
Query-Aware Partitioning for Monitoring Massive Network
Data Streams

 Theodore Johnson S. Muthukrishnan Vladislav Shkapenyuk Oliver Spatscheck
 AT&T Labs-Research Rutgers University AT&T Labs-Research AT&T Labs-Research

johnsont@research.att.com muthu@cs.rutgers.edu vshkap@research.att.com spatsch@research.att.com

ABSTRACT
Data Stream Management Systems (DSMS) are gaining
acceptance for applications that need to process very large
volumes of data in real time. The load generated by such
applications frequently exceeds by far the computation capabilities
of a single centralized server. In particular, a single-server
instance of our DSMS, Gigascope, cannot keep up with the
processing demands of the new OC-786 networks, which can
generate more than 100 million packets per second. In this paper,
we explore a mechanism for the distributed processing of very
high speed data streams.

Existing distributed DSMSs employ two mechanisms for
distributing the load across the participating machines: partitioning
of the query execution plans and partitioning of the input data
stream in a query-independent fashion. However, for a large class
of queries, both approaches fail to reduce the load as compared to
centralized system, and can even lead to an increase in the load. In
this paper we present an alternative approach - query-aware data
stream partitioning that allows for more efficient scaling. We
present methods for analyzing any given query set and choose the
optimal partitioning scheme, and show how to reconcile
potentially conflicting requirements that different queries might
place on partitioning. We conclude with experiments on a small
cluster of processing nodes on high-rate network traffic feed that
demonstrates with different query sets that our methods effectively
distribute the load across all processing nodes and facilitate
efficient scaling whenever more processing nodes becomes
available.

Categories and Subject Descriptors
H.2.4 [DataBase Management]: Systems, Distributed databases

General Terms: Design, Performance

Keywords: Data streams, partitioning, query optimization

1. INTRODUCTION
Data stream management systems (DSMS) have increasingly
become the tool of choice for applications that require
sophisticated processing of large volumes of data in real time.
Example applications include large scale sensor networks [3], and
especially network monitoring [11][21]. The volume of data that

needs to be processed in real time for such applications can easily
exceed the resources available on a centralized server. For
example, dual OC768 network links currently being deployed in
the Internet backbone generate up to 2x40 Gbit/sec of traffic,
which corresponds to roughly 112 million packets/sec. Even a fast
4GHz server can spend at most 26 cycles processing each tuple,
which does not allow it to perform any meaningful processing
short of incrementing few counters. Furthermore, this data load
exceeds by an order of magnitude the throughput of fastest
computer buses such as PCI-X and PCI-Express. Nevertheless,
AT&T needs to monitor these links to ensure the health of its
network. Given its successful application across the AT&T
network, Gigascope is the natural candidate for the OC-768
monitoring platform.

Distributed DSMSs attack the performance problem by spreading
the load across a number of cooperating machines running
independent DSMSs. Two commonly used techniques used to
distribute the load across the participating machines are
partitioning query plans into subplans to be executed in parallel
(query plan partitioning) and splitting resource-intensive query
nodes into multiple nodes working on subset of data feed (data
stream partitioning) [9]. However, query plan partitioning fails to
generate feasible execution plans if the original query plan
contains one or more operator that are too “heavy” for a single
machine (and at 100M packets/sec, most non-trivial operators are
too heavy - memory copy cost alone reach 10Gbytes/sec). Most of
the query plans used in network monitoring application are
characterized by highly non-uniform resource consumption of
different query nodes, which makes it impossible for query plan
partitioning to evenly distribute the load.

The published data stream partitioning as implemented in DSMSs
is done in query-independent fashion (e.g. partitioning tuples in
random or round robin fashion) [9][20]. However, for a large class
of queries such data stream partitioning fails to significantly
reduce the load compared to centralized system and can even lead
to an increase in the load.

Example. Let us consider an example of a network monitoring
query computing traffic flows – summaries of packets between a
source and a destination during a period of time. The group-by
attributes are the source and destination IP address, the source and
destination port, and the protocol, while the aggregates include the
number of packets, the number of bytes transferred, start and stop
times, and so on. These types of queries are popular in various
network monitoring applications – from performance monitoring
to detecting network attacks [14]. The SQL version of the query is
shown below.

SELECT time,srcIP,destIP,srcPort,destPort,
COUNT(*),SUM(len),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06...$5.00.

1135

MIN(timestamp),MAX(timestamp), …
FROM TCP
GROUP BY time,srcIP,destIP,srcPort,destPort

Suppose that data stream partitioning is applied in round robin
fashion to evenly distribute input tuples among n machines that
compute partially aggregated flows and send them to a central
node that merges the partials flows and computes a final
aggregation. It is easy to see that in the worst case, a single flow
will result in n partial flows being computed and transmitted over
the network to central aggregating node. In a more typical network
monitoring scenario, the query is only interested in a subset of all
flows. For example, suppose we want to monitor attack flows that
do not follow TCP protocols and can frequently be differentiated
by OR of the flags of the packets in the flow. In SQL we can write
this query by adding a corresponding HAVING clause to the flow
query (e.g. HAVING OR_AGGR(flags)=
ATTACK_PATTERN). It is easy to see that none of the nodes
performing local aggregation will be able to apply the HAVING
clause to filter out regular flows. Due to the significant overhead
involved in processing remote tuples as compared to local
processing, the CPU and network link load on the final
aggregation node can exceed the load on single node in centralized
case, rendering the execution strategy infeasible.

For this example, a more reasonable approach for distributing the
load among the participating machines is to partition the input data
stream based on flows (e.g. evenly distributing entire flows). If
such partitioning is utilized, all flows can be computed locally and
filtered using the HAVING clause before being transmitted over
the network. The problem of determining a good partitioning
scheme for certain classes of individual relational queries
(aggregations and equijoins) has been studied in the context of
parallel relational databases [12][15]; however in the streaming
environment existing approaches do not scale to complex query
sets and massive data rates. Network monitoring applications
generally run a large number of queries simultaneously (one of our
applications runs 50 simultaneous queries); queries in turn may
contain a number of different subqueries. Each of the subqueries
might place different requirements for the way partitioning has to
be done. These requirements can easily be in conflict with each
other and it would not be always possible to satisfy all of them.

It is also not feasible to dynamically repartition the inputs to suit
individual queries as is commonly done in parallel relational
databases, since each such repartitioning puts the entire stream
back into inter-node network without any data reduction, which
greatly increases communication costs. Furthermore, splitting 80
Gbit/sec traffic requires specialized network hardware which is an
order of magnitude more expensive than the computational
hardware – we can only afford to partition the source once. In
general, we need a partitioning mechanism that can automatically
analyze an arbitrary complex query set and determine a single
optimal initial stream partitioning scheme.

