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a b s t r a c t

High-performance streamprocessing is critical inmany sense-and-respond application domains—fromen-
vironmental monitoring to algorithmic trading. In this paper, we focus on language and runtime support
for improving the performance of sense-and-respond applications in processing data from high-rate live
streams. The central tenets of this work are the programmingmodel, the workload splitting mechanisms,
the code generation framework, and the underlying SystemSmiddleware and Spadeprogrammingmodel.
We demonstrate considerable scalability behavior coupled with low processing latency in a real-world fi-
nancial trading application.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Large-scale sense-and-respond systems [20] continuously re-
ceive external signals in the form of one or more streams from
multiple sources and employ analytics aimed at detecting critical
conditions and, ideally, responding in a proactive fashion. Exam-
ples of such systems abound, ranging from SCADA (Supervisory
Control And Data Acquisition) systems deployed for monitoring
and controlling manufacturing, power distribution, and telecom-
munication networks, to environmental monitoring systems, all
the way to algorithmic trading platforms. All these sense-and-
respond systems share the need for (1) calculating baselines for
multiple samples of incoming signals (e.g., instantaneous electric-
ity production levels, the fair price of a security, among others) as
well as (2) the correlation of the computed value for a signal with
other signals (e.g., instantaneous electricity consumption levels,
the ask (or offer) price of a security, among others). The compu-
tation of baselines is typically performed by aggregating multiple
samples based on a group-by aggregation predicate. Such an ag-
gregation can be executed in different ways over different granu-
larities by the establishment of a window over the incoming data.
We refer to this first step as the sensing portion of a system. On the
other hand, the correlation operation is typically the result of a join
operation, where two signals are paired, generally using a window
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over the incoming data streams, and the result is used to drive an
automated response whereby, for example, a request for the gen-
eration of extra power is made or a block of securities is sold or
bought. This operation corresponds to the responding portion of a
sense-and-respond system.

In many situations the number of signals to be independently
aggregated and correlated is very high. For example, stock market
feeds can contain information about trading for thousands of dif-
ferent securities — a financial firm processing and acting on infor-
mation gleaned from the US equity market must track more than
3000 different stocks and an even larger number of derivatives on
these stocks. Similarly, there are around 3000 power plants in the
US [10] and millions of consumers. Streaming sense-and-respond
systems must be able to cope with such a large influx of data.

In both examples, we argue that the underlying architectural
pattern representing these sense-and-respond streaming systems
consists of a large number ofwindow-based aggregationoperations
coupled in some fashion with a large number of window-based
join operations operating on a collection of distinct substreams. In
our experience, in many cases, the number of distinct substreams
might not even be known a priori (e.g., securities may be added/
removed from the market) and the logical substreams might be
multiplexed in a single physical stream feed (e.g., a Reuters Stock
Market Data Feed [19]). Consequently, expressing such queries in
relational streamprocessing algebra is often not possible, or is very
costly, due to the overhead created by the large number of resulting
independent queries, as well as the need for updating the set of
queries as substreams dynamically arrive and depart.

In this paper, we focus on the problem of optimizing the split/
aggregate/join architectural pattern (defined in Section 3). The
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essential challenge is in splitting theworkload – one ormore primal
streams – and the actual processing (aggregation/join) carried out
by the application to scale up asmore computational resources are
employed. Among the contributions of this work, we highlight the
following.
The architectural pattern characterization: We characterize an im-
portant streaming application architectural pattern. The definition
of this architectural pattern has enabled us to design a program-
ming framework, including a language, an optimization frame-
work, and runtime support that enables application writers to
focus on the application analytics as opposed to parallelization and
distributed computing plumbing.
Language and code generation support: We identified a streaming
application decomposition methodology as well as the compile-
time knobs required for efficiently mapping a logical application
onto physical resources.2 The methodology hinges on the ways
we provided the architecture in the language for partitioning the
live data ingestion and processing workload into granular pieces
(e.g., stream splitting, and what we call per-group aggregation and
join operations) such that we can map the logical application as
well as possible onto the underlying computational environment
(e.g., by using code generation and operator-fusing techniques).
Comprehensive performance characterization: We implemented a
realistic stock market trading application reliant on the split/
aggregate/join pattern and provided a thorough experimental cha-
racterization of the per-group split/aggregate/join architectural
pattern aimed at scaling up the application so that it can process
half a million tuples per second on 16 cluster nodes.

In summary, this paper introduces the split/aggregate/join
architectural pattern for stream processing systems, demonstrates
how it is applied to sense-and-respond applications, and describes
techniques to implement it efficiently using per-group processing.
The overall approach is illustrated using a financial application,
and an evaluation is performed on a distributed stream processing
middleware using real-world workloads.

The rest of the paper is organized as follows. In Section 2,wedis-
cuss the nature of the high-performance processing ofmultiplexed
independent substreamproblems. Section 3 discusses an approach
for workload distribution based on the split/aggregate/join pat-
tern. In Sections 4 and 5, we describe the stream processing plat-
form used for carrying out the experimental evaluation and the
Spade stream processing programming language, respectively. In
Section 6, we describe our case study application as an example of
the split/aggregate/join streaming architectural pattern. Section 7
contains an extensive experimental analysis. In Section 8, we dis-
cuss the related work and contrast it with the ideas we present in
this paper. And, finally, Section 9 summarizes this paper and dis-
cusses future planned extensions.

