be computed directly from the
call-detail stream.

10

As a prelude to subsequent sections in which we intersperse
Hancock code with text, the following Hancock/C code de-
scribes the profile struct that we associate with each MPN
in our Cell Tower signature:

#define NDIV 5

#define MAX_TOWER_NAME 12

typedef struct {
char celltower [NDIV][MAX_TOWER_NAME];
float count[NDIV];
float other;

} profile;

The celltower array stores the names of the five most com-
monly used towers as fixed-size C strings. The parallel array
count measures the frequency with which the corresponding
tower is used. Field other counts how many calls are not
reflected in the list of the top five towers.

3. HANCOCK

Hancock is a C-based domain-specific language designed to
facilitate signature computations. Hancock makes it easier
to read, write, and maintain such programs by factoring into
the language the issues that relate to scale. In this section
we discuss some of these issues and describe how Hancock
addresses them.

Prior to designing Hancock, we studied existing signature
programs to understand their structure and the techniques
they employ to achieve good performance. Figure 1 illus-
trates the process flow for a typical signature program from
the telecommunications industry. Transaction records are
collected for some time period, the length of which depends
on the application (e.g., a day for marketing but just a few
minutes for fraud detection). At the end of the time period,
the records are processed to update the signatures. Before
processing, the old signature data is copied to preserve a
back-up for error-recovery purposes. During processing, the
records are typically sorted in several ways, e.g., according
to the originating and then the dialed phone numbers. Af-
ter each sort, a pass is made over the data stream. During
a pass, the portion of each signature relevant to the given
sort is retrieved from disk, updated, and then written back
to disk. For example, after sorting by the originating tele-
phone number, only the portion of a signature that tracks
out-bound calling would be updated typically; after sort-
ing by the dialed number, the portion that tracks in-bound
calling would change. Sorting the stream ensures good lo-
cality for accesses to the signatures on disk and groups the
information relevant to each transactor into a contiguous
segment of the stream.

3.1 Logical and physical streams

The fields in a transaction record are often encoded and
packed to save space. In studying the existing signature
programs, we noticed that code to decode the representa-
tion of stream records was interleaved with signature pro-
cessing code, which made it difficult to change the physical
representation of stream records.

In Hancock, we separate the physical representation of the
records in a data stream from the logical (expanded) repre-
sentation on which we perform computations. This separa-
tion allows one person to understand the physical represen-

Outgoing phase

Update
Outgoing
Data

Incoming phase

Update
Incoming
Data

Old Data

Figure 1: High-level architecture of signature computations.

New Data

The processing typically consists of several

phases, each sorting the data in a different order and updating a different part of the signature.

tation (the expert on that data source) but many people to
use the logical representation (the consumers of that data
source). This division facilitates maintenance: if the phys-
ical representation changes, only the translation from the
physical to the logical representation must be modified, pre-
sumably by the expert on that data source. The consumers
need not modify their programs.

To declare a new stream type, programmers use the stream
type operator. Generally, Hancock requires one stream type
per data source. As there are many fewer data sources than
there are signature programs, declaring new streams is rare.
There are two forms of stream declarations: a specialized
form for streams whose records are stored on disk in a fixed-
width binary format, and a general form for records stored
in other formats. The binary form is more convenient, while
the general form is more broadly applicable.

The declaration of a binary stream specifies both the phys-
ical and the logical representations for the records in the
stream. It also specifies a function to convert from the en-
coded physical representation to the expanded logical rep-
resentation.

The following declaration introduces the stream AWS_s:

stream AWS_s {
getvalidAWS
};

: awsPhy_t => awsLog_t;

For this stream, the C type awsPhy_t serves as the physical
representation and awsLog_t serves as the logical. The iden-
tifier getvalidAWS names the function that specifies how to
convert from the physical to the logical representation. This
function, whose prototype is:

char getvalidAWS(awsPhy_t *pc, awsLog_t *c);

checks that the record *pc is valid and if so, unpacks *pc
into *c and returns true to indicate a successful conversion.
Otherwise, getvalidAWS simply returns false. Program-
mers can declare variables of type AWS_s using standard C
syntax (for example, AWS_s calls).