In order to incorporate the results of the analysis into distributed
query optimization, we need to make the optimizer fully aware of
the partitioning scheme used. However, we cannot make an
assumption that the actual partitioning scheme used by the system
is identical to the optimal one recommended by the analysis.
Monitoring the 80Gbit/sec link requires specialized network
equipment that can partition the data at line speeds. The currently
available hardware for OC768 monitoring partitions each direction
of OC768 stream into four 10Gbit Ethernet substreams that are

sent to separate Gigascope servers. The network interface cards
(NICs) specialized for 10GEth monitoring are typically capable of
further partitioning the network stream into subinterfaces. We
note that NICs for monitoring OC768 are not currently available,
rendering query plan partitioning infeasible.

Even though the partition hardware is programmable using FPGAs
and TCAMs, the limited number of available gates place
restrictions on a type of partitioning can be performed in
hardware. For example it is possible to implement partitioning
based on TCP fields such as source or destination IP addresses, but
accessing fields from higher-level protocols such as HTTP
requires regular expression processing that is not currently feasible
to do at OC768 speeds. Furthermore, it is not always possible to
dynamically reconfigure the once optimal partitioning scheme
every time the query workload changes. Therefore, we need a
distributed query optimizer that is flexible enough to take
advantage of any available partitioning.

The query-aware data stream partitioning mechanism proposed in
this paper includes both an analysis framework for determining the
optimal partitioning and a partition-aware distributed query
optimizer that transforms the unoptimized query plan into a
semantically equivalent query plan that takes advantage of
existing partitions.

The contributions we make in this paper are as follows. We
1. Develop the concept of query-aware data stream partitioning

for distributed stream processing.
2. Design and develop a framework for analyzing a set of

queries to determine a partitioning strategy that would satisfy
all the queries in a set.

3. Determine a set of query transformation rules to be used by
query optimizer to take advantage of existing data stream
partitioning.

4. Perform detailed experiments with a live cluster of stream
processing nodes and show that our partitioning methods lead
to highly efficient distributed query execution plans that scale
linearly with the number of nodes.

2. RELATED WORK
The area of data streaming has received a lot of attention in recent
years, with research efforts ranging from developing streaming
algorithms to designing and building Data Stream Management
Systems (DSMS). A number of research DSMSs are currently
being developed, including Aurora/Borealis [1], TelegraphCQ [7],
Gigascope [11] and many others. A number of currently active
research projects focus on extending DSMS to enable scalable
distributed stream processing [6][20]. Two main approaches used
to distribute the load across the cooperating machines are query
plan partitioning and data stream partitioning.
The load distribution mechanism used in Borealis [6] relies on
query plan partitioning to balance the load on cooperating DSMSs.
As we discussed earlier this approach is not feasible if a query
plan contains one or more operators that are too “heavy” for a
single machine. In addition to query plan partitioning, Borealis
also employ fairly simple data stream partitioning mechanism
called box splitting. However, partitioning is done in a query-
independent manner and requires expensive processing of partial
results generated by split query nodes.
The FLUX load partitioning operator used in TelegraphCQ DSMS
[20] supports a variety of data stream partitioning schemes

1136

including the hash-based strategy used in our paper. The primary
goal of FLUX is to avoid imbalance in the load caused by the data
scheme. To address the imbalance problem it uses an adaptive
partitioning adjusted at runtime depending on observed data skew.
The partitioning itself is still however operator-independent and
suffers from excessive load on the node combining partial results.
The Grid Stream Data Manager (GSDM) described in [13]
proposes an operator-dependent windows split strategy which
partitions the input data stream in such a way that partial results
can be inexpensively combined. The query writer is expected to
manually provide specific stream distribute/stream merge routines
for all query nodes eligible for optimization. The authors do not
address the issue of automatic inference of an optimal splitting
strategy for arbitrary query sets.
Hash-based partitioning has been studied in the context of parallel
relational databases [12][15] to parallelize the execution of
individual aggregation and equijoin queries. However, the main
technique used – dynamic stream repartitioning - is not suitable
for processing high-rate data streams as it puts the entire stream
back into the network and makes the communication cost
prohibitively expensive. Furthermore, the problem addressed in
our paper is finding optimal partitioning for arbitrary complex
query sets rather than individual queries.
Recent work on automating physical database design for relational
databases [19] addresses the problem of choosing a database
partitioning scheme that is optimal or close to optimal for a given
query workload. The main idea of this work is to generate a large
number of candidate partitions and perform a heuristic search to
find the lowest cost partitioning scheme (using the cost estimates
provided by IBM DB2 optimizer). Our approach is more
principled, since it uses a much smaller set of possible partitions
and then uses a cost model to reconcile the conflicts. We also are
not as reliant on the quality of the cost model, which is very
important for processing data streams with rapidly changing
characteristics. Furthermore, our objective function – minimizing
the maximum communication cost - is more appropriate for
distributed stream processing.

3. QUERY-AWARE STREAM
PARTITIONING OVERVIEW
The goal of the query-aware data stream partitioning mechanism
is to distribute input tuples across multiple machines in such a way
that maximizes the amount of data reduction that can be
performed locally before shipping the intermediate results to a
node that produces final results. We would call such partitioning
compatible with a given query. In this section we will give a
formal definition of partition compatibility and show how to infer
a compatible partitioning scheme for two major classes of
streaming queries – aggregations and joins.

3.1 Tumbling window query semantics
A primary requirement of a DSMS is to provide a way to unblock
otherwise blocking operators such as aggregation and join.
Different DSMSs take different approaches, but in general they
provide a way to define a window on the data stream on which the
query evaluation will occur at any moment in time. Two main
approaches for defining a window on a stream are sliding
windows (both time- and tuple-based) and tumbling windows. In
streaming systems that rely on tumbling windows, one or more
attributes of a data stream are marked as being ordered. Query
evaluation windows are determined by analyzing how a query

references the ordered attributes. For example, consider the
following schema.

PKT(time increasing, srcIP, destIP, len)

The time attribute is marked as being ordered, specifically
increasing. Then the following query computes the sum of the
length of packets between each source and destination IP address
for every minute

SELECT tb, srcIP, destIP, sum(len)
FROM PKT
GROUP BY time/60 as tb, srcIP, destIP

Similarly a join query on streams R and S must contain a join
predicate such as R.tr=S.ts or R.tr/2=S.ts+1: that is, one which
relates a timestamp field from R to one in S. An example of join
query that combines the length of packets with matching IP
addresses is shown below:

SELECT time, PKT1.srcIP, PKT1.destIP,
PKT1.len + PKT2.len

FROM PKT1 JOIN PKT2
WHERE PKT1.time = PKT2.time and

PKT1.srcIP = PKT2.srcIP and
PKT1.destIP = PKT2.destIP

These kinds of queries use tumbling window semantics in which
the window covers only the current epoch. Li et al. [17] show
how tumbling windows can be used for the efficient evaluation of
sliding window queries using panes. Therefore we will assume
tumbling window semantics for our queries (except where
otherwise noted) for simplicity.