2. Processing multiplexed independent substreams

The initial operation typically performed by stream processing
systems is data ingestion. This operation relies on an edge adapter
that converts a data feed of incoming packets into stream data
objects (or tuples) for processing. Usually, a limited amount of
data cleaning, data conversion, and data transformation is also
performed during data ingestion.

An edge adapter may create one or more data streams as it may
employ a chanellizationmethod [27], whereby a fat physical stream
can be split into a collection of thinner streams, for example, using

2 Note that automatic optimization work is ongoing, but outside the scope
of this paper. Nevertheless, the automatic optimization approach does use the
fundamental processing decomposition instruments described in this work.

multiple UDPmulticast groups. The tuples flowing on each of these
streams are usually logically related (e.g., trade transactions of IBM
stock). Another common approach is to employ a pub/sub system
or enterprise service bus [8] to encapsulate and route the data from
the physical feed to the downstream data consumers [6].

From the standpoint of stream processing, the difference be-
tween these two approaches lies in how much the original stream
feed is split. With channelization technologies, the channels are
in most cases created statically and one is typically limited to the
number of channels that can be simultaneously supported by the
middleware. Pub/sub technologies are much more dynamic as the
existing subscriptions determine what really amounts to logical
channels, as only messages matching the subscription predicates
are routed to subscribers. Trade-offs between these approaches
and hybrid ones that lie somewhere in between exist, but a longer
discussion is outside the scope of this work.

Regardless of the approach used for ingesting physical streams,
in most cases, physical as well as logical channels carry mes-
sages/tuples that are associatedwith different groups. Tomake this
statement more concrete, let us again look at an example. In pro-
cessing trading market data, a financial firm must acquire a mar-
ket feed such as Bloomberg B-Pipe.3 The market feed will then be
ingested using one of the approaches that were delineated above.
Assuming that the firm is interested only in trades from the NAS-
DAQstock exchange, one ormore channelswill be created and each
will contain independent transactions. In this case, logical or phys-
ical channels will be created for splitting the incoming traffic for
load balancing (e.g., ticker symbols starting with A, B, and so on) or
categorically partitioning the traffic (e.g., biotech companies, op-
tics company, etc.). The important point here is that each of these
channels (we shall refer to them from this point on as streams) con-
tains data belonging to different groups. For example, a stream car-
rying transactions related to ‘‘ticker symbol starting with the letter
A’’ will include trading data onmultiple companies such as Agilent
(A), Alcoa (AA), among others. In this example, we refer to each
company as a group, because trading analytics and activities will
take place on stocks belonging to a particular company.

3. The split/aggregate/join architectural pattern

We can now define the split4/aggregation5/join6 architectural
pattern. Given a particular streamwhere data belonging tomultiple
groups is multiplexed together, a sense-and-respond system will
initially demultiplex the incoming data into a collection of physical
streams, then aggregate data from multiple groups while, at the
same time, correlating (by joining) the aggregates with other
data coming from the same or other groups. In the example
above, we used different company stocks as groups, but this was
arbitrary (albeit realistic). Groups can contain collections, such as
all companies that operate in the mining sector. As we previously
stated, the number of groups is not necessarily known beforehand
— for example, a newly listed company may become part of
the mining sector in the stock market or a particular stock may

3 Bloomberg B-Pipe is a real-time data distribution service providing access to
more than 200 stock exchanges.
4 A split operation is used to divide a stream into multiple ones to distribute the

incoming traffic based on an application-specific predicate.
5 An aggregation operation is used for grouping and summarization of incoming

tuples over windows. For example, one can compute the average price of stock over
the last 30 s.
6 A join operation is used for correlating two streams. For example, a newsfeed

with news items for a company can be correlatedwith streams carrying stock prices
for that company. Streams can be paired up in several ways and the join predicate,
i.e., the expression determining when tuples from the two streams are joined can
be arbitrarily complex.
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Fig. 1. A per-group aggregation operation. Moving averages are independently computed for different stock symbols inside the same Aggregation operator.

be traded only sporadically. This is an important aspect of this
architectural pattern, as we shall soon see.

In terms of relational algebra, the implementation of these
operations requires (1) filtering to be carried out by a selection
operator to perform the demultiplexing, creating the substream
for a particular group, (2) independent aggregation to be carried
out by an aggregate function, and, finally, (3) joining substreams to
be carried out by a join operation. Because we are performing the
split/aggregate/join for different groups, we will have a collection
of chains, each one for a different group. We emphasized the
term collection, because a complication arises when the number
of groups is not known beforehand. In this case, it is not possible
to create the collection of independent query networks a priori.

In the following section we shall demonstrate how we address
both the issue of coping with a very high number of independent
chains aswell as the issue of not knowing a priori howmany chains
there are.

3.1. The per-group modifier

The approach we delineated above based on run-of-the-mill
relational operators suffers from two major shortcomings. First,
as pointed out, one must know the number of groups a priori,
although it is possible to incrementally modify the query network
as new groups are detected. The second, and a more fundamental
flaw, is the fact that the query network grows with the number of
groups. In other words, supporting a new group requires adding
new selection operators, new aggregators, and new joins.

