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ABSTRACT 
Data Stream Management Systems (DSMS) are gaining 
acceptance for applications that need to process very large 
volumes of data in real time. The load generated by such 
applications frequently exceeds by far the computation capabilities 
of a single centralized server.   In particular, a single-server 
instance of our DSMS, Gigascope, cannot keep up with the 
processing demands of the new OC-786 networks, which can 
generate more than 100 million packets per second.  In this paper, 
we explore a mechanism for the distributed processing of very 
high speed data streams. 

Existing distributed DSMSs employ two mechanisms for 
distributing the load across the participating machines: partitioning 
of the query execution plans and partitioning of the input data 
stream in a query-independent fashion. However, for a large class 
of queries, both approaches fail to reduce the load as compared to 
centralized system, and can even lead to an increase in the load. In 
this paper we present an alternative approach - query-aware data 
stream partitioning that allows for more efficient scaling. We 
present methods for analyzing any given query set and choose the 
optimal partitioning scheme, and show how to reconcile 
potentially conflicting requirements that different queries might 
place on partitioning. We conclude with experiments on a small 
cluster of processing nodes on high-rate network traffic feed that 
demonstrates with different query sets that our methods effectively 
distribute the load across all processing nodes and facilitate 
efficient scaling whenever more processing nodes becomes 
available.  

Categories and Subject Descriptors 
H.2.4 [DataBase Management]: Systems, Distributed databases 

General Terms: Design, Performance 

Keywords: Data streams, partitioning, query optimization  

1. INTRODUCTION 
Data stream management systems (DSMS) have increasingly 
become the tool of choice for applications that require 
sophisticated processing of large volumes of data in real time. 
Example applications include large scale sensor networks [3], and 
especially network monitoring [11][21].  The volume of data that 

needs to be processed in real time for such applications can easily 
exceed the resources available on a centralized server. For 
example, dual OC768 network links currently being deployed in 
the Internet backbone generate up to 2x40 Gbit/sec of traffic, 
which corresponds to roughly 112 million packets/sec. Even a fast 
4GHz server can spend at most 26 cycles processing each tuple, 
which does not allow it to perform any meaningful processing 
short of incrementing few counters. Furthermore, this data load 
exceeds by an order of magnitude the throughput of fastest 
computer buses such as PCI-X and PCI-Express.   Nevertheless, 
AT&T needs to monitor these links to ensure the health of its 
network.  Given its successful application across the AT&T 
network, Gigascope is the natural candidate for the OC-768 
monitoring platform. 

Distributed DSMSs attack the performance problem by spreading 
the load across a number of cooperating machines running 
independent DSMSs. Two commonly used techniques used to 
distribute the load across the participating machines are 
partitioning query plans into subplans to be executed in parallel 
(query plan partitioning) and splitting resource-intensive query 
nodes into multiple nodes working on subset of data feed (data 
stream partitioning) [9]. However, query plan partitioning fails to 
generate feasible execution plans if the original query plan 
contains one or more operator that are too “heavy” for a single 
machine (and at 100M packets/sec, most non-trivial operators are 
too heavy - memory copy cost alone reach 10Gbytes/sec). Most of 
the query plans used in network monitoring application are 
characterized by highly non-uniform resource consumption of 
different query nodes, which makes it impossible for query plan 
partitioning to evenly distribute the load. 

The published data stream partitioning as implemented in DSMSs 
is done in query-independent fashion (e.g. partitioning tuples in 
random or round robin fashion) [9][20]. However, for a large class 
of queries such data stream partitioning fails to significantly 
reduce the load compared to centralized system and can even lead 
to an increase in the load. 

Example. Let us consider an example of a network monitoring 
query computing traffic flows – summaries of packets between a 
source and a destination during a period of time.  The group-by 
attributes are the source and destination IP address, the source and 
destination port, and the protocol, while the aggregates include the 
number of packets, the number of bytes transferred, start and stop 
times, and so on. These types of queries are popular in various 
network monitoring applications – from performance monitoring 
to detecting network attacks [14]. The SQL version of the query is 
shown below.  

SELECT time,srcIP,destIP,srcPort,destPort,  
COUNT(*),SUM(len), 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada. 
Copyright 2008 ACM  978-1-60558-102-6/08/06...$5.00. 
 