3.2 Illustrative example
We illustrate the query-aware partitioning mechanism by working
through an example query set. The first query (flows, denoted γ1)
computes simplified TCP traffic flows for every 60 second time
epoch (for each communicating source and destination host it
produces a number of packets sent between them). The higher-
level aggregation query (heavy_flows, denoted γ2) computes
“heaviest” flows for each source (heaviest flows have the largest
number of packets). Finally a self-join query (flow_pairs,
denoted) correlates heavy flows that span consequent time
epochs. The corresponding SQL statements for both queries are
shown below:

 Query flows:
SELECT tb,srcIP,destIP,COUNT(*) as cnt
FROM TCP
GROUP BY time/60 as tb,srcIP,destIP

 Query heavy_flows:
SELECT tb,srcIP,max(cnt) as max_cnt
FROM flows
GROUP BY tb, srcIP

 Query flow_pairs:

SELECT S1.tb, S1.srcIP,
 S1.max_cnt,S2.max_cnt
FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP and S1.tb
 = S2.tb+1

A query plan for execution of the queries is shown in Figure 1.

1137

Figure 1: Sample query execution plan

1. Which partitioning scheme is optimal for each of the queries
in an execution plan?

Intuitively, a lower-level aggregation query (node γ1) will benefit
the most from a partitioning which guarantees that no tuples with
identical pair of attributes (srcIP, destIP) will end up in different
partitions. Any partitioning that satisfies this properly would allow
γ1 to be evaluated in parallel on all participating hosts with linear
scalability. Following a similar intuition, the query nodes γ2 and
self-join node will benefit the most if the input stream was
partitioning using (srcIP). Later in the section, we will formally
define what requirements a partitioning scheme must satisfy and
give inference rules to compute an appropriate partitioning for
major classes of streaming queries.

2. How to reconcile potentially conflicting partitioning
requirements from different queries in a query set?

As we have seen previously, query γ1 will benefit mostly from
partitioning based on attributes (srcIP, destIP), while the rest of the
queries would prefer partitioning on (srcIP). Since it is (usually)
not feasible to partition the input stream simultaneously in
multiple ways, we need to reconcile partitioning requirements of
different query nodes. It is easy to see that partitioning on (srcIP)
can satisfy all queries in our sample query set. More generally, we
will need an algorithm for inferring an optimal set of attributes to
be used for partitioning for arbitrary complex query set. We will
present such an algorithm in Section 4.

3. How can we use the information about the scheme used for
partitioning in distributed query optimizer?

Assuming the input stream is partitioned as recommended by the
query analysis, we can use this information to drive the distributed
query optimizer. In our prototype implementation the optimizer
works by invoking a set of partition-aware transformation rules on
nodes of original query plan in bottom-up fashion.

In many real life applications the query writer does not have
complete control over how the partitioning is done. As we
mentioned in the introduction, processing capabilities of the
hardware used for partitioning can place restrictions on the
partitioning scheme. For example we could have hardware that
can only split the input stream based on (destIP). The query
optimization framework needs to be flexible enough to maximally
take advantage of any partitioning, even if it is different from the
optimal one. An example distributed query plan produced by the
optimizer under the assumption that partitioning is done based on
(destIP) is shown in Figure 2.

γ

∪

Host 2

γ
σ

γ
σ

Host 3

γ
σ

Host 4

γ
σ

Host 1

Figure 2: Optimized query execution plan

3.3 Hash-based stream partitioning
The main goal of any stream partitioning scheme is to distribute
tuples evenly across multiple distributed nodes in such a way that
load is evenly spread across all nodes. There are multiple ways in
which such scheme could be implemented, but one of the simplest
can be done by hashing selected set of tuple attributes. Let A be a
set of tuple attributes (the partitioning set), H(A) a hash function
returning 0 .. R, and M the number of desired partitions. Then, a
tuple falls into parititon i if

i*R/M ≤ H(A) ≤ (i+1)*R/M

For many query sets, it is beneficial not to restrict ourselves to
using singleton tuple attributes and instead allow grouping sets to
include arbitrary scalar expression involving tuple attributes. For
example one choice of partitioning set for could be (srcIP &
0xFFF0, destIP) which will effectively partition tuples based on
subnet that srcIP belongs to. Let sc_expi(attri) represent a scalar
expression. For the rest of the paper we will only assume more
general definition of partitioning set:

(sc_exp1(attr1), sc_exp2(attr2), ..., sc_expn(attrn))

3.4 Partition compatibility
The choice of the partition set critically impacts the ability of the
query optimizer to reorganize the query plans for distributed
evaluation. Consider the following aggregation query that
computes simple network flows:

SELECT tb, srcIP, destIP, sum(len)
FROM PKT
GROUP BY time/60 as tb, srcIP, destIP

It is easy to see that partitioning using partitioning set (time/60,
srcIP, destIP) allows each host to execute the aggregation query
locally on corresponding partition with no further aggregation
necessary. A partition-aware query optimizer can replace the
aggregation query by stream union of the identical queries running
on individual partitions. However, if (srcIP, destIP, srcPort,
destPort) is used as partitioning set, this optimization would not be
possible. We will capture the notation of “optimizer-friendly”
partitioning set in the following definition: Partitioning set P is
compatible with a query Q if for every time window, the output
of the query is equal to a stream union of the output of the Q
running on all partitions produced by P.

An example of such compatible partitioning set for the query
above is {(time/60)/2, srcIP & 0xFFF0, destIP & 0xFF00). An
example of an incompatible grouping set for the query above is

γ1

γ2

Low-level
aggregation

High-level
aggregation

σ

Self-join

Low-level
filtering

1138

{time, srcIP, destIP} (since tuples belonging to the same 60
second epoch will end up in different partitions).

In the following sections we will give the rules for inferring the
compatible partioning sets for two major classes of streaming
queries - aggregations and joins. Other types of streaming queries
(selection, projection, union) are always compatible with any
partitioning sets and therefore we will omit the discussion of these
query types.

3.5 Inference of partitioning sets for
streaming queries
The definition of partition compatibility given in the previous
section is very generic and does not directly tell us how to infer
the partitioning set for a given query. In this section, we give
equivalent definitions of query compatibility for both aggregation
and join queries that can be directly applied to compute the
partitions.