11

In the general case, a stream declaration specifies a function
that reads data from a file and returns a logical record. We
use the term “record” to mean the logical representation of
the elements in a stream, since stream definitions are the
only place where the physical representation is needed.

3.2 Logical, approximate, and physical

signatures

When the number of customers is in the hundreds of mil-
lions, one can maintain only very small signatures for each
customer because the I/O cost to update the signatures
would be prohibitive otherwise. To save space, the values of
a signature are often quantized or otherwise approximated
before they are stored. For example, a floating point num-
ber representing the probability that a phone number is be-
having like a business might be quantized into sixteen levels;
similarly, the number of daily outbound minutes may be cat-
egorized according to one of eight logarithmically spaced us-
age bins. These approximate signatures can be compressed
conveniently into a few bytes before writing them out to
disk. Thus, each signature program conceptually uses three
different representations of each signature: the logical repre-
sentation used for computation, the approrimate represen-
tation that specifies what information to preserve, and the
compressed physical form that is written to disk.

The original C programs for computing signatures contained
routines to approximate and compress each signature before
writing it to disk and routines to uncompress and expand it
before computing with it. However, we found situations in
which the original C code performed computations not only
on the logical representations, but also on the approximate
and on the compressed representations. While the code was
very efficient, it was highly unreadable, making it difficult
to verify and maintain.

Hancock’s view construct provides a mechanism to specify
two views of a single piece of data and the conversion be-
tween them. Signature programs use one view to describe
the logical representation of each signature and another to
describe the approximate representation. Hancock’s map

abstraction provides a mechanism to specify application-
specific compression functions (see Section 3.3).

As an example of views, consider the following declaration
that specifies approximate (bin) and logical (minute) repre-
sentations of a unit of time:

view time(bin, minute) {
char <=> int;
bin(m) { return min_to_bin(m); }
minute(b) { return bin_to_min(b); }

}

The line char <=> int declares that the bin view is repre-
sented as a char and the minute view is represented as an
int. The bin function specifies how to convert from the log-
ical to the approximate representation by computing the bin
associated with m minutes. Similarly, the minute function
converts from the approximate to the logical representation
by assigning a default number of minutes to the bin b. To
translate between these two views, the programmer uses the
Hancock view operator ($):

bin b = 3;
minute m;
m = b$minute; // Convert bin b to minutes m

// Convert minutes m to
// corresponding bin number

b = m$bin;

Views allow Hancock programmers to document the rep-
resentation they are using in a given context. Views also
insure that the definition of how to convert between their
representations appear only once in the program. Both of
these aspects of views make Hancock programs easier to read
and maintain than the corresponding C programs.

3.3 Signature collections

The original signature programs associated values with keys
using a data structure called a map. Maps allowed direct
addressing to retrieve and store values in a customized, com-
pressed format. Hancock kept the notion of a map, but in-
stead of the programmer compressing the approximate rep-
resentation before storing it in a map, the programmer now
stores the approximate representation directly. The signa-
tures are still compressed, but now application-specific com-
pression functions are called directly by the Hancock map
implementation. The bytes representing compressed data
are no longer available to the programmer.

In the Cell Tower application, for example, we want to asso-
ciate a profile, which we defined earlier, with each mobile
phone number. The map declaration:

map cellTower_m {

key pn_t;

value profile;

default {{’\0’, ’\0’, ’\0’, ’\0’, ’\0’},
{0.0, 0.0, 0.0, 0.0, 0.0},
0.0};

compress ctSqueeze;

decompress ctUnsqueeze;

};

creates a new map type, cellTower m, for this purpose. The
key clause indicates that this map will be indexed by values
of type pn_t, a type which represents mobile phone numbers

12

in a format required! by the on-disk representation of maps.
The value clause of a map declaration specifies the type of
data to be associated with each key. The value type may be
any valid Hancock type. In the Cell Tower application, this
type is a standard C struct profile, but in many other ap-
plications the value type is the approximate representation
from a Hancock view type. (In this signature application,
the logical and approximate representations are the same.)
The default clause specifies a value to be returned if the
programmer requests data for a key that does not have a
value stored in the map. For maps with type cellTower m,
the default profile contains empty strings for the cell towers
and zeros for the counts.