Given this situation, it is clear that, for many applications,
the scaling-up costs can be steep. Interestingly, however, due
to the independent processing of the different chains, one can
see that the problem is embarrassingly parallel. Also, it can be
seen that the filtering that precedes the processing is performed
on the group-by attribute. On the other hand, the windowing
characteristics of both the Aggregation and the Join operators
apply independently to each group. For example, the computation
of the moving average trading price for the IBM stock over the
last 20 transactions is independently triggered by the arrival of a
new trade transaction of the IBM stock. Therefore, while a single
Aggregate operator can be used for making the same computation
for different groups in a typical relational query, aggregation (and
join) operations in streaming scenarios typically rely on a window
for determining when the operation is complete (e.g., the tuples
received in the last 5 min for a time-based window, or the last
ten trade transaction tuples for a count-based window). A window
is, however, intimately related to a group as it triggers additional
processing or termination of processing based on the tuples that
have been accumulated for one particular group. Specifically, if
a new trade on the IBM stock arrives, it triggers a change in
the moving average for the IBM stock alone. The same reasoning
applies to processing isolation necessary for stream Join operators.

What is needed is the means for having the Aggregate and Join
operators simultaneously operate on different groups in a com-
partmentalized fashion. In this scenario, the filtering can be done
efficiently by simply hashing on the Aggregate group-by attribute
and the Aggregate operator can independently compute the aggre-
gations for the different groups as the windowing boundaries ap-
ply independently to the different groups. We can achieve this by
adding a per-groupmodifier to the windowing support in both the
Aggregate and Join operators. Fig. 1 shows a per-group Aggregate
operator. In this example, only three stock symbols are shown and
a 3-trade transaction sliding window is depicted. These indepen-
dent windows (maintained by the per-group version of the Aggre-
gate operator) carries out a moving average computation for the
stock price.

Effectively, thismodifier logically createsmultiple independent
windows, one per group. The actual implementation employs the
group-by attribute to segment the processing in the Aggregate
operator as seen in Fig. 1 and the equijoin attribute to segment
the processing for the Join operator. Note that this approach is
applicable to both tumbling and sliding windows.7

In general, the problem of deploying an application query
network depends on how to effectively distribute the individual
processing chains on a stream data processing platform. Namely,
the following questions must be solved at planning time: how
many different stream engine containers8 to employ, how many
operators to run in each stream engine, how to perform internal
operator scheduling within each engine, and how many nodes
to employ for performing the computation. These questions are
subjected to the underlying computational architecture hosting
the stream processing system and are very critical as far as the
overall application performance and scalability are concerned.
Indeed, this is one of the critical problems facing the system
infrastructure of trading firms. In Section 5, we will discuss
how the code generation approach employed by the System S’s
Spade compiler will help with these issues. As we will see, the per-
group support is only as effective as how well one can distribute
the processing load across processors and computational nodes.

Note that employing the per-group modifier greatly reduces
the number of operators that must be deployed, reducing the

7 Tumbling windows are operated on and then flushed when they become full
(e.g., after having accumulated 20 trading transactions). Sliding windows on the
other hand have two components: an expiration policy and a trigger mechanism.
The expiration policy defines when accumulated tuples are ejected and, therefore,
are no longer part of the internal state carried by an Aggregate operator (e.g., we
keep the last 100 most recent tuples around). The trigger mechanism flags when
the aggregation operation should take place (e.g., an aggregation should be made
and output every time a new tuple is received by the operator).
8 Most of the distributed stream engines currently available rely on containers

on each of the nodes the system runs on for distributing the processing load.
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overhead9 of going across a different set of operator instances
for each logical stream, reducing the memory footprint, and also
simplifying both the planning phase and the query execution
management. On the other hand, taking per-group processing to
the extreme, where a single operator does all the aggregation (or
join), has several disadvantages as well. First, such an operator
becomes monolithic and may not be able to take advantage of
multiple nodes. Second, multi-threading capabilities have to be
built in manually as part of the operator implementation, in order
to take advantage of multiple cores. The per-group modifier, on
the other hand, enables one to adjust the number of parallel
chains, where each chain has per-group processing taking place
over its subset of logical streams. This enables us to achieve the
best of both worlds: take advantage of intra-node and inter-node
parallelism, while keeping the operator’s internal implementation
free of multi-threaded code.

In Section 7, we empirically show the improvements that can
be obtained by employing the per-group modifier to create chains
with different processing granularities.

4. The System S platform

System S [2,15,29] is a large-scale, distributed data stream
processingmiddleware under development at the IBM T. J. Watson
Research Center. It supports structured as well as unstructured
data stream processing and can be scaled to a large number of
compute nodes. The System S runtime can execute a large number
of long-running jobs (queries) that take the form of data-flow
graphs. A data-flow graph consists of a set of Processing Elements
(PEs) connected by streams, where each stream carries a series
of tuples. The PEs implement data stream analytics and are basic
execution containers that are distributed over the compute nodes.
The compute nodes are organized as a shared-nothing cluster of
workstations (COW) or as a large supercomputer (e.g., Blue Gene).
The PEs communicate with each other via their input and output
ports, connected by streams. The PE ports as well as the streams
connecting them are typed. PEs can be explicitly connected using
hard-coded links or through implicit links that rely on type
compatibility. The latter type of connections is dynamic and allows
System S to support incremental application development and
deployment. Besides these fundamental functionalities, System S
provides several other services, such as fault tolerance, scheduling
and placement optimization, distributed job management, storage
services, and security, to name a few.

5. SPADE

Spade [13] (Stream Processing Application Declarative Engine)
is the declarative stream processing engine of System S. It is also
the name of the declarative language used to program Spade ap-
plications. Spade provides a rapid application development (RAD)
front end for System S. Spade offers the following.
1. An intermediate language for flexible composition of parallel and

distributed data-flow graphs. This language sits in between
higher-level programming tools and languages such as the
System S IDE or Stream SQL and the lower-level System S
programming APIs.