3.5.1 Dealing with temporal attributes
One issue that needs to be considered when selecting a
partitioning set compatible with a given query is whether to
include the temporal attributes. Selecting the temporal attribute in
a partitioning set will effectively change the allocation of groups
to processors whenever the time epoch changes. This property
could be desirable if we want to avoid bad hash functions that fail
to uniformly spread the load across the participating machines.
However, for sliding window queries that use pane-based
evaluation [17], changing the group allocation in the middle of a
window will lead to incorrect query results. Even for tumbling
window queries a temporal attribute is generally not a good choice
for load-balancing partitioning unless it is extremely (nanosecond)
fine grained, as tuples correlated in time tend to have very highly
correlated values of the temporal attribute. For this reason we will
exclude the temporal attributes from further consideration.

3.5.2 Partitioning sets for aggregation queries
In its general form an aggregation query has the following format:

SELECT expr1, exp2, ... ,exprn
FROM STREAM_NAME
WHERE tup_predicate
GROUP BY temp_var, gb_var1, ... ,
 gb_varm
HAVING group_predicate

We only consider a subset G of these groupby variables
(gb_var1, ... , gb_varm) that can be expressed as a scalar
expression involving an attribute of one of the source input
streams (ignoring grouping variables that are, e.g., results of
aggregations computed in lower-level queries). Then, any
compatible partitioning set for aggregation query Q will have the
following form:

{se(gb_var1), … , se(gb_varn)}
where se(x) is any scalar expression involving x. Given that there
is an infinite number of possible scalar expression, every
aggregation query has an infinite number of compatible
partitioning sets. Furthermore any subset of a compatible
partitioning set is also compatible.

3.5.3 Partitioning sets for join queries
We will consider a restricted class of join queries, namely two-
way equi-join queries that use the semantics of tumbling windows.
The general form of such query has the following format:

SELECT expr1, expr2, ... ,exprn
FROM STREAM1 AS S {LEFT|RIGHT|FULL}
 [OUTER] JOIN STREAM2 as R
WHERE STREAM1.ts = STREAM1.ts and
 STREAM1.var11 = STREAM2.var21 and ...
 STREAM1.var1k = STREAM2.var2k and
 other_predicates;

For ease of the analysis we will only consider join queries whose
WHERE clause is in Conjunctive Normal Form (CNF) in which at
least one of the CNF terms is equality predicate between the scalar
expressions involving attributes of the source streams. Let J be a
set of all such equality predicates { se(R.rattr1) = se(S.sattr1), …,
se(R.rattrn) = se(S.sattrn)}. As with aggregation queries, we will
only consider scalar expressions involving attributes of the source
input streams. Then we can compute the partitioning sets for both
streams S and R using

Partn_R = { se(R.attr1), … se(R.attrn) }
Partn_S = { se(S.attr1), ... , se(S.attrn) }

 respectively. It also follows that join query is compatible with any
non-empty subset of its partitioning set. Since it is not feasible to
partition the input stream simultaneously in multiple ways,
Partn_R and Partn_S will need to be reconciled to compute a
single partitioning scheme.

4. PARTITIONING FOR QUERY SETS
Data stream management systems are expected to run a large
number of queries simultaneously; queries in turn may contain a
number of different subqueries (selections, aggregations, unions,
and joins). Each of the subqueries might place different
requirements on partitioning set to be compatible with it.

 Example: Consider the following query set:

Query tcp_flows:
SELECT tb, srcIP, destIP, srcPort,

destPort, COUNT(*), SUM(len)
FROM TCP
GROUP BY time/60 as tb, srcIP, destIP,
 srcPort, destPort

Query flow_cnt:
SELECT tb, srcIP, destIP, count(*)
FROM tcp_flows
GROUP BY tb, srcIP, destIP

Query tcp_flows computes the number of packets and total
number of bytes sent in each flow; query flow_cnt computes a
number of distinct flows active during the time epoch for each pair
of communication hosts.

Based on our analysis for individual queries, tcp_flows is
compatible with partitioning set of the form of {sc_exp(srcIP),
sc_exp(destIP), sc_exp(srcPort),
sc_exp(destPort)} or any of its non-empty subsets. Query
flow_cnt, on other hand, requires the input stream to be partitioned
using {sc_exp(srcIP), sc_exp(destIP)} to be compatible
with distributed optimization. Considering both partitioning sets
we can infer that partitioning based on {sc_exp(srcIP),

1139

sc_exp(destIP)} will be compatible with both queries. A
similar inference is required for join queries whose child queries
have different compatible partitioning sets.

In what follows we present our analysis framework that infers the
compatible partitioning set for arbitrary set of streaming queries.
Our framework makes a simplifying assumption that all of the
source input streams processed by a query set are partitioned using
the same partitioning set. Expanding the analysis algorithms to
handle different partitioning schemes for different input stream is
part of planned future work.

4.1 Reconciling partitioning sets
Previously we discussed the need to reconcile the different
requirements two queries might have for a compatible grouping
set to generate a new grouping set compatible with both queries.
We abstract this issue using Reconcile_Group_Sets(), defined as
follows:

Def. Given two partitioning set definitions PS1 for query Q1
and PS2 for query Q2, Reconcile_Partn_Sets() is defined to
return the largest partitioning set Reconciled_PS such that
both Q1 and Q2 are compatible with partitioning using a set
Reconciled_PS. The empty set is returned if no such
Reconciled_PS exists.

Considering a simple case of partitioning sets consisting of just the
stream attributes (no scalar expressions involved),
ReconcilePartn_Sets() returns the intersection of the two
partitioning sets. For example Reconcile_Partn_Sets({srcIP,
destIP}, {srcIP, destIP, srcPort, destPort},) is the set { srcIP,
destIP }. For a more general case of partitioning sets involving
arbitrary scalar expressions, Reconcile_Partn_Sets uses scalar
expression analysis to find “least common denominator”. For
example
 Reconcile_Partn_Sets (
 {sc_exp(time/60), sc_exp(srcIP), sc_exp(destIP)},
 {sc_exp(time/90}, sc_exp(srcIP & 0xFFF0)})
 is equal to a set
 {sc_exp(time/180, sc_exp(srcIP & 0xFFF0)}.
The Reconcile_Partn_Sets function can make use of either simple
or complex analysis based on the implementation time that is
available. A full discussion is beyond the scope of this paper, but
we expect that the simple analyses used in the example will
suffice for most cases.