Hancock maps provide generic compression routines, but
programmers may have additional domain-specific knowl-
edge that would allow them to write significantly better
custom compression routines. The optional compress and
decompress clauses in a map declaration allow programmers
to specify such compression functions. In the example, the
identifier ctSqueeze names a C function that takes a pointer
to a profile and returns a collection of bytes. The C func-
tion ctUnsqueeze performs the reverse operation. These
functions are usually lossless, but Hancock does not require
them to be so.

Variables of type cellTower_m can be declared using the
usual C syntax. Hancock provides an indexing operator
<: ... :>to access values in maps. The code:

cellTower_m ct;
pn_t mpn;
¢ = ct<:mpn:>;

ct<:mpn:> = c;
uses mobile phone number mpn to first read from and then
write to map ct. A common idiom in Hancock

m<:key:>$logview

uses the indexing operator to get an approximate value out
of a map (m) and the view operator to convert that value
into the logical representation (logview).

Hancock provides a lazy map copy operator, written us-
ing the infix notation :=:. For example, the statement
new_ct:=:ct initializes the map new_ct with the data from
map ct.

3.4 Events

Much of the work in computing a signature is done in re-
sponse to “events” in the input stream. For example, when
a program sees a new mobile phone number in an AWS_s
stream, it might re-initialize counters for that phone num-
ber. The original signature programs contained a hierarchy
of events, illustrated in Figure 2. Such events included seeing
a new area code (npa), seeing a new exchange (nxx),” see-

Hancock maps are represented on disk as indexed files. The
programmer controls the number of index levels and their
composition through the key type. Restrictions on key types
are described in the Hancock manual [8].

2An ezchange is the first six digits of a ten digit telephone
number.

npa_begin

npa_end

nxx_begi n nxx_end

Iine_begin line_end

Programmer supplied code for
responding to events.
—> Control flow managed by Hancock.

Figure 2: Hierarchical event structure.

ing a new phone number (line), seeing an individual call
record, seeing the last record for a phone number, etc. In
the diagram, these events are named npa_begin, nxx_begin,
line begin, call, line_end, etc., respectively. When a sig-
nature program detects an npa_begin event in a stream, it
may retrieve the time zone for the triggering area code. In
response to an nxx_begin event, it may retrieve all the old
signatures for the newly seen exchange. For a line_begin
event, it may initialize counters that it later increments in
response to call events. The program may store the final
values for these counters when a line_end event occurs.

In Hancock, we divide this processing into two pieces: event
detection and event response. Event detection includes defin-
ing the events of interest in a given stream and specify-
ing how to identify them. Event response indicates what
to do when an event is detected. In the example in Fig-
ure 2, event detection defines the boxes in the diagram,
while event response determines the code that inhabits those
boxes. The Hancock compiler generates the control flow that
sequences the response code. Because this control-flow code
involves deeply nested loops, Hancock programs are much
easier to read and maintain than the corresponding C pro-
grams, which mix these loops with event response code. In
the remainder of this section, we discuss how to describe and
detect events in a stream. In the next section, we discuss
how to respond to detected events.

To define events in a general fashion, we introduced a new
kind of type into Hancock: a multi-union. A multi-union
names the set of labels it may contain and associates a type
with each such label. Although we designed multi-unions to
describe events, they are in fact a general construct, suit-
able for many purposes; hence we named their constituents
“labels” instead of “events.” When we use multi-unions to
describe events, however, we often refer to their labels as
“events.” As an example, consider the declaration:

13

munion line_e {: areacode_t npa_begin,
exchange_t nxx_begin,
pn_t line_begin,
awsLog_t call,

pn_t line_end,
exchange_t nxx_end,
areacode_t npa_end :};

This code creates a multi-union type line_e to describe the
events from Figure 2. A value with this type contains any
subset of the declared labels, including the empty set, which
we write {: :}. Each label in the set carries a value of the
indicated type. If 1 is the current phone number and c the
current call record in a stream, then the expression
{: line_begin =1, call = c :};

creates a value with type 1line_e. This value would describe
the events that occur when the first (but not the last) call
record for telephone number 1 appears in the stream. If
el and e2 are multi-union values with the same type, then
expression el:+:e2 produces a new value that contains the
union of the labels of el and e2.