1135



MIN(timestamp),MAX(timestamp), … 
FROM TCP 
GROUP BY time,srcIP,destIP,srcPort,destPort 
 
Suppose that data stream partitioning is applied in round robin 
fashion to evenly distribute input tuples among n machines that 
compute partially aggregated flows and send them to a central 
node that merges the partials flows and computes a final 
aggregation. It is easy to see that in the worst case, a single flow 
will result in n partial flows being computed and transmitted over 
the network to central aggregating node. In a more typical network 
monitoring scenario, the query is only interested in a subset of all 
flows. For example, suppose we want to monitor attack flows that 
do not follow TCP protocols and can frequently be differentiated 
by OR of the flags of the packets in the flow. In SQL we can write 
this query by adding a corresponding HAVING clause to the flow 
query (e.g. HAVING OR_AGGR(flags)= 
ATTACK_PATTERN). It is easy to see that none of the nodes 
performing local aggregation will be able to apply the HAVING 
clause to filter out regular flows. Due to the significant overhead 
involved in processing remote tuples as compared to local 
processing, the CPU and network link load on the final 
aggregation node can exceed the load on single node in centralized 
case, rendering the execution strategy infeasible.  

For this example, a more reasonable approach for distributing the 
load among the participating machines is to partition the input data 
stream based on flows (e.g. evenly distributing entire flows). If 
such partitioning is utilized, all flows can be computed locally and 
filtered using the HAVING clause before being transmitted over 
the network. The problem of determining a good partitioning 
scheme for certain classes of individual relational queries 
(aggregations and equijoins) has been studied in the context of 
parallel relational databases [12][15]; however in the streaming 
environment existing approaches do not scale to complex query 
sets and massive data rates. Network monitoring applications 
generally run a large number of queries simultaneously (one of our 
applications runs 50 simultaneous queries); queries in turn may 
contain a number of different subqueries. Each of the subqueries 
might place different requirements for the way partitioning has to 
be done. These requirements can easily be in conflict with each 
other and it would not be always possible to satisfy all of them.  

It is also not feasible to dynamically repartition the inputs to suit 
individual queries as is commonly done in parallel relational 
databases, since each such repartitioning puts the entire stream 
back into inter-node network without any data reduction, which 
greatly increases communication costs. Furthermore, splitting 80 
Gbit/sec traffic requires specialized network hardware which is an 
order of magnitude more expensive than the computational 
hardware – we can only afford to partition the source once. In 
general, we need a partitioning mechanism that can automatically 
analyze an arbitrary complex query set and determine a single 
optimal initial stream partitioning scheme. 

In order to incorporate the results of the analysis into distributed 
query optimization, we need to make the optimizer fully aware of 
the partitioning scheme used. However, we cannot make an 
assumption that the actual partitioning scheme used by the system 
is identical to the optimal one recommended by the analysis. 
Monitoring the 80Gbit/sec link requires specialized network 
equipment that can partition the data at line speeds. The currently 
available hardware for OC768 monitoring partitions each direction 
of OC768 stream into four 10Gbit Ethernet substreams that are 

sent to separate Gigascope servers.  The network interface cards 
(NICs) specialized for 10GEth monitoring are typically capable of 
further partitioning the network stream into subinterfaces.  We 
note that NICs for monitoring OC768 are not currently available, 
rendering query plan partitioning infeasible. 

Even though the partition hardware is programmable using FPGAs 
and TCAMs, the limited number of available gates place 
restrictions on a type of partitioning can be performed in 
hardware. For example it is possible to implement partitioning 
based on TCP fields such as source or destination IP addresses, but 
accessing fields from higher-level protocols such as HTTP 
requires regular expression processing that is not currently feasible 
to do at OC768 speeds. Furthermore, it is not always possible to 
dynamically reconfigure the once optimal partitioning scheme 
every time the query workload changes. Therefore, we need a 
distributed query optimizer that is flexible enough to take 
advantage of any available partitioning. 

The query-aware data stream partitioning mechanism proposed in 
this paper includes both an analysis framework for determining the 
optimal partitioning and a partition-aware distributed query 
optimizer that transforms the unoptimized query plan into a 
semantically equivalent query plan that takes advantage of 
existing partitions. 

The contributions we make in this paper are as follows. We 
1. Develop the concept of query-aware data stream partitioning 

for distributed stream processing. 
2. Design and develop a framework for analyzing a set of 

queries to determine a partitioning strategy that would satisfy 
all the queries in a set. 

3. Determine a set of query transformation rules to be used by 
query optimizer to take advantage of existing data stream 
partitioning. 

4. Perform detailed experiments with a live cluster of stream 
processing nodes and show that our partitioning methods lead 
to highly efficient distributed query execution plans that scale 
linearly with the number of nodes. 