4.2 Algorithm for computing a compatible
partitioning set
We represent a set of streaming queries as a Directed Acyclic
Graph (DAG) of streaming query nodes, where each query node is
a basic streaming query (selection/projection, union, aggregation,
and join). Even though most real systems also use more
complicated streaming operators, we can always express them
using a combination of basic query nodes. Note that based on the
analysis in Section 3, we know how to compute compatible
partitioning sets for all individual query nodes.

Computing a compatible partitioning for an arbitrary query set
essentially requires reconciling all the requirements that all nodes
in the query graph place on compatible partitioning sets. A
simplified implementation of the procedure of computing
compatible set PS for a DAG with n nodes would look the
following way:

1. For every query node Qi in a query DAG, compute the
compatible partitioning set PS(Qi).

2. Set PS = PS(Q1).
3. For every i∈[1 to n], set PS = Reconcile_Partn_Sets(PS,

PS(Qi)).

Unfortunately, for many realistic query sets we would expect the
resulting partitioning set PS to be empty due to conflicting
requirements of different queries. A more reasonable approach
would be to try to satisfy a subset of nodes in a query DAG in
order to minimize the total cost of the query execution plan. There
are a variety of different cost models that can be used to drive the
optimization; in this paper we will use a simple model that
approximates a maximum network load on single node.

4.2.1 Cost model for streaming query nodes
The cost model that we are going to use in this paper defines a
cost of query execution plan to be the maximum amount of data a
single node in query execution plan is expected to receive over the
network during one time epoch. The intuition behind this model is
trying to avoid query plans that overload a single host with
excessive amounts of data sent from query nodes residing on
different hosts.
Let R be the rate of the input stream on which the query set is
operating, and PS be a partitioning set. For each query node Qi in
a potential query execution plan we define the following variables:
• selectivity_factor (Qi). The selectivity factor estimates the

expected ratio of the number of output tuples to the number
of input tuples Qi receives during one epoch.

• out_tuple_size (Qi). Expected size of the output tuple
produced by Qi.

• We recursively define input_rate (Qi) to be R if Qi is a leaf
node and to be the sum of all output_rate (Qj) s.t. Qj is a
child of Qi.

• output_rate (Qi) = (input_rate (Qi) / in_tuple_size (Qi))*
selectivity_factor (Qi) * out_tuple_size (Qi).

We define the cost(Qi) in the following way:
• 0 if it processes only local data
• input_rate (Qi) if Qi is incompatible with PS
• output_rate (Qi) if Qi is compatible with PS

The intuition behind this cost formula is that an operator
partitioned using a compatible partitioning set only needs to
compute the union of the results produced by remote nodes, and
therefore the rate of the remote data it is expected to receive is
equal to its output rate.

Finally, we define the cost of the query plan Qplan given
partitioning PS cost(Qplan, PS) to be the max cost(Qi) for all i.
The intuition behind this formula is trying to avoid overloading a
single node rather than minimizing average load.

4.2.2 Computing an optimal compatible partitioning
set
We now describe an algorithm for computing an optimal
partitioning set for arbitrary query sets. The algorithm takes a
query DAG as an input and produces a partitioning set that
minimizes the cost of the query execution plan. The basic idea is
to enumerate all possible compatible partitioning sets using
dynamic programming to reduce the search space. The outline of
the algorithm is given below:

1140

1. For every query node Qi in a query DAG, compute its
compatible partitioning set PS(i) and cost(Qplan, PS(i)).
Add non-empty PS(i) to a set of partitioning candidates.

2. Set PS to be PS(i) with minimum cost(Qplan, PS(i)).
3. For every candidate pair of partitioning sets PS(i) and PS(j)

compute compatible partitioning set PS(i, j) =
Reconcile_Partn_Sets(PS(i), PS(j)) and cost(Qplan,
PS(i,j)). Add non-empty PS(i, j) to a set of candidate pairs.

4. Set PS to be PS (i, j) with minimum cost(Qplan, PS(I, j)).
5. Similarly to previous step, expand candidate pairs of

partitioning sets to candidate triples and compute
corresponding reconciled partitioning sets and minimum cost.

6. Continue the iterative process until we exhaust the search
space or end up with an empty list of candidates for the next
iteration.

Since it is impossible for a partitioning set to be compatible with a
node and not to be compatible with one of the node predecessors,
we can use the following heuristics to further reduce the search
space:
• Only consider leaf nodes for a set of initial candidates
• When expanding candidate sets only consider adding a node

that is either an immediate parent of a node already in the set
or is a leaf node.

5. QUERY PLAN TRANSFORMATION
FOR A GIVEN PARTITIONING
The query analysis framework presented in Section 4 provides a
way to automatically infer the optimal partitioning scheme for a
given set of streaming queries. In order to incorporate the results
of the analysis into distributed query optimization, we need to
make the optimizer fully aware of the partitioning scheme used.
We implemented all partition-related optimizations as a set of
transformation rules invoked by the query optimizer on
compatible query nodes. All query transformation rules that we
use work by replacing a qualifying subtree in query execution plan
by equivalent optimized version (under the assumption that the
input stream was partitioned using a compatible partitioning
method).
As discussed earlier, we cannot assume that the partitioning
scheme used by the actual system is identical to the optimal one
recommended by the query analyzer. Therefore, the distributed
query optimizer needs to take advantage of any partitioning that
used by the system, even if it differs from the optimal one.

5.1 Algorithm for performing partition-
related query plan transformations
Our algorithm for transforming query execution plans based on
available partitioning information consists of the following two
phases:
Build partition-agnostic query execution plan

γ

∪

Host 1 Host 2 Host 3
Figure 3: Partition-agnostic query execution plan

Let S be the partitioned source input stream consumed by a query
set, S = ∪ Partni,. We construct a partition-agnostic query plan by
creating an additional merge query node that computes a stream
union of all the partitions and making all query nodes that
consume S read from the merge node. Since each host might have
multiple CPUs/Cores, we can allocate multiple partitions to each
participating host depending on the host capabilities. An example
of a partition-agnostic plan for an aggregation query is shown in
Figure 3. In this example an input stream S is split into 6 different
partitions, with 2 partitions assigned to each host.

Even though such a query execution plan is clearly inefficient
since it forces all the partitioned streams to be shipped to a single
host before performing any processing, in the absence of any
information about partitioning scheme used it is often the only
feasible plan.