After describing the events of interest using a multi-union
declaration, the programmer must specify how to detect
such events by writing an event-detection function. Such a
function looks at a small portion of a stream and returns a
multi-union to describe the events detected in that window.

To describe a small portion of a stream, Hancock provides a
window type. The size of the window determines how many
records in the stream can be viewed at once. A window
is like an array, but has the added notion of a “current”
record. In specifying a window, the programmer indicates
the placement of the current record in the window. For
example, the declaration:

awsLog_t *w[3:1]

specifies that w is a window of size three onto a stream with
records of type awsLog_t. A pointer to the current record
appears in the middle slot of the window, i.e., in w[1]. Slots
with lower indices (w[0]) store pointers to records earlier
in the stream; slots with higher indices (w[2]) look ahead
to records appearing later in the stream. If the window
overlaps either the beginning or the end of the stream (or
both), the slots with no corresponding stream record are set
to NULL.

An event detection function takes a window onto a stream
and returns a multi-union describing the events detected in
that window. The Cell Tower signature uses the following
event detection function:

line_e originDetect(awsLog_t *w([3:1])
{ line_e b,e;

b = beginDetect(w[0], w[1l);

e = endDetect(w[1], w[2]);

return b :+: {: call = *w[1] :} :+:

3

€;

This function calls the auxiliary functions beginDetect and
endDetect. The first determines whether the current record
represents a new MPN by comparing the origin from the

previous record (w[0]) to the origin of the current record
(w[1]). The second determines whether the current record
represents the last call for a MPN by comparing the origin
for the current record to the origin for the next record

(wl21).

3.5 Consuming astream

As in the original signature code, Hancock’s computation
model is built around the notion of iterating over a sorted
stream of transaction records. Sorting the records groups
all the data relevant to one transactor into a contiguous
segment of the stream and ensures good locality for map
references that follow the sorting order. Consequently, each
signature program typically makes multiple passes over its
data stream. During each such pass, the signature program
sorts the stream in a different order and updates a different
portion of each transactor’s signature. We call each pass a
phase.

In Hancock, we implement phases using Hancock’s iterate
statement. The iterate statement has the following form:

iterate
(over stream variable
filteredby filter predicate
sortedby sorting order
withevents event detection function)
{

event clauses

};

The header specifies an initial stream, a set of transfor-
mations to produce a new stream, and a function to de-
tect events in the stream. The body contains a set of event
clauses that specify how to respond to the events detected
in the transformed stream.

We explain each of these pieces in turn. The over clause
names an initial stream to transform. The filteredby clause
specifies a predicate to remove unneeded records from the
stream. For example, an AWS_s stream may include land-to-
cell calls, which are not used by the Cell Tower signature.
Immediately removing such records improves the efficiency
of sorting and simplifies event response code.

The sortedby clause describes a sorting order for the stream
by listing the fields from the records in the stream that con-
stitute the desired sorting key. For example, using the fol-
lowing clause:

sortedby origin, connecttime

produces a stream sorted primarily by the originating tele-
phone number and secondarily by the time at which the call
was made.

The withevents clause specifies an event detection function.
As described in Section 3.4, such a function takes a window
onto the stream and returns a multi-union describing the
events detected in the given window.

The event clauses specify code to execute when an event
detection function triggers an event. Events that occur si-
multaneously (i.e., in the same multi-union value) are pro-
cessed in the order they appear in the event clauses. Given

O 0 N O Ut i W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

14

this ordering information, Hancock generates the control-
flow to sequence the response code, i.e., it generates the
arrows in Figure 2. The name of each event clause corre-
sponds to a label in the multi-union returned by the event
detection function. Each event clause takes as a parameter
the value carried by the corresponding label. For example,
the exchange that triggers an nxx_begin event is passed to
the nxx_begin event clause. The body of each event clause
is a block of Hancock/C code.