2. RELATED WORK 
The area of data streaming has received a lot of attention in recent 
years, with research efforts ranging from developing streaming 
algorithms to designing and building Data Stream Management 
Systems (DSMS). A number of research DSMSs are currently 
being developed, including Aurora/Borealis [1], TelegraphCQ [7], 
Gigascope  [11] and many others. A number of currently active 
research projects focus on extending DSMS to enable scalable 
distributed stream processing [6][20]. Two main approaches used 
to distribute the load across the cooperating machines are query 
plan partitioning and data stream partitioning. 
The load distribution mechanism used in Borealis [6] relies on 
query plan partitioning to balance the load on cooperating DSMSs. 
As we discussed earlier this approach is not feasible if a query 
plan contains one or more operators that are too “heavy” for a 
single machine. In addition to query plan partitioning, Borealis 
also employ fairly simple data stream partitioning mechanism 
called box splitting. However, partitioning is done in a query-
independent manner and requires expensive processing of partial 
results generated by split query nodes. 
The FLUX load partitioning operator used in TelegraphCQ DSMS 
[20] supports a variety of data stream partitioning schemes 
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including the hash-based strategy used in our paper. The primary 
goal of FLUX is to avoid imbalance in the load caused by the data 
scheme. To address the imbalance problem it uses an adaptive 
partitioning adjusted at runtime depending on observed data skew. 
The partitioning itself is still however operator-independent and 
suffers from excessive load on the node combining partial results. 
The Grid Stream Data Manager (GSDM) described in [13] 
proposes an operator-dependent windows split strategy which 
partitions the input data stream in such a way that partial results 
can be inexpensively combined. The query writer is expected to 
manually provide specific stream distribute/stream merge routines 
for all query nodes eligible for optimization. The authors do not 
address the issue of automatic inference of an optimal splitting 
strategy for arbitrary query sets. 
Hash-based partitioning has been studied in the context of parallel 
relational databases [12][15] to parallelize the execution of 
individual aggregation and equijoin queries. However, the main 
technique used – dynamic stream repartitioning - is not suitable 
for processing high-rate data streams as it puts the entire stream 
back into the network and makes the communication cost 
prohibitively expensive. Furthermore, the problem addressed in 
our paper is finding optimal partitioning for arbitrary complex 
query sets rather than individual queries. 
Recent work on automating physical database design for relational 
databases [19] addresses the problem of choosing a database 
partitioning scheme that is optimal or close to optimal for a given 
query workload. The main idea of this work is to generate a large 
number of candidate partitions and perform a heuristic search to 
find the lowest cost partitioning scheme (using the cost estimates 
provided by IBM DB2 optimizer). Our approach is more 
principled, since it uses a much smaller set of possible partitions 
and then uses a cost model to reconcile the conflicts. We also are 
not as reliant on the quality of the cost model, which is very 
important for processing data streams with rapidly changing 
characteristics. Furthermore, our objective function – minimizing 
the maximum communication cost - is more appropriate for 
distributed stream processing. 

3. QUERY-AWARE STREAM 
PARTITIONING OVERVIEW 
The goal of the query-aware data stream partitioning mechanism 
is to distribute input tuples across multiple machines in such a way 
that maximizes the amount of data reduction that can be 
performed locally before shipping the intermediate results to a 
node that produces final results. We would call such partitioning 
compatible with a given query. In this section we will give a 
formal definition of partition compatibility and show how to infer 
a compatible partitioning scheme for two major classes of 
streaming queries – aggregations and joins. 

3.1 Tumbling window query semantics 
A primary requirement of a DSMS is to provide a way to unblock 
otherwise blocking operators such as aggregation and join. 
Different DSMSs take different approaches, but in general they 
provide a way to define a window on the data stream on which the 
query evaluation will occur at any moment in time. Two main 
approaches for defining a window on a stream are sliding 
windows (both time- and tuple-based) and tumbling windows. In 
streaming systems that rely on tumbling windows, one or more 
attributes of a data stream are marked as being ordered. Query 
evaluation windows are determined by analyzing how a query 

references the ordered attributes. For example, consider the 
following schema. 

PKT(time increasing, srcIP, destIP, len) 

The time attribute is marked as being ordered, specifically 
increasing. Then the following query computes the sum of the 
length of packets between each source and destination IP address 
for every minute 

SELECT tb, srcIP, destIP, sum(len) 
FROM PKT 
GROUP BY time/60 as tb, srcIP, destIP 

Similarly a join query on streams R and S must contain a join 
predicate such as R.tr=S.ts or R.tr/2=S.ts+1: that is, one which 
relates a timestamp field from R to one in S. An example of join 
query that combines the length of packets with matching IP 
addresses is shown below: 

SELECT time, PKT1.srcIP, PKT1.destIP,  
PKT1.len + PKT2.len 

FROM PKT1 JOIN PKT2 
WHERE PKT1.time = PKT2.time and  

PKT1.srcIP = PKT2.srcIP and  
PKT1.destIP = PKT2.destIP 

These kinds of queries use tumbling window semantics in which 
the window covers only the current epoch.  Li et al. [17] show 
how tumbling windows can be used for the efficient evaluation of 
sliding window queries using panes.   Therefore we will assume 
tumbling window semantics for our queries (except where 
otherwise noted) for simplicity. 