9 While operators can be grouped together within the same process for
performance considerations, there is still a performance hit due to the abstraction
provided by an operator. For instance, Spade provides a flexible framework to fuse
operators. Even under fusion, every time a tuple travels through an operator port,
the middleware performs certain bookkeeping, such as updating counters to track
port statistics. Ports also serve as hook points for additional runtime services, such
as profiling and debugging. While going from one operator to the next is much
cheaper than going across the transport layer to a remote operator (on a different
process or node), it is still not free.

2. A toolkit of type-generic built-in stream processing operators.
Spade supports all basic stream-relational operators with rich
windowing and punctuation semantics. It also seamlessly
integrates built-in operators with user-defined ones.

3. A broad range of stream adapters. These adapters are used to
ingest data from outside sources and publish data to outside
destinations, such as network sockets, relational and XML
databases, and file systems, as well as proprietary systems such
as IBMWebsphere Front Office, and IBM DB2, etc.

5.1. Programming model

The Spade language provides a stream-centric, operator-level
programming model. The stream-centric design implies building a
programming language where the basic building block is a stream.
In other words, an application writer can quickly translate the
flows of data he/she anticipates from a back-of-the-envelope pro-
totype into the application skeleton, by simply listing the stream
data flows. The second aspect, i.e., operator-level programming,
is focused on designing the application by reasoning about the
smallest possible building blocks that are necessary to deliver the
computation an application is supposed to perform. The Spade op-
erators are organized in terms of domain-specific toolkits (e.g.,
signal processing, data mining, etc.). In most application do-
mains, application engineers typically have a good understanding
about the collection of operators they intend to use. For example,
database engineers typically design their applications in terms of
the operators provided by the (stream) relational algebra [4,24].

5.2. Compiler and runtime support

Spade leverages the existing stream processing infrastructure
offered by the Stream Processing Core (SPC) [2] component of Sys-
tem S. Given an application specification in Spade’s intermediate
language, the Spade compiler generates optimized code that will
run on SPC as a native SystemS application, as seen in Fig. 2. Spade’s
code generation and optimization framework enables it to fully ex-
ploit the performance and scalability of System S. The reliance on
code generation provides themeans for the creation of highly opti-
mized platform-specific and application-specific code. In contrast
to traditional database query compilers, the Spade compiler out-
puts code that is very tailored to the application at hand as well as
system-specific aspects such as the underlying network topology,
the distributed processing topology for the application (i.e., where
each piece will run), and the computational environment. In most
cases, applications created with Spade are long-running queries.
Hence the long execution times amortize the build costs. Never-
theless, the Spade compiler has numerous features to support in-
cremental builds, reducing the build costs as well.

As we stated, Spade uses code generation to fuse operators into
PEs. The PE code generator produces code that (1) fetches tuples
from the PE input buffers and relays them to the operators within,
(2) receives tuples from operators within and inserts them into
the PE output buffers, and (3) for all the intra-PE connections be-
tween the operators, it fuses the outputs of operators with the
inputs of downstream ones using function calls. This fusion of oper-
ators with function calls results in a depth-first traversal of the op-
erator subgraph that corresponds to the partition associated with
the PE, with no queuing involved in between. In otherwords, when
going from a Spade program to the actual deployable distributed
program (seen in Fig. 2), the logical streams we see in Fig. 2 may
be implemented as simple function calls (for fused operators) to
pointer exchanges (across PEs in the same computational node)
to network communication (for PEs sitting on different computa-
tional nodes). This code generation approach is extremely power-
ful because through simple recompilation one can go from a fully
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Fig. 2. A logical Spade application (on the left) and its physical deployment (on the right). Application developers focus on the logical view and the Spade compiler generates
code appropriate to physical configuration parameters such as inter-connectivity infrastructure (e.g., cluster of workstations, SMP, etc.), number of nodes, type of nodes
(e.g., x86, PowerPC, or Cell processors), among others.

Table 1
Trade and Quote (TAQ) data excerpt — showing trade and ask quote transactions.

Ticker symbol Date Timestamp Transaction type Price Volume Ask price Ask size

MWG 30-DEC-2005 14:30:06.280 Trade 24.27 500 – –
TEO 30-DEC-2005 14:30:06.283 Quote – – 12.85 1
UIS 30-DEC-2005 14:30:06.286 Quote – – 5.85 6
NP 30-DEC-2005 14:30:06.298 Trade 28.00 5700 – –
TEO 30-DEC-2005 14:30:06.389 Trade 12.79 700 – –

fused application to a fully distributed one, adapting to different
ratios of processing to I/O provided by different computational ar-
chitectures (e.g., blade centers versus Blue Gene). Currently, fus-
ing is controlled through compiler directives and primitives in the
Spade code, but we are actively working on automatic planning
techniques.

6. A case-study application: bargain discovery

Many financial market data processing applications can be
described based on the split/aggregation/join architectural pattern
as they fit a mold where one must first build predictive models
for asset pricing or risk management and, later, correlate model
results with incoming, live data and, thus, drive a trading platform
to execute sell or buy orders.

Our aim in defining a case-study application is to capture
this pattern rather than accurately and closely mimic algorithm
trading strategies. We focus on showing how one can make use
of systems-oriented optimizations (e.g., workload partitioning and
effective distributed processing placement strategies) to increase
data processing rates. Two key metrics are of interest: (1) data
ingestion throughput, measured at market feed ingestion points
and (2) latency, which we measure to capture the delay imposed
by the central computing portion in an application (e.g., how long
does it take to update the moving average for IBM stock trades).