As an example, Figure 3 shows the outgoing phase of the Cell
Tower signature, which processes the calls made by wire-
less telephone numbers. The function out, which encapsu-
lates this phase, contains a single iterate statement that pro-
cesses a wireless call stream. It uses the predicate function
completeCellCall to remove incomplete and non-cellular
calls from the stream. It sorts the filtered stream by the orig-
inating phone number. It uses the function originDetect
to detect events in the sorted stream. The event clauses
in lines 11 to 27 of Figure 3 specify how to respond to the
detected events. Note that this phase does not use all the
events defined in the line_e type.

void out(AWS_s calls, cellTower_m ct)
{
profile p;

iterate
(over calls
filteredby completeCellCall
sortedby origin
withevents originDetect) {

event nxx_begin(exchange_t npanxx) {
degradeBlock(ct, npanxx) ;
}

event line_begin(pn_t mpn) {
initProfile(&p) ;
}

event call(awsLog_t c) {
diversify(&p, c.cellid);
}

event line_end(pn_t mpn) {
profile mytemp;
mytemp = ct<:mpn:>;
ct<:mpn:> update (&mytemp, &p) ;

}
};
}

Figure 3: Outgoing phase for the Cell Tower signa-
ture.

3.6 Putting it together

In the previous section, we explained that computing a sig-
nature may require multiple passes over the data. Hancock
provides the sig main construct to express the data flow
between such passes and to connect command-line input to
the variables in a Hancock program. The arcs between the

phase boxes in Figure 1 depict this construct. The following
code implements sig main for the Cell Tower signature:

void sig_main(const AWS_s calls <a:>,
exists const cellTower_m o0ldCT <m:>,
new cellTower_m newCT <M:>) {
newCT :=: o0ldCT;
out(calls,newCT);
}

The parameters to sig main connect command-line argu-
ments to program variables. The calls parameter is a
stream that contains the raw wireless call data. The const
keyword indicates that this data is read-only. The syntax
(<a:>) after the variable name specifies that this parame-
ter will be supplied as a command-line option using the -a
flag. The colon indicates that the flag takes an argument,
in this case the name of the directory that holds the call
files. The absence of a colon indicates that the parameter is
a boolean flag. The 01dCT parameter is a Cell Tower map,
the name of which is specified using the -m flag. The const
qualifier indicates the map is read-only, while the exists
annotation requires the map to exist on disk. The newCT
parameter names the Cell Tower map to hold the result of
this program. The -M flag specifies the file name for this
map, and the new qualifier indicates that the map must not
previously exist on disk.

In general, the body of sig main is a sequence of Hancock
and C statements. In the Cell Tower application, sig.main
copies the data from o01dCT into newCT and then invokes
the outgoing phase with the raw call stream and the new
Cell Tower map as arguments. If the Cell Tower application
required a second phase, e.g., an incoming phase, we would
call it after the call to out.

4. DISCUSSION

In the process of designing Hancock, we carefully examined
signature programs that had been written by hand in C.
We observed several problems with these programs. First,
the persistent profile data typically could be manipulated in
several different representations. It was often unclear which
representation was being used at any given point in the pro-
gram. Second, the code to process the stream events was
difficult to decipher and maintain. Finally, the dataflow be-
tween the phases was often unclear. Despite the weaknesses
of these programs, they had some significant strengths: they
were efficient and they used an effective representation for
their persistent data.

While designing Hancock, we tried to address the prob-
lems while preserving the strengths of the original programs.
Views allow a programmer to document the relationship
between two views of a type. The view operator guaran-
tees that programmers switch between representations in a
consistent and well-documented way. Maps provide an effi-
cient implementation for the most performance critical part
of signature programs. Their indexing operation provides
some type-checking, which helps ensure that programmers
use data consistently.