3.2 Illustrative example 
We illustrate the query-aware partitioning mechanism by working 
through an example query set. The first query (flows, denoted γ1) 
computes simplified TCP traffic flows for every 60 second time 
epoch (for each communicating source and destination host it 
produces a number of packets sent between them). The higher-
level aggregation query (heavy_flows, denoted γ2) computes 
“heaviest” flows for each source (heaviest flows have the largest 
number of packets). Finally a self-join query (flow_pairs, 
denoted ) correlates heavy flows that span consequent time 
epochs. The corresponding SQL statements for both queries are 
shown below: 

   Query flows: 
SELECT tb,srcIP,destIP,COUNT(*) as cnt 
FROM TCP 
GROUP BY time/60 as tb,srcIP,destIP 
 

   Query heavy_flows: 
SELECT  tb,srcIP,max(cnt) as max_cnt 
FROM flows 
GROUP BY tb, srcIP 

 
   Query flow_pairs: 

SELECT S1.tb, S1.srcIP, 
    S1.max_cnt,S2.max_cnt 
FROM heavy_flows S1, heavy_flows S2 
WHERE S1.srcIP = S2.srcIP and S1.tb  
    = S2.tb+1 

A query plan for execution of the queries is shown in Figure 1. 
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Figure 1: Sample query execution plan 

1. Which partitioning scheme is optimal for each of the queries 
in an execution plan? 

Intuitively, a lower-level aggregation query (node γ1) will benefit 
the most from a partitioning which guarantees that no tuples with 
identical pair of attributes (srcIP, destIP) will end up in different 
partitions. Any partitioning that satisfies this properly would allow 
γ1 to be evaluated in parallel on all participating hosts with linear 
scalability. Following a similar intuition, the query nodes γ2 and 
self-join node will benefit the most if the input stream was 
partitioning using (srcIP). Later in the section, we will formally 
define what requirements a partitioning scheme must satisfy and 
give inference rules to compute an appropriate partitioning for 
major classes of streaming queries. 

2. How to reconcile potentially conflicting partitioning 
requirements from different queries in a query set? 

As we have seen previously, query γ1 will benefit mostly from 
partitioning based on attributes (srcIP, destIP), while the rest of the 
queries would prefer partitioning on (srcIP). Since it is (usually) 
not feasible to partition the input stream simultaneously in 
multiple ways, we need to reconcile partitioning requirements of 
different query nodes. It is easy to see that partitioning on (srcIP) 
can satisfy all queries in our sample query set. More generally, we 
will need an algorithm for inferring an optimal set of attributes to 
be used for partitioning for arbitrary complex query set. We will 
present such an algorithm in Section 4. 

3. How can we use the information about the scheme used for 
partitioning in distributed query optimizer? 

Assuming the input stream is partitioned as recommended by the 
query analysis, we can use this information to drive the distributed 
query optimizer. In our prototype implementation the optimizer 
works by invoking a set of partition-aware transformation rules on 
nodes of original query plan in bottom-up fashion.  

In many real life applications the query writer does not have 
complete control over how the partitioning is done. As we 
mentioned in the introduction, processing capabilities of the 
hardware used for partitioning can place restrictions on the 
partitioning scheme. For example we could have hardware that 
can only split the input stream based on (destIP). The query 
optimization framework needs to be flexible enough to maximally 
take advantage of any partitioning, even if it is different from the 
optimal one.  An example distributed query plan produced by the 
optimizer under the assumption that partitioning is done based on 
(destIP) is shown in Figure 2. 
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Figure 2: Optimized query execution plan 

3.3 Hash-based stream partitioning 
The main goal of any stream partitioning scheme is to distribute 
tuples evenly across multiple distributed nodes in such a way that 
load is evenly spread across all nodes. There are multiple ways in 
which such scheme could be implemented, but one of the simplest 
can be done by hashing selected set of tuple attributes. Let A be a 
set of tuple attributes (the partitioning set), H(A) a hash function 
returning 0 .. R, and M the number of desired partitions.  Then, a 
tuple falls into parititon i if  

i*R/M ≤ H(A) ≤ (i+1)*R/M 

For many query sets, it is beneficial not to restrict ourselves to 
using singleton tuple attributes and instead allow grouping sets to 
include arbitrary scalar expression involving tuple attributes. For 
example one choice of partitioning set for could be (srcIP & 
0xFFF0, destIP) which will effectively partition tuples based on 
subnet that srcIP belongs to. Let sc_expi(attri) represent a scalar 
expression.  For the rest of the paper we will only assume more 
general definition of partitioning set: 

(sc_exp1(attr1), sc_exp2(attr2),  ..., sc_expn(attrn)) 

3.4 Partition compatibility 
The choice of the partition set critically impacts the ability of the 
query optimizer to reorganize the query plans for distributed 
evaluation. Consider the following aggregation query that 
computes simple network flows: 

SELECT tb, srcIP, destIP, sum(len) 
FROM PKT 
GROUP BY time/60 as tb, srcIP, destIP 

It is easy to see that partitioning using partitioning set (time/60, 
srcIP, destIP) allows each host to execute the aggregation query 
locally on corresponding partition with no further aggregation 
necessary. A partition-aware query optimizer can replace the 
aggregation query by stream union of the identical queries running 
on individual partitions. However, if (srcIP, destIP, srcPort, 
destPort) is used as partitioning set, this optimization would not be 
possible. We will capture the notation of “optimizer-friendly” 
partitioning set in the following definition:  Partitioning set P is 
compatible with a query Q if for every time window, the output 
of the query is equal to a stream union of the output of the Q 
running on all partitions produced by P. 