The specific application we designed ingests trade and quote
(TAQ) data from a stock exchange. A sample snippet of this data
can be seen in Table 1, and the distribution of transactions per
stock symbol is depicted in Fig. 4. In particular, the data is a
sequence of trade and quote transactions,where trade transactions
are characterized by the price of an individual security and the
number of securities that were acquired/sold (i.e., volume). On
the other hand, quote transactions can either be a bid or an ask
quote. A bid quote refers to the price a market maker (i.e., a firm
that trades securities) will pay to purchase a number of securities
and an ask quote refers to the price a market maker will sell
a number of securities for. We based our experiments on trade

and quote transactions that took place in December 2005. In the
dataset, quote transactions are around 8 timesmore common than
Trade transactions. Second, there are around 3000 stock symbols
for which there is market trading activities. However, a very small
fraction of these stock symbols account for the bulk of the trading
as one can easily see in the cumulative distribution function
(CDF) plots. The implication here is that a substantial amount of
imbalance can take place depending on how the processing is split.
In Section 7, it will become clear that our approach to optimizing
the split/aggregate/join architectural pattern is almost immune to
imbalances.

Our sample application emulates a scenario where a securities
trading firm makes money by quickly spotting bargains in the
market. To identify a bargain, the firm first needs to acquire data
to build a model for pricing all (or some of) the securities that are
being traded. Once a security is priced (let us call it a fair price),
the firm can assess whether the ask quotes are mispriced. That is,
it must verify whether a seller is willing to sell that security (or
a bundle of those) by a price that is lower than the fair price as
predicted by thepricingmodel. The incomingprimal streamcarries
all the information necessary for performing such algorithm.

Fig. 5 depicts a simplified view of the application in terms
of Spade’s stream-relational operators. We omit the operators
we included for instrumentation purposes for clarity. The primal
stream is first split into two substreams — a Trade stream and
a Quote stream, originating two separate processing chains. The
Trade stream is used to feed the pricing model with recent trades.
The pricing model employs a simple moving average approach
for assessing the fair price for a security. This moving average,
commonly referred to as VWAP (Volume-Weighted Average Price),
is calculated by adding up the dollars traded for every transaction
(price multiplied by number of shares traded) and then dividing
by the total shares traded for a specific trading window. Typically,
trading windows of different sizes are employed to capture
long-term to short-term changes in pricing. In our particular
implementation, we simultaneously compute the VWAP for every
single security using three different window sizes — the last 5 Trade
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Fig. 3. A SPADE code excerpt showing the VWAP calculation and the Bargain Detection implementation, employing the per-group construct and the operator fusion and
placement features. Themain body of the code is placed in a loop (with index@J) to create parallel chains for different aggregationwindow sizes (up toNUMAGG). Partitioning
directives are used to co-locate all the operators under the same processing element, and placement directives are used to locate them on the same node. There are also two
outer loops (with indices @K and @L), whose bodies are not shown for brevity, but their indices show up in the figure. These are used to further distribute the processing to
multiple processing elements on a given node (using index @L) and to multiple nodes (using index @K).
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Fig. 4. Trade and Quote dataset characteristics. The cumulative distribution function plot shows that a small number of stock symbols account for a large volume of
transactions.

transactions, the last 10, and the last 15. The Spade code excerpt
can be seen in Fig. 3. The actual VWAP computation is carried
out using a sliding window, with a slide factor of 1, which means
that three new VWAP computations are made every time a new
Trade transaction comes in. During this portion of the computation,
we have employed the Spade per-group construct. As we have
stated before, the application is running the pricing model for all
securities that are being traded. In principle, a single Aggregate
operator can carry out that computation as the per-group construct
essentially creates different and isolated buckets for each different
security, as we saw in Fig. 1. Later in this paper, we will also
show that the per-group construct also enabled us to split the
computation across different processing chains through simple
hashing, replicating the processing chain for different groups of
securities, achieving very good scalability.

The two processing chains are brought together by Join opera-
tors (one for each VWAPwindow size). The join operation is driven

by the arrival of a new ask quote transaction. Its other input is fed
by the most recently computed VWAP value. The Spade Join op-
erator can operate on windows and the windowing specification
is unique to each input. Therefore, for a VWAP processing chain, a
window of size 1 is employed (for keeping the last computed fair
price for a security) and no windowing is employed for the Quote
processing chain (i.e., a window of size 0) as we want to process
the incoming Quote transactions as they arrive. Note that, again,
the per-group construct is used in the Join operator as well to make
sure that we can perform this correlation independently and si-
multaneously for every stock symbol, as also seen in Fig. 3. The
Join operator also computes a bargain index which considers both
the price difference between the quoted price and the fair price as
well as the volume to be sold as specified by the Quote transaction.
Therefore, a good bargain will either have a large price difference
for a small volume or a small price difference for a large volume.
Finally, the result of that computation is exponentially scaled up
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Fig. 5. The Bargain Discovery application described in terms of a topological graph of operators. Source and Sink are edge adapters (for receiving/exporting data from
System S), Functors are used for filtering and data transformation, Aggregate operators are used for group-by operations, and Join operators are used for correlating data
from different streams.