We designed Hancock’s event clauses to clarify stream pro-
cessing without losing efficiency. Such clauses have several
advantages. First, they have the flavor of function defini-

15

tions with their attendant modularity advantages, but with-
out their usual cost because the Hancock compiler expands
the event definitions in-line with the control-flow code. Sec-
ond, having the compiler generate the control flow removes a
significant source of bugs and complexity from Hancock pro-
grams. Finally, programmers can share information across
events easily.

We designed the sig main mechanism in Hancock to clar-
ify the dataflow between phases, to simplify the process of
parsing arguments, and to provide a way to connect the run-
time representation of Hancock data types, such maps and
streams, to their on-disk counterparts. The automatic gen-
eration of argument parsing code also helps programmers
protect valuable data through the const, new, and exists
qualifiers. The runtime system catches attempts to write to
constant data and generates error messages. It detects when
data annotated as new already exists or when data tagged
with exists is not on disk, in each case reporting a run-
time error. These data-protection features are important
when it is time-consuming or even impossible to reconstruct
an accidentally overwritten signature.

4.1 Languageversuslibrary

One question we are asked often is why we chose to design
a language rather than a library. There are two technical
reasons for choosing the language option. First, expressing
Hancock’s event model and the information sharing it pro-
vides proved awkward in a call-back® framework, the usual
technique for implementing such abstractions. Second, by
designing a language we could use the language’s type sys-
tem to provide more precise typechecking than is provided
by C. For example, the natural way to implement maps
using a library interface would require the programmer to
cast between the actual type of a value and void *, thereby
losing the benefits of typechecking. The scale of the data
makes the complexity of finding and fixing bugs in signa-
ture programs substantial. Therefore, static error detection
is essential.

The more compelling reason to choose a language over a
library for us is sociological. The experience of writing a
Hancock program is fundamentally different than writing
the equivalent program in C. This difference arises in part
because Hancock removes issues of scale, leaving program-
mers free to concentrate on the design of the individual pro-
files, and in part because Hancock provides a vocabulary
tailored to the domain of signature design.

5. EXPERIENCES

Over the past six months we have gained experience with
using Hancock to write signature programs. This section
briefly describes our implementation and discusses our ex-
periences with using the language for both production and
experimental signatures.

Our implementation of Hancock consists of a compiler that
translates Hancock code into plain C code. We compile and
link the resulting C code with a runtime system to produce
executable code. We modified cKIT [3], a C-to-C translator

3A call-back is a call from a function in a library “back” to
a function in user code.

written in ML, to parse Hancock and translate the resulting
extended parse tree into abstract syntax for plain C. During
the translation, we typecheck the various Hancock forms.
The runtime system, which is written in C, manages the
representation of Hancock data on-disk and in memory. It
converts between these representations as necessary and it
mediates all access to both stream and map data.

We have implemented five production signatures that pro-
duce information that AT&T uses daily for fraud detection,
customer care, and target marketing. We have implemented
six additional experimental signatures, some of which we ex-
pect to move into production in the next few months.

These signatures use data from four sources: long distance
calls (callDetail_s), wireless calls (AWS_s), WorldNet ses-
sions (WorldNet_s), and IP packets (IP_s). We have written
Hancock descriptions of these sources. In general, we expect
a single domain expert to write and maintain such descrip-
tions; others who are interested in a particular data source
simply import these descriptions. Of the existing signatures,
seven use the callDetail_s description, two use AWS_s, and
the other two use WorldNet_s and IP_s . The header files
that describe these streams contain roughly 250-300 lines
of code each. Approximately 40% of that code describes
the physical stream record types, the logical stream record
types, and the translation functions. Another 40% describes
the sets of stream events commonly used by applications.
The final 20% describes how to translate logical telephone
numbers into the format required for map keys. Writing
the Hancock code to describe the wireless data source took
about two hours. Much of that time was spent understand-
ing the physical representation of the data and writing the
translation function.