An example of such compatible partitioning set for the query 
above is {(time/60)/2, srcIP & 0xFFF0, destIP & 0xFF00). An 
example of an incompatible grouping set for the query above is 

γ1 

γ2 

Low-level 
aggregation 
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σ 
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{time, srcIP, destIP} (since tuples belonging to the same 60 
second epoch will end up in different partitions). 

In the following sections we will give the rules for inferring the 
compatible partioning sets for two major classes of streaming 
queries - aggregations and joins. Other types of streaming queries 
(selection, projection, union) are always compatible with any 
partitioning sets and therefore we will omit the discussion of these 
query types. 

3.5 Inference of partitioning sets for 
streaming queries 
The definition of partition compatibility given in the previous 
section is very generic and does not directly tell us how to infer 
the partitioning set for a given query. In this section, we give 
equivalent definitions of query compatibility for both aggregation 
and join queries that can be directly applied to compute the 
partitions. 

3.5.1 Dealing with temporal attributes  
One issue that needs to be considered when selecting a 
partitioning set compatible with a given query is whether to 
include the temporal attributes. Selecting the temporal attribute in 
a partitioning set will effectively change the allocation of groups 
to processors whenever the time epoch changes. This property 
could be desirable if we want to avoid bad hash functions that fail 
to uniformly spread the load across the participating machines. 
However, for sliding window queries that use pane-based 
evaluation [17], changing the group allocation in the middle of a 
window will lead to incorrect query results.  Even for tumbling 
window queries a temporal attribute is generally not a good choice 
for load-balancing partitioning unless it is extremely (nanosecond) 
fine grained, as tuples correlated in time tend to have very highly 
correlated values of the temporal attribute. For this reason we will 
exclude the temporal attributes from further consideration. 

3.5.2 Partitioning sets for aggregation queries  
In its general form an aggregation query has the following format: 

SELECT expr1, exp2, ... ,exprn 
FROM STREAM_NAME 
WHERE tup_predicate 
GROUP BY temp_var, gb_var1, ... , 
   gb_varm 
HAVING group_predicate 

We only consider a subset G of these groupby variables 
(gb_var1, ... , gb_varm) that can be expressed as a scalar 
expression involving an attribute of one of the source input 
streams (ignoring grouping variables that are, e.g.,  results of 
aggregations computed in lower-level queries).   Then, any 
compatible partitioning set for aggregation query Q will have the 
following form:  

{se(gb_var1), … , se(gb_varn)} 
where se(x) is any scalar expression involving x. Given that there 
is an infinite number of possible scalar expression, every 
aggregation query has an infinite number of compatible 
partitioning sets. Furthermore any subset of a compatible 
partitioning set is also compatible. 

3.5.3 Partitioning sets for join queries  
We will consider a restricted class of join queries, namely two-
way equi-join queries that use the semantics of tumbling windows. 
The general form of such query has the following format: 

SELECT expr1, expr2, ... ,exprn 
FROM STREAM1 AS S {LEFT|RIGHT|FULL} 
 [OUTER] JOIN STREAM2 as R 
WHERE STREAM1.ts = STREAM1.ts and  
  STREAM1.var11 = STREAM2.var21 and ... 
  STREAM1.var1k = STREAM2.var2k and  
  other_predicates; 

For ease of the analysis we will only consider join queries whose 
WHERE clause is in Conjunctive Normal Form (CNF) in which at 
least one of the CNF terms is equality predicate between the scalar 
expressions involving attributes of the source streams. Let J be a 
set of all such equality predicates { se(R.rattr1) = se(S.sattr1), …, 
se(R.rattrn) = se(S.sattrn)}. As with aggregation queries, we will 
only consider scalar expressions involving attributes of the source 
input streams. Then we can compute the partitioning sets for both 
streams S and R using 

Partn_R = { se(R.attr1), … se(R.attrn) } 
Partn_S = { se(S.attr1), ... , se(S.attrn) } 

 respectively. It also follows that join query is compatible with any 
non-empty subset of its partitioning set. Since it is not feasible to 
partition the input stream simultaneously in multiple ways, 
Partn_R and Partn_S will need to be reconciled to compute a 
single partitioning scheme. 