Fig. 6. The Spade operator processing graph. The operator processing graph corresponds to the application writer’s logical view – each small box corresponds to an operator
and they are connected by logical streams.

to allow for ranking the bargains as they are dispatched to an au-
tomated trading platform. In our example, the application deposits
the computed bargains in a file.10

In terms of performance characterization, the BargainDiscovery
application can be employed to study two important metrics,
which will be carefully dissected in Section 7. The first one, rate
of ingest, measured at the Source tells us how many transactions
can be ingested from a market feed.11

In general, data stream management systems employ load
shedding techniques as one of the ways to keep up with possibly
overloading rates of ingest [23]. However, for financial market
applications it is important to consider the case where no load
is shed, both for business, but primarily for regulatory reasons.
Therefore, in this work, we consider the rate of ingest metric
under a no load shedding policy. The second important metric
is latency — how long a given message (or transaction) takes
to traverse a query processing chain. In financial applications,
latency is critical because it affects the core of the business —

10 Spade has a large number of edge adapters to stream the result out to other
platforms. The file edge adapter is one of them.
11 The peak rate typically observed in our 2005 TAQ dataset is around 100,000
quotes and trades per second [30], with the average rates well below half of that
figure. More recently, estimates for 2008 for market data rates [11] are in the
neighborhood of 1 million transactions per second, although this number is for
options data (not TAQ) as we are using, but it highlights the need for scalability
in stream processing systems dealing with financial data.

how long it takes to go from detecting a market opportunity to
acting on it determines who is profitable. In our application, there
are two important latencies to keep track of: VWAP computation
and bargain detection. In Fig. 5, we show three instrumentation
points Ts, marking the initial time stamp for a Trade or Quote
transaction, Tv , marking when a Trade tuple originates a new
VWAP computation, and Tb when a Quote tuple originates a new
bargain index computation. The VWAP computation (Tv − Ts)
latency is influenced by how large the aggregation window is,
in addition to the actual computation that must take place. The
bargain detection latency (Tb − Ts), arguably the most important
one here, is influenced by the join algorithm only.

The actual implementation of the application in Spade was
slightly more complex than we described because we also added
additional operators for instrumentation and scalability purposes
(e.g., primal stream and second-level and third-level stream
splitting) for multi-processor and multi-node workload and pro-
cessing distribution. Figs. 6 and 7 show two depictions of the ap-
plication processing graphs that were actually deployed. In both
cases, we extracted the pictures using System S’s visualization
front end, called StreamSight [9]. StreamSight allows different
visualization perspectives. We chose to show the application in
terms of Spade operators (Fig. 6) as well as in terms of actual pro-
cessing elements (i.e., the runtime execution containers) (Fig. 7)
— the logical and physical view as conceptually depicted in Fig. 2.
Contrasting the two images allows one to observe the effects of
operator fusion carried out by the Spade compiler. In both cases,
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Fig. 7. The Processing Element (PE) processing graph. The PE processing graph
corresponds to the physical deployment plan. In this case, several operators are
fused inside a single processing element – each small box corresponds to a
processing element and they are connected by physical streams. After fusion, many
logical streams become function calls.
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Fig. 8. Latency with 95% prediction interval as a function of the number of groups
(stock symbols).

we showed a configuration where the primal stream is split four
ways to feed independent processing chains residing on four dis-
tinct nodes.

7. Experimental evaluation

In this section, we evaluate the performance of the Spade-
based implementation (using the split/aggregate/join architectural
pattern and per-group windows) of the Bargain Discovery applica-
tion, with respect to throughput and latency. The experiments pre-
sented in this section were performed on a subset of the System S
cluster at Watson, using up to 16 nodes, where each node has two
hyperthreaded 3 GHz Intel Xeon processors and is connected with
a Gigabit Ethernet network. All of the values reported in the results
represent the steady-state runtime behavior of the application and
are deduced from raw data collected via reservoir sampling [26]
with a default buffer size of 5000 samples.

7.1. Latency results

All latency results presented are from runs on a single node,
using only a single processor. This is aimed at showcasing the
advantage of using per-group modifier in terms of reducing the
middleware overhead, even in the extreme cases where there are
no parallelization opportunities.

The graphs in Fig. 8 plot the mean bargain detection latency,
as well as its 95% prediction interval, as a function of the number
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Fig. 9. Standard deviation of the latency as a function of the number of groups
(stock symbols).
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Fig. 10. Latency with 95% prediction interval as a function of the throttled input
rate.

of groups in the stream, i.e. the number of stock symbols, for
different number of processing chains used. Fig. 9 shows the
standard deviation of the latency, as a function of the number
of groups in the stream. Note that the per-group processing
capability of Spade provides us with the means to flexibly set
the number of chains in our stream processing graph and thus
distribute the processing load across processors (in the symmetric
multiprocessing – SMP – sense) as well as across the COW nodes.
Without the per-group processing capability, one has to resort
to creating over 3000 chains (one per stock symbol) in order to
run the Bargain Discovery application. We, on the other hand,
are capable of bundling multiple stock symbols in a stream,
and we process them in isolation using per-group Aggregate
and Join operators. The amount of bundling can be tweaked to
match the computational capabilities of a node. Note that for
these experiments this was manually done — our automatic pre-
planning optimization work is underway. In the next section, we
study the benefits of the per-group modifier under highly parallel
set-ups. For now, we return back to the single-processor scenario
for studying the reduced processing overhead that results from
using the per-group modifier.

The graphs in Fig. 10 plot the mean bargain detection latency
and its 95% prediction interval, as a function of the throttled input
rate,12 for different number of processing chains used. Fig. 10
shows that 64 chains cause around 100% increase in the mean
bargain index latency throughout the x-axis range (throttled rate).
Similarly, the 95% prediction interval of the 64-chain scenario is
around 50% larger compared to that of a single chain. Fig. 11 shows
that the standard deviation also increases as the number of chains
increases.