We often use the term “signature” to refer collectively to
the header file that describes the persistent data computed
by a signature program (e.g., a map), the Hancock program
that describes how to compute the map from a data source
(e.g., a stream), and a set of auxiliary programs used to
query the map. The header files are very small; they range
in size from 40 to 180 lines. The bulk of the header code is
devoted to application-specific compression and decompres-
sion functions. The signature computation programs range
in size from 100 to 600 lines of code. The complexity of
the desired profile determines the size of the program. The
larger programs employ a complex bumping algorithm to
approximate the most common N occurrences of a feature
in the data stream. The auxiliary programs are simple and
small; they range in size from five lines to 200 lines, with a
median size of 40 lines.

Our experience with the two wireless signature applications
gives an indication of how rapidly one can build a new pro-
totype signature. Once we had described the wireless data
source, these two signature programs took roughly one hour
each to write. One of these programs computes a wireless
version of a signature designed for long-distance call-detail
data. The programs that compute the wireless and long-
distance versions are closely related: 80% of the code is
identical. The differences in the remaining 20% arise largely
from name changes (e.g., callDetail to AWS). These two
programs are the largest in our suite.

16

Four of the production signatures are revisions of programs
that were written originally in C. The Hancock versions run
in approximately the same time as their C counterparts, but
the programs are much clearer. In addition, Hancock’s im-
proved map representation reduces the size of the resulting
persistent data by a factor of four. The persistent data for
the production signatures ranges in size from half a giga-
byte for the smallest map to seven gigabytes for the largest.
These maps contain roughly 350M key/value pairs each.
The values in the different maps range in size from a few
bytes to as many as 112 bytes. The largest of these profiles
is significantly larger than any of the profiles used in the
original C implementations.

6. CONCLUSIONS

Working with transactional data streams is like drinking
from the proverbial fire hose: the volume is simply over-
whelming. But this challenge provides an opportunity for
data mining research to enter a new area. We believe that
Hancock is a valuable tool for exploiting this opportunity.

Hancock has allowed us to improve our application base by
replacing hard-to-maintain, hand-written C code with disci-
plined Hancock code. Because Hancock provides high-level,
domain-specific abstractions, Hancock programs are easier
to read and maintain than the earlier C programs. By
careful design, these abstractions have efficient implemen-
tations, which allow Hancock programs to preserve the exe-
cution speed and data efficiency of the earlier C programs.
Hancock gave domain experts the confidence to attack more
challenging problems because it allowed them to concentrate
on what to compute without worrying about how to manage
the volume of data.

We continue to explore the boundaries of the applicability
of Hancock to related areas, e.g., processing ISP (Internet
Service Provider) session records or IP packet-header logs.
Soon, Hancock will be publicly available for non-commercial
use at:

www.research.att.com/ "kfisher/hancock

We hope that others will join us in exploring the language
and its functionality.

7. REFERENCES

[1] D. Bonachea, K. Fisher, A. Rogers, and F. Smith.
Hancock: A language for processing very large-scale
data. In USENIX 2nd Conference on Domain-Specific
Languages, pages 163-176, October 1999.

[2] P. Burge and J. Shawe-Taylor. Frameworks for fraud

detection in mobile telecommunications networks. In

Proceedings of the Fourth Annual Mobile and Personal

Communications Seminar. University of Limerick, 1996.

[3] S. Chandra, N. Heintze, D. MacQueen, D. Oliva, and

M. Siff. Pre-release of C-frontend library for SML/NJ.

See cm.bell-labs.com/cm/cs/what/smlnj., 1999.

[4] C. Cortes and D. Pregibon. Giga mining. In

Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, 1998.

[5]

[6]

C. Cortes and D. Pregibon. Information mining

platform: An infrastructure for KDD rapid deployment.

In Proceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining, 1999.

D. E. Denning. An intrusion-detection model. In IEEE
Trans Soft Eng Vol 13, No 2, 1987.

T. Fawcett and F. Provost. Adaptive fraud detection.
Data Mining and Knowledge Discovery, 1:291-316,
1997.

K. Fisher, A. Rogers, and F. Smith. The Hancock
language manual. In preparation. See
www.research.att.com/“kfisher/hancock.

17