Perform query plan transformation in bottom-up fashion
All transformation rules that we use for partition-related query
optimization consist of two procedures: Opt_Eligible() and
Transform(). Opt_Eligible() is a Boolean test that takes a query
node and returns true if it is eligible for partition-related
optimization. Transform() replaces the node that passed
Opt_Eligible() test by equivalent optimized plan. The pseudo code
for query optimizer is given below:

1. Compute a topologically sorted list of nodes in the query
DAG Q1, Q2, …, Qn starting with the leaf nodes.

2. For every i ∈ [1 to n]
If Opt_Eligible(Qi)

 Transform(Qi ,Partitiong_Info)

Performing the transformation in a bottom-up fashion allows us to
easily propagate the transformation compatible leaf nodes through
the chain of compatible parent nodes. In the following section we
will give a detailed description of the implementation of
Opt_Eligible() and Transform() for all major classes of query
nodes – aggregations, joins and selection/projection.

5.2 Transformation for aggregation queries
The Opt_Eligible() procedure for an aggregation query Q and
partitioning set PS returns true if the following conditions are met:
• query Q has a single child node M of type merge (stream

union)
• each child node of M is operating on single partition

consistent with PS
• Q is compatible with PS
• Q is the only parent of M

The last requirement is important to prevent the optimizer from
removing the merge nodes that are used by multiple consumers.
An example of a query node that stultifies all of the conditions
required by Opt_Eligible() is shown Figure 4.

∪

γ

Host 1

γ γ

Host 2

γ γ

Host 3

γ

Figure 4: Aggregation transformation for compatible nodes

1141

5.2.1 Transformation for compatible aggregation
queries nodes
The main idea behind the Transform() procedure for eligible
aggregation query Q is to push the aggregation operator below the
merge M and allow it to execute independently on each of the
partitions. For each of the inputs of M we create a copy of Q and
push it below the merge operator. The resulting optimized query
execution plan is shown in Figure 4.

The correctness of the transformation follows directly from out
definition of partition compatibility. Note, that data is fully
aggregated before being sent to central node and does not require
any additional processing.

5.2.2 Transformation for incompatible aggregation
queries
For many aggregation queries that fail the Opt_Eligible() test we
can still do better than use the default partition-agnostic query
execution plan. The main idea behind the proposed optimization is
the concept of partial aggregates. This idea is widely used in a
number of streaming database engines [9][10], sensor networks
[3][8] and traditional relational databases [16]. We illustrate this
idea on a query that computes a count of number of packets sent
between pairs of hosts:

Query tcp_count:
SELECT time, srcIP, destIP, srcPort,

COUNT(*)
FROM TCP
GROUP BY time, srcIP, destIP, srcPort

We can split tcp_count into two queries called sub- and super-
aggregate:

Query super_tcp_count:
SELECT time, srcIP, destIP, srcPort,

SUM(cnt)
FROM sub_tcp_count
GROUP BY time, srcIP, destIP, srcPort

Query sub_tcp_count:
SELECT time, srcIP, destIP, srcPort,

COUNT(*) as cnt
FROM TCP
GROUP BY time, srcIP, destIP, srcPort

All the SQL’s built-in aggregates can be trivially split in a similar
fashion. Many commonly used User Defined Aggregate Functions
(UDAFs) can also be easily split into two components as was
suggested in [10]. Note that we can push all the predicates in the
query’s WHERE clause to sub-aggregates, but all predicates in
HAVING clause need complete aggregate values and therefore
must be evaluated in super-aggregate. The query execution plan
produced by this optimization is shown is Figure 5.

Host 1 Host 2 Host 3

∪ ∪ ∪
γ-sub γ-sub γ-sub

γ-super

∪

Figure 5: Aggregation transformation for incompatible nodes

5.3 Transformation for join queries
In this section we will only consider two-way join queries, since
all multi-way joins can be easily expressed by combination of
two-way joins. The Opt_Eligible() procedure for a join query Q
and partitioning set PS returns true if the following conditions are
met:
• query Q has a two children nodes M1 and M2 of type merge

(stream union)
• each child node of M1 and M2 is operating on single

partition consistent with PS
• Q is compatible with PS
• Q is the only parent of M1 and M2

An example query execution plan that satisfies Opt_Eligible() test
is shown in Figure 6.

Host 1

∪

Host 2 Host 3 Host 1 Host 2 Host 3

∪

Figure 6: Original query execution plan

The main idea behind the Transform() procedure for an eligible
join query Q is to perform pair-wise joins for each of partition of
input stream. This is accomplished by creating a copy of join
operator and pushing it below the child merges. The left side
partitions that do not have matching right side partitions and
similarly unmatched right side partitions are ignored for inner join
computations. For outer join computations, unmatched partitions
are passed through special projection operator that adds
appropriate NULL values needed by outer join. The output tuples
produced by the projection operator are then merged with the rest
of the final results. The resulting optimized query execution plan
for inner-join query is shown in Figure 7.

1142

Host 1 Host 2 Host 3

∪

Figure 7: Join transformation for compatible nodes

5.4 Transformations for selection/projection
queries
Selection/projection queries are always compatible with partition
optimization and can be trivially pushed below child merge
operators. Even though this transformation does not necessarily
provides significant performance improvements, it is critical to
ensure that partition-related optimization propagate further up the
query tree.

6. EXPERIMENTAL EVALUATION
In this section we present the result of experimental evaluation of
query-aware partitioning in the context of the AT&T Gigascope
streaming database [11]. We augmented Gigascope’s query
analysis framework to add support for stream partitions. We also
modified the query optimizer to fully implement all query
transformation rules and thus support partitioned evaluation of
distributed queries.
All the experiments were conducted by replaying a one-hour trace
of network packets and feeding it to a cluster of Gigascope nodes
(the OC-768 monitor being under construction at the time of the
writing). The trace was obtained by combining four different one-
hour traces captured concurrently using four data center taps. Each
network tap captured two separate streams of packets for each
traffic direction, each direction receiving approximately 100,000
packets/sec (about 400 Mbits/sec). We used a cluster of four dual
core 3.0GHz Intel Xeon servers (2 cores per/CPU) with 4 GB of
RAM running Linux 2.4.21. Servers were equipped with dual
Intel(R) PRO/1000 network interface cards and were connected
via Gigabit Ethernet LAN.
The goal of the experiments was to compare the performance of
partition-agnostic query evaluation strategy with alternative
strategies that take advantage of stream partitioning.

6.1 Partitioning for simple aggregation
queries
In this experiment, we observe how the performance of an
aggregation query is affected by the choice of partitioning
strategy. The query used in the experiment computes network
traffic flows returning only suspicious flows that do not follow the
TCP protocol (i.e. have an abnormal value of OR aggregate of
TCP flags). In our packet trace, suspicious flows accounted for
about 5% of the total number of flows. The corresponding GSQL
statement for the query is shown below.