12 The Spade source edge adapter can be configured with throttling parameters
for controlling the ingest data rate.
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7.2. Throughput and scalability

In this section, we evaluate the performance in terms of
throughput and scalability. We start with a single-node, single-
processor scenario to illustrate the advantages of single-chain pro-
cessing by using the per-group construct. We then extend the
discussion to the multiple nodes and processors scenario and
show how the flexibility provided by per-group windows and
operators in setting the number of chains helps easily and ef-
fectively parallelize the Bargain Discovery application using the
split/aggregate/join architectural pattern.

7.2.1. Single node and processor
The graph in Fig. 12 shows the relative increase in throughput,

compared to the case of 64 chains on a single processor, as a
function of the number of groups in the stream, i.e., the number
of stock symbols, for different number of processing chains used.
We observe that a single chain provides 70–87% higher throughput
compared to 64 chains, whereas the improvement numbers are
60–80% for 4 chains and 45–55% for 16 chains. Moreover, the
improvement we get by using fewer chains is more pronounced
when the number of groups is larger, that is, when the overall
processing is more costly. These results clearly illustrate that in
a single-threaded environment, a single-chain implementation
is superior and an implementation that does not rely on per-
group support should be avoided, since it will require more than
3000 chains in the Bargain Discovery application, assuming that
we know that we always have 3000 stock symbols (we do not
necessarily know that).

7.2.2. Multiple nodes and processors
To achieve scalability, we increase the number of nodes used

to execute the Bargain Discovery application, following the paral-
lelization strategy discussed in Section 6. Note that all this is pos-
sible with a simple recompilation of the Spade program.We report
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Fig. 13. Throughput as a function of the number of compute nodes, for different
numbers of distributed sources.

results for both distributed primal sources, that is, sources that con-
tain non-overlapping content, and replicated primal sources, that
is, sources that contain the same content, but come from different
physical channels.

Distributed primal sources. Under the distributed primal sources
model, the stream processing graphs routed at different sources
receive non-overlapping portions of the source data. As a result,
scalability with increasing number of compute nodes is easily
achieved when the number of distributed primal sources is large.
When the number of primal sources is small, the scalability mainly
depends on Spade’s performance in executing each chain, as well
as splitting the source stream among multiple chains and nodes.
In the financial trading domain, distinct feeds typically represent
trading activity from different markets, in other words, feeds from
different stock exchanges (e.g., NYSE, CME, LSE, etc.). As a result,
distributed primal sources occur naturally in this domain.

The graphs in Fig. 13 plot the throughout (in tuples/s) as a
function of the number of nodes used to execute the Bargain
Discovery application, for different number of distributed primal
sources. In this set-up, each node hosts four chains, one per
processor. As observed for the 8 and 16 sources cases, we achieve
close to perfect scalability when the number of primal sources is
large ( ≈35 K tuples/s to ≈540 K tuples/s going from 1 node/1
source to 16 nodes/16 sources, i.e. a 15.5 speed-up). Nevertheless,
even when the number of sources is 4, Spade provides good
scalability (a 7-fold speed-upwith 8nodes and an11-fold speed-up
with 16 nodes). When we only have a single source, the scalability
drops after 8 nodes, mainly due to the inefficiency of splitting a
stream into more than 8 substreams on 8 nodes.

Replicated primal sources. Under the replicated primal sources
model, the aim is to scale up with as few sources as possible, since
a larger number of sources implies more expense for receiving the
exact same content through multiple distinct channels. In other
words, there is only onemarket feed and it is being both replicated
and split (and cost is incurred in doing so) such that the processing
can be spread across nodes.

The graph in Fig. 14 plots the throughout (in tuples/s) as a
function of the number of nodes used to execute the Bargain
Discovery application, for different numbers of replicated primal
sources. In this set-up, again each node hosts four chains, one
per processor. The results are similar to the distributed sources
scenario in terms of the general trends, with one significant
difference: regardless of the number of sources available, the
speed-up achievable is limited compared to the ideal case of linear
speed-up. This is due to Amdahl’s law [16], i.e., in the pipelined
processing chain, the initial steps of data ingestion are inherently
sequential, bounding the speed-up that can be obtained by the
remaining processing chain.
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Fig. 14. Throughput as a function of the number of compute nodes, for different
numbers of replicated sources.

To see this in more detail, let us consider the ingest rate and
processing rate under the replicated primal sources model.

Let td be the time it takes to receive and drop a tuple from the
primal source and, similarly, let tf be the time it takes to receive
and fully process a tuple. Thus, our single-node processing rate is
P1 =

1
tf
, and similarly the single-node ingest rate (receive and drop

everything) is I1 =
1
td
. If we are to divide the job among n nodes

assuming n replicated primal sources, then each node will process
only 1

n th of the tuples it receives, and will drop n−1
n th of them. As

a result, the total aggregate tuple processing rate is given by

Pn = n · (td · (n − 1) + tf )−1.

The speed-up relative to the single-node case is given by

Sn = n ·


td
tf

· (n − 1) + 1
−1

.

Given that tf > td, we make two important observations.

1. The aggregate tuple processing rate achievable under the
replicated primal sources model is bounded by the single-node
ingest rate I1, i.e. limn→∞ Pn = I1.

2. The speed-up achievable under the replicated primal sources
model is bounded by the single-node ingest rate to single-node
processing rate ratio I1

P1
, i.e. limn→∞ Sn =

I1
P1

=
tf
td
.