4. PARTITIONING FOR QUERY SETS 
Data stream management systems are expected to run a large 
number of queries simultaneously; queries in turn may contain a 
number of different subqueries (selections, aggregations, unions, 
and joins). Each of the subqueries might place different 
requirements on partitioning set to be compatible with it. 

   Example: Consider the following query set: 

Query tcp_flows: 
SELECT tb, srcIP, destIP, srcPort, 

destPort, COUNT(*), SUM(len) 
FROM TCP 
GROUP BY time/60 as tb, srcIP, destIP, 
 srcPort, destPort 

Query flow_cnt: 
SELECT tb, srcIP, destIP, count(*) 
FROM tcp_flows 
GROUP BY tb, srcIP, destIP 

Query tcp_flows computes the number of packets and total 
number of bytes sent in each flow; query flow_cnt computes a 
number of distinct flows active during the time epoch for each pair 
of communication hosts.  

Based on our analysis for individual queries, tcp_flows is 
compatible with partitioning set of the form of {sc_exp(srcIP), 
sc_exp(destIP), sc_exp(srcPort), 
sc_exp(destPort)} or any of its non-empty subsets. Query 
flow_cnt, on other hand, requires the input stream to be partitioned 
using {sc_exp(srcIP), sc_exp(destIP)} to be compatible 
with distributed optimization. Considering both partitioning sets 
we can infer that partitioning based on {sc_exp(srcIP), 
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sc_exp(destIP)} will be compatible with both queries. A 
similar inference is required for join queries whose child queries 
have different compatible partitioning sets.  

In what follows we present our analysis framework that infers the 
compatible partitioning set for arbitrary set of streaming queries. 
Our framework makes a simplifying assumption that all of the 
source input streams processed by a query set are partitioned using 
the same partitioning set. Expanding the analysis algorithms to 
handle different partitioning schemes for different input stream is 
part of planned  future work. 

4.1 Reconciling partitioning sets 
Previously we discussed the need to reconcile the different 
requirements two queries might have for a compatible grouping 
set to generate a new grouping set compatible with both queries. 
We abstract this issue using Reconcile_Group_Sets(), defined as 
follows: 

Def.  Given two partitioning set definitions PS1 for query Q1 
and PS2 for query Q2, Reconcile_Partn_Sets() is defined to 
return the largest partitioning set Reconciled_PS such that 
both Q1 and Q2 are compatible with partitioning using a set 
Reconciled_PS. The empty set is returned if no such 
Reconciled_PS exists. 

Considering a simple case of partitioning sets consisting of just the 
stream attributes (no scalar expressions involved), 
ReconcilePartn_Sets() returns the intersection of the two 
partitioning sets. For example Reconcile_Partn_Sets({srcIP, 
destIP}, {srcIP, destIP, srcPort, destPort},) is the set { srcIP, 
destIP }. For a more general case of partitioning sets involving 
arbitrary scalar expressions, Reconcile_Partn_Sets uses scalar 
expression analysis to find “least common denominator”. For 
example 
 Reconcile_Partn_Sets ( 
  {sc_exp(time/60), sc_exp(srcIP), sc_exp(destIP)},   
  {sc_exp(time/90}, sc_exp(srcIP & 0xFFF0)} )  
 is equal to a set 
 {sc_exp(time/180, sc_exp(srcIP & 0xFFF0)}. 
The Reconcile_Partn_Sets function can make use of either simple 
or complex analysis based on the implementation time that is 
available.  A full discussion is beyond the scope of this paper, but 
we expect that the simple analyses used in the example will 
suffice for most cases. 

4.2 Algorithm for computing a compatible 
partitioning set 
We represent a set of streaming queries as a Directed Acyclic 
Graph (DAG) of streaming query nodes, where each query node is 
a basic streaming query (selection/projection, union, aggregation, 
and join). Even though most real systems also use more 
complicated streaming operators, we can always express them 
using a combination of basic query nodes. Note that based on the 
analysis in Section 3, we know how to compute compatible 
partitioning sets for all individual query nodes. 

Computing a compatible partitioning for an arbitrary query set 
essentially requires reconciling all the requirements that all nodes 
in the query graph place on compatible partitioning sets. A 
simplified implementation of the procedure of computing 
compatible set PS for a DAG with n nodes would look the 
following way: 

1. For every query node Qi in a query DAG, compute the 
compatible partitioning set PS(Qi). 

2. Set PS = PS(Q1). 
3. For every i∈[1 to n], set PS = Reconcile_Partn_Sets(PS, 

PS(Qi)). 

Unfortunately, for many realistic query sets we would expect the 
resulting partitioning set PS to be empty due to conflicting 
requirements of different queries. A more reasonable approach 
would be to try to satisfy a subset of nodes in a query DAG in 
order to minimize the total cost of the query execution plan. There 
are a variety of different cost models that can be used to drive the 
optimization; in this paper we will use a simple model that 
approximates a maximum network load on single node. 