SELECT tb, srcIP, destIP, srcPort,
 destPort, OR_AGGR(flags) as orflag,
 COUNT(*), SUM(len)
FROM TCP
GROUP BY time as tb, srcIP, destIP,

 srcPort, destPort
HAVING OR_AGGR(flags) = #PATTERN#

We varied the number of machines in the cluster from 1 to 4 while
varying the number of stream partitions from 2 to 8 respectively.
In each experiment, we assign two partitions to each host to make
better use of multiple processing cores. We will denote the host
assigned to execute a root of the query tree as the aggregator node
and to the rest of the nodes as leaf nodes.
We compared three different system configurations:
a) Naïve – data stream is partitioned in a round robin fashion,

hosts pre-aggregate the data within each partition before
sending it for final aggregation.

b) Optimized – data stream is partitioned round robin, but all
the host’s data (from multiple partitions) is partially
aggregated before being sent for final aggregation

c) Partitioned – data stream is partitioned using optimal
compatible partitioning set (srcIP, destIP,
srcPort, destPort)

Note that naïve configuration matches query-independent
partitioning that is performed by current state of the art DSMS. In
a course of the experiments we observed that all three
configurations are very effective at reducing the CPU load on leaf
nodes. The load on each host drops from 80.4% to 23.9%
(combined CPU utilizations of the leaf nodes) as the number of
hosts grows from 1 to 4. However, the load on the aggregator node
shows completely opposite behavior. The results of the measuring
the load on aggregator node are shown in Figure 8.

CPU load on aggregator node

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

nodes

C
P

U
lo

ad
 (%

)

Naive Optimized Partitioned

Figure 8: CPU load on aggregator node

As we can observe from the graphs for Naïve configuration, the
load grows linearly with a number of hosts and reaches almost
100% CPU utilization for 4 machines. At this point the system is
clearly overloaded and starts dropping input tuples. Enabling
partial aggregation helps reduce the load by 20-22% but overall
trend of linear growth continues. The configuration using
partitioning set recommended by the query analyser, on other
hand, reduces the load on both aggregator and leaf nodes and
enables true linear scaling.

In addition to the CPU load on aggregator nodes, we also
measured network load that query evaluation places on aggregator
node. The results of the experiments are shown in Figure 9.

1143

Network load on aggregator node

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 2 3 4

nodes

Ne
to

w
rk

 lo
ad

 (p
ac

ke
t/s

ec
)

Naive Optimized Partitioned

Figure 9: Network load on aggregator node

As we can see from the graph, both partition-agnostic
configurations suffer from transmitting the same partial flows to
aggregator multiple times and exhibit linear growth in the network
load. The slope of the Partitioned configuration is nearly flat with
maximum network load limited by the cardinality of the query
output.

We observed similar scaling behavior while studying the
performance of join queries on naively and optimally partitioned
configurations. We observed similar scaling behavior while
studying the performance of join queries on naive and optimally
partitioned configurations.

6.2 Partitioning for query sets
In our second set of experiments, we study the performance of a
query set consisting of independent aggregation and self-join
queries. The aggregation query computes the statistics for packets
sent between the source subnets and destination hosts (grouping
attributes are (srcIP & 0xFFF0, destIP)). The self-join query
computes delays between consecutive TCP packets within the
same traffic flow. This particular query is often used by network
analysis for monitoring TCP session jitter. The optimal
partitioning set for aggregation query is (srcIP & 0xFFF0, destIP),
while for the join query it is (srcIP, destIP, srcPort. destPoirt). We
model a scenario where the restrictions of the partitioning
hardware do not allow us to partition the data in a way that is
compatible with both queries. According to the cost model
presented in Section 4, the optimal partitioning set is (srcIP &
0xFFF0, destIP), which is compatible only with the
aggregation query.
We compared three different system configurations:
a) Naïve – data stream is partitioned in a round robin fashion
b) Partitioned (suboptimal) – the data stream is partitioned using

the suboptimal partitioning set (srcIP, destIP, srcPort.
destPoirt) compatible with the join query

c) Partitioned (optimal) – the data stream is partitioned using
the optimal compatible partitioning set (srcIP & 0xFFF0,
destIP).

We varied the number of machines in the cluster in the cluster
from 1 to 4 with 2 partitions assigned to each host. The results of
the measuring the load on aggregator (root of the query tree) node
are shown in Figure 10.

CPU load on aggregator node

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

1 2 3 4

nodes

C
PU

 lo
ad

 (%
)

Naive Partitioned (suboptimal) Partitioned (optimal)

Figure 10: CPU load on aggregator node

As we can see from the graph, the load rises rapidly for the
partitioning-agnostic scheme and reaches 95% CPU utilization for
4 participating hosts. Suboptimally partitioned configuration
compatible with the join query reduces the load by 43-47%
reaching 54% utilization for a 4 host configuration. However, the
linear load growth trend is still present due the fact since the
workload is dominated by incompatible aggregation query. The
load growth curve for the optimal partitioning scheme is much
flatter, reducing the load to 31% for 4 host configuration.

Network load on aggregator node

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 2 3 4

nodes

Ne
to

w
rk

 lo
ad

 (p
ac

ke
t/s

ec
)

Naive Partitioned (suboptimal) Partitioned (optimal)

Figure 11: Network load on aggregator node

Figure 11 shows the results of the experiments measuring the
network load on the aggregator node. Unable to perform any
significant load reduction, the partition-agnostic configuration
exhibits an almost linear increase in the network load. Suboptimal
configuration, on other hand, evaluates all the joins locally and
reduces the network load on aggregator node by 36-52% as the
number of participating nodes increases to 4. The optimal
configuration has an almost flat growth and effectively reduces the
network load by 64-70% depending on number of hosts. These
experiments demonstrate that our cost model correctly identifies
the dominant queries in a query set and computes the globally
optimal partitioning.

6.3 Partitioning for complex queries
In the final set of experiments, we use a more complex query set
involving multiple related aggregation and join queries. This
query set is identical to the one we used in Section 3 to illustrate
query-aware partitioning framework. The corresponding GSQL
statements for the queries are shown below.
 Query flows:

1144

SELECT tb,srcIP,destIP,COUNT(*) as cnt
FROM TCP
GROUP BY time/60 as tb,srcIP,destIP

 Query heavy_flows:
SELECT tb,srcIP,max(cnt) as max_cnt
FROM flows
GROUP BY tb, srcIP

 Query flow_pairs:
SELECT S1.tb, S1.srcIP,
 S1.max_cnt,S2.max_cnt
FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP and S1.tb
 = S2.tb+1

We compared four different system configurations:
d) Naïve – data stream is partitioned in a round robin fashion
e) Optimized – data stream is partitioned round robin, all the

host’s data is partially aggregated before being sent for final
aggregation

f) Partitioned (partial) – the data stream is partitioned using the
suboptimal partitioning set (srcIP, destIP)

g) Partitioned (full) –the data stream is partitioned using the
optimal compatible partitioning set (srcIP)

Note that in the Partitioned (partial) configuration, only query
flow is compatible with partitioning set while the rest of the
queries are incompatible. The query plan generated by the
optimizer for suboptimal partitioning is shown in Figure 12.