Overall, we obtained very good results — with a small set
of nodes, non-trivial data processing could be carried out for all
Trade and Quote transactions at speeds that are five times the
peak market feed rate we observed. More importantly, we showed
how workload partitioning is trivially supported by the split/
aggregate/join architectural pattern and, therefore, if additional
processing is to be carried out, one can easily split the work across
additional nodes.

8. Related work

The distributed computing area and its subarea of distributed
stream processing have received a lot of recent attention. The
availability of large-scale affordable computational infrastructure
makes it possible to implement large, real-world continuous
streaming data analysis applications.

First, let us consider the existing distributed computing mid-
dleware — the Parallel Virtual Machine (PVM) and the Message
Passing Interface (MPI). While the architectural pattern we iden-
tified can be implemented in either one, there are advantages in
doing it using Spade. First, from an application writer’s standpoint,
a developer will concentrate on the analytics and not worry about
distributed computing plumbing. As described in Section 5.2, the
knobs for controlling the compile-time fusion of operators as well

as placement of application components were used in this imple-
mentation and are the foundation for future automatic optimiza-
tion approaches.

Second, in the relational data processing world, frameworks
such as STREAM [3], Borealis [1], StreamBase [21], TelegraphCQ [7],
among others, the focus is on providing stream processingmiddle-
ware and, in some cases, declarative language for writing applica-
tions. Less focus is on the distributed and potentially large-scale
nature of the problem and on ways of mapping the computation
onto the underlying large-scale distributed environment. None of
these systems give the developer the language constructs or the
compiler optimization knobs to write the application in a granular
way to truly leverage the levels of parallelism available in modern
distributed architectures such as large-scale clusters as well as su-
percomputing platforms.

On the programming language side, StreamIt [22] is certainly
closer to us. But its focus is on implementing stream flows for DSP-
based applications. It really does not have a distributed computing
underpinning.More recently, the Aspen language [25] shares some
commonalities with Spade— themost important being the philos-
ophy of providing a high-level programming language, shielding
users from the complexities of a distributed environment. Another
similar approach is Pig Latin [18]. Butmany distinctions existwhen
contrasting them with our basic design principles. Spade is orga-
nized in terms of high-level operators, forming toolkits (e.g., a re-
lational algebra toolkit). Toolkits can be extended with additional
operators and additional toolkits may be added, extending the lan-
guage. Like Aspen, Spade supports user-defined operators too.13
Furthermore, the Spade compiler generates code and, hence, can
customize the runtime artifacts to the characteristics of the run-
time environment, including architecture-specific and topological
optimizations, as discussed in Section 5.2.

Finally, contrasting Spade with Hadoop [14] – as one repre-
sentative middleware supporting the map/reduce paradigm – or
Maryland’s Active Data Repository [17] and DataCutter [5], the
key difference is the abstraction level employed for writing appli-
cations. These approaches rely on ‘‘low-level’’ programming con-
structs. Analytics are written from scratch as opposed to relying on
built-in, granular, operators.Moreover,map/reduce operations can
only be used for computations that are associative/commutative by
nature.

9. Concluding remarks

The split/aggregate/join architectural pattern is a common
template for implementing stream processing applications in
different domains. In many cases, such as in the financial domain,
scalable and high-performance business logic translates directly
into actual financial returns — the first one to spot a trading
opportunity has the advantage. Therefore, the optimization of this
architectural pattern is critical. In this paper, we have shown
how features of System S and the Spade programming language
and compiler features can be used to achieve scalability and low
latency. Several features of System S and Spade were particularly
important.

(1) Support for distributed stream processing: The ability to
deploy an application on a large number of processing nodes was
critical in providing the means for being able to achieve scalability
as we distributed the load across different processing chains and
nodes.

13 The important distinction here is that user-defined operators (UDOPs, in
Spade lingo), which are the fundamental building blocks in Aspen, are not fully
templatized and, therefore, schema-agnostic. On the other hand, the Spade built-
in operators (BIOPs) are fully generic with respect to stream schemas.



H. Andrade et al. / J. Parallel Distrib. Comput. ( ) – 11

(2)Operator-based language: From the standpoint of writing the
application, developers typically think in terms of operators and
how they interconnect (a common approach in other data analysis
software platforms, such as general-purpose statistical packages,
and simulation packages). In our present work, the support for
operators and for operator fusing was critical for finding a physical
deployment configuration that permitted us to fully utilize all the
computational nodes.

(3) Per-group operators: The construct allowed us to radically
simplify the application, reducing the number of operators — in
particular, Join and Aggregate operators necessary to carry out
the computation. Moreover, this construct allowed us to have
the flexibility in breaking down the processing to any level of
granularity that was adequate as far as fully utilizing the available
computational nodes.

Despite our encouraging results, during the manual calibration
and experimental evaluation of our case-study application, it
became clear that many challenges lie ahead. The most important
is in application compile-time pre-planning.14 While Spade allows
one to write an application in terms of logical operators, the
mapping between the logical view of the application to the
physical layout is critical to performance. This is not a ground-
breaking observation, and the Spade compiler was designed
with that in mind. In the present work, operator fusing and
placement were driven by directives in the Spade source code to
illustrate the parameters an optimizer can tweak. In another recent
study, we have designed and implemented a heuristic-based
optimizer [12], illustrating how these parameters can be employed
in an automatic optimization step which aims at deciding which
operators should be fused. That work is the first step towards an
overall compile-time optimization strategy that will employ all
the knobs we manually tweaked in the course of the experimental
study conducted in the present study.
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particular, middleware technologies and optimization techniques for data analysis
applications.
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