4.2.1 Cost model for streaming query nodes 
The cost model that we are going to use in this paper defines a 
cost of query execution plan to be the maximum amount of data a 
single node in query execution plan is expected to receive over the 
network during one time epoch. The intuition behind this model is 
trying to avoid query plans that overload a single host with 
excessive amounts of data sent from query nodes residing on 
different hosts.  
Let R be the rate of the input stream on which the query set is 
operating, and PS be a partitioning set. For each query node Qi in 
a potential query execution plan we define the following variables: 
• selectivity_factor (Qi). The selectivity factor estimates the 

expected ratio of the number of output tuples to the number 
of input tuples Qi receives during one epoch. 

• out_tuple_size (Qi). Expected size of the output tuple 
produced by Qi. 

• We recursively define input_rate (Qi) to be R if Qi is a leaf 
node and to be the sum of all output_rate (Qj) s.t. Qj is a 
child of Qi. 

• output_rate (Qi) =  (input_rate (Qi) / in_tuple_size (Qi))* 
selectivity_factor (Qi) * out_tuple_size (Qi). 

We define the cost(Qi) in the following way: 
• 0 if it processes only local data 
• input_rate (Qi) if Qi is incompatible with PS 
• output_rate (Qi) if Qi is compatible with PS 

The intuition behind this cost formula is that an operator 
partitioned using a compatible partitioning set only needs to 
compute the union of the results produced by remote nodes, and 
therefore the rate of the remote data it is expected to receive is 
equal to its output rate. 

Finally, we define the cost of the query plan Qplan given 
partitioning PS cost(Qplan, PS) to be the max cost(Qi) for all i. 
The intuition behind this formula is trying to avoid overloading a 
single node rather than minimizing average load. 

4.2.2 Computing an optimal compatible partitioning 
set 
We now describe an algorithm for computing an optimal 
partitioning set for arbitrary query sets. The algorithm takes a 
query DAG as an input and produces a partitioning set that 
minimizes the cost of the query execution plan. The basic idea is 
to enumerate all possible compatible partitioning sets using 
dynamic programming to reduce the search space. The outline of 
the algorithm is given below: 
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1. For every query node Qi in a query DAG, compute its 
compatible partitioning set PS(i) and cost(Qplan, PS(i)). 
Add non-empty PS(i) to a set of partitioning candidates. 

2. Set PS to be PS(i) with minimum cost(Qplan, PS(i)). 
3. For every candidate pair of partitioning sets PS(i) and PS(j) 

compute compatible partitioning set PS(i, j) = 
Reconcile_Partn_Sets(PS(i), PS(j)) and cost(Qplan, 
PS(i,j)). Add non-empty PS(i, j) to a set of candidate pairs. 

4. Set PS to be PS (i, j) with minimum cost(Qplan, PS(I, j)). 
5. Similarly to previous step, expand candidate pairs of 

partitioning sets to candidate triples and compute 
corresponding reconciled partitioning sets and minimum cost. 

6. Continue the iterative process until we exhaust the search 
space or end up with an empty list of candidates for the next 
iteration. 

Since it is impossible for a partitioning set to be compatible with a 
node and not to be compatible with one of the node predecessors, 
we can use the following heuristics to further reduce the search 
space: 
• Only consider leaf nodes for a set of initial candidates 
• When expanding candidate sets only consider adding a node 

that is either an immediate parent of a node already in the set 
or is a leaf node. 

5. QUERY PLAN TRANSFORMATION 
FOR A GIVEN PARTITIONING 
The query analysis framework presented in Section 4 provides a 
way to automatically infer the optimal partitioning scheme for a 
given set of streaming queries. In order to incorporate the results 
of the analysis into distributed query optimization, we need to 
make the optimizer fully aware of the partitioning scheme used. 
We implemented all partition-related optimizations as a set of 
transformation rules invoked by the query optimizer on 
compatible query nodes. All query transformation rules that we 
use work by replacing a qualifying subtree in query execution plan 
by equivalent optimized version (under the assumption that the 
input stream was partitioned using a compatible partitioning 
method). 
As discussed earlier, we cannot assume that the partitioning 
scheme used by the actual system is identical to the optimal one 
recommended by the query analyzer. Therefore, the distributed 
query optimizer needs to take advantage of any partitioning that 
used by the system, even if it differs from the optimal one. 