.

γ

∪

Host 2

γ
σ

γ
σ

Host 3

γ
σ

Host 4

γ
σ

Host 1

Figure 12: Plan for partially compatible partitioning set

As in previous experiments we varied the number of machines in
the cluster from 1 to 4 with 2 partitions assigned to each host.
Since the CPU load on leaf nodes followed the same patterns as in
previously shown experiments, we concentrate on discussing the
load on aggregator node. The results of the measuring the CPU
load on aggregator (root of the query tree) node are shown in
Figure 13.

CPU load on aggregator node

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

nodes

C
P

U
lo

ad
 (%

)

Naive Optimized Partitioned (partial) Partitioned (full)

Figure 13: CPU load on aggregator node

As we can observe from the graphs for the Naïve configuration,
the load on aggregator node grows linearly with a number of
hosts. For a four machine configuration, the system overloaded
and is forced to drop tuples from the input stream. The optimized
configuration with partial aggregation enabled reduces the load by
23-24% reaching 82% utilization for a 4 host configuration.
However, the linear load growth trend is still present and adding
one more machine to the cluster will lead to the aggregator
overload.

The load for the partially compatible configuration exhibits a
nearly flat growth curve, primarily due to the fact that the most
expensive query in a query set flows fully takes advantage of the
compatible partitioning set. The load on aggregator node reaches
only 18.4% which leaves a lot of room for further increase in the
number of hosts. Finally, the fully compatible configuration
exhibits true linear scaling, with the load on the aggregator node
reaching 8.4% for a 4 machine setup.

Network load on aggregator node

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 2 3 4

nodes

Ne
to

w
rk

 lo
ad

 (p
ac

ke
t/s

ec
)

Naive Optimized Partitioned (partial) Partitioned (full)

Figure 14: Network load on aggregator node.

Figure 14 shows the results of the experiments measuring the
network load on the aggregator node. Here we observe the trends
similar to previous experiments. Both Naïve and Optimized
configuration with partial aggregates suffer from transmitting
duplicate partial flows to the aggregator node and exhibit linear
load growth. The partially and fully compatible configurations, on
other hand, have flat growth curve with the maximum load
approaching the cardinalities of flows and flow_pairs
respectively.

1145

7. CONCLUSIONS
New deployments of very high speed (OC768) networks place
unprecedented demands on network monitoring systems, requiring
the use parallel and distributed stream processing. Two main
approaches used to distribute the load across the cooperating
machines are query plan partitioning and query-independent data
stream partitioning. However, for a large class of queries both
approaches fail to reduce the load compared to centralized system,
and can even lead to increase in the load.

In this paper, we introduce the idea of query-aware data stream
partitioning that allows us to scale the performance of streaming
queries in close to linear fashion. Our stream partitioning
mechanism consists of two main components. The first component
is a query analysis framework for determining the optimal
partitioning for a given set of queries. The second component is a
partition-aware distributed query optimizer that transforms an
unoptimized query plan into a semantically equivalent query plan
that takes advantage of existing partitions. These components
operate within the limitations of currently available networking
hardware, while being able to take advantage of new capabilities
as they become available.

We evaluate our query-aware partitioning approach by running
sets of streaming queries of various complexities on a small cluster
of processing nodes using high-rate network data streams. The
results of our experiments confirm that the partitioning mechanism
leads to highly efficient distributed query execution plans that
scale linearly with the number of cooperating processing hosts.
We also demonstrate that even suboptimal query-aware partitions
offer significantly better performance that conventionally used
query-independent partitioning. The techniques described in this
paper make OC-768 monitoring feasible using a DSMS.

8. REFERENCES
[1] D. J. Abadi et al. The Design of the Borealis Stream

Processing Engine, CIDR 2005.
[2] D. J. Abadi et al.. Aurora: A new model and architecture for

data stream management. VLDB Journal, 12(2):120-139,
2003.

[3] D. J. Abadi W. Lindner, S. Madden, and J. Schuler. An
Integration Framework for Sensor Networks and Data Stream
Management Systems. Demonstration. VLDB 2004

[4] A. Arasu et al. STREAM: The Stanford stream data manager.
IEEE Data Engineering Bulletin, 26(1):19–26, 2003.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. ACM
PODS, pages 1–16, 2002.

[6] M. Balazinska, H. Balakrishnan, M. Stonebraker. Contract-
Based Load Management in Federated Distributed Systems.
NSDI 2004, San Francisco, CA, March 2004.

[7] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. CIDR 2003.

[8] J. Chen, D.J. DeWitt, F. Tian and Y. Wang, NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
SIGMOD 2000 pg. 379-390.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable Distributed
Stream Processing. CIDR 2003.

[10] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O.
Spatscheck, and D. Srivastava. Holistic UDAFs at streaming
speeds. SIGMOD Conference, pages 35–46. ACM, 2004.

[11] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications.
ACM SIGMOD, pages 647–651, 2003.

[12] D. DeWitt, J. Gray. Parallel database systems: the future of
high performance database systems. Communications of the
ACM, v.35 n.6, p.85-98, June 1992.

[13] M. Ivanova and T. Risch. Customizable Parallel Execution of
Scientific Stream Queries. VLDB 2005.

[14] R. R. Kompella, S. Singh, and G. Varghese. On scalable
attack detection in the network. In ACM Internet
Measurement Conference IMC 2004, pages 187 - 200.

[15] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4):422--469, 2000.

[16] Per-Ake Larson. Data Reduction by Partial Preaggregation.
18th International Conference on Data Engineering
(ICDE'02), 2002.

[17] J. Li, D. Maier, K. Tufte, V. Papadimos, P. A. Tucker: No
pane, no gain: efficient evaluation of sliding-window
aggregates over data streams. SIGMOD Record 34(1): 39-44
(2005)

[18] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science, Vol 2, 2005.

[19] J. Rao, C. Zhang, N. Megiddo, G. M. Lohman: Automating
physical database design in a parallel database. SIGMOD
Conference 2002: 558-569

[20] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, M. J.
Franklin. Flux: An Adaptive Partitioning Operator for
Continuous Query Systems. ICDE 2003

[21] M. Sullivan and A. Heybey. Tribeca: A system for managing
large databases of network traffic. In Proc.USENIX Annual
Technical Conf., 1998

1146

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