5.1 Algorithm for performing partition-
related query plan transformations 
Our algorithm for transforming query execution plans based on 
available partitioning information consists of the following two 
phases: 
Build partition-agnostic query execution plan 

γ

∪

Host 1 Host 2 Host 3  
Figure 3: Partition-agnostic query execution plan 

Let S be the partitioned source input stream consumed by a query 
set, S = ∪ Partni,. We construct a partition-agnostic query plan by 
creating an additional merge query node that computes a stream 
union of all the partitions and making all query nodes that 
consume S read from the merge node. Since each host might have 
multiple CPUs/Cores, we can allocate multiple partitions to each 
participating host depending on the host capabilities. An example 
of a partition-agnostic plan for an aggregation query is shown in 
Figure 3. In this example an input stream S is split into 6 different 
partitions, with 2 partitions assigned to each host. 

Even though such a query execution plan is clearly inefficient 
since it forces all the partitioned streams to be shipped to a single 
host before performing any processing, in the absence of any 
information about partitioning scheme used it is often the only 
feasible plan. 

Perform query plan transformation in bottom-up fashion 
All transformation rules that we use for partition-related query 
optimization consist of two procedures: Opt_Eligible() and 
Transform().  Opt_Eligible() is a Boolean test that takes a query 
node and returns true if it is eligible for partition-related 
optimization. Transform() replaces the node that passed  
Opt_Eligible() test by equivalent optimized plan. The pseudo code 
for query optimizer is given below: 

1. Compute a topologically sorted list of nodes in the query 
DAG Q1,   Q2,  …, Qn  starting with the leaf nodes. 

2. For every i ∈ [1 to n] 
If Opt_Eligible(Qi) 

  Transform(Qi ,Partitiong_Info) 

Performing the transformation in a bottom-up fashion allows us to 
easily propagate the transformation compatible leaf nodes through 
the chain of compatible parent nodes. In the following section we 
will give a detailed description of the implementation of 
Opt_Eligible() and Transform() for all major classes of query 
nodes – aggregations, joins and selection/projection. 

5.2 Transformation for aggregation queries 
The Opt_Eligible() procedure for an aggregation query Q and 
partitioning set PS returns true if the following conditions are met: 
• query Q has a single child node M of type merge (stream 

union) 
• each child node of M is operating on single partition 

consistent with PS 
• Q is compatible with PS 
• Q is the only parent of M 

The last requirement is important to prevent the optimizer from 
removing the merge nodes that are used by multiple consumers. 
An example of a query node that stultifies all of the conditions 
required by Opt_Eligible()  is shown Figure 4. 

∪

γ

Host 1

γ γ

Host 2

γ γ

Host 3

γ

 
Figure 4: Aggregation transformation for compatible nodes 
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5.2.1 Transformation for compatible aggregation 
queries nodes 
The main idea behind the Transform() procedure for eligible 
aggregation query Q is to push the aggregation operator below the 
merge M and allow it to execute independently on each of the 
partitions. For each of the inputs of M we create a copy of Q and 
push it below the merge operator. The resulting optimized query 
execution plan is shown in Figure 4. 

The correctness of the transformation follows directly from out 
definition of partition compatibility. Note, that data is fully 
aggregated before being sent to central node and does not require 
any additional processing. 

5.2.2 Transformation for incompatible aggregation 
queries 
For many aggregation queries that fail the Opt_Eligible() test we 
can still do better than use the default partition-agnostic query 
execution plan. The main idea behind the proposed optimization is 
the concept of partial aggregates. This idea is widely used in a 
number of streaming database engines [9][10], sensor networks 
[3][8] and traditional relational databases [16]. We illustrate this 
idea on a query that computes a count of number of packets sent 
between pairs of hosts: 

Query tcp_count: 
SELECT time, srcIP, destIP, srcPort, 

COUNT(*) 
FROM TCP 
GROUP BY time, srcIP, destIP, srcPort 

We can split tcp_count into two queries called sub- and super-
aggregate: 

Query super_tcp_count: 
SELECT time, srcIP, destIP, srcPort, 

SUM(cnt) 
FROM sub_tcp_count 
GROUP BY time, srcIP, destIP, srcPort 

Query sub_tcp_count: 
SELECT time, srcIP, destIP, srcPort, 

COUNT(*) as cnt 
FROM TCP 
GROUP BY time, srcIP, destIP, srcPort 

All the SQL’s built-in aggregates can be trivially split in a similar 
fashion. Many commonly used User Defined Aggregate Functions 
(UDAFs) can also be easily split into two components as was 
suggested in [10]. Note that we can push all the predicates in the 
query’s WHERE clause to sub-aggregates, but all predicates in 
HAVING clause need complete aggregate values and therefore 
must be evaluated in super-aggregate. The query execution plan 
produced by this optimization is shown is Figure 5. 

Host 1 Host 2 Host 3

∪ ∪ ∪
γ-sub γ-sub γ-sub

γ-super

∪

 
Figure 5: Aggregation transformation for incompatible nodes 

5.3 Transformation for join queries 
In this section we will only consider two-way join queries, since 
all multi-way joins can be easily expressed by combination of 
two-way joins.  The Opt_Eligible() procedure for a join query Q 
and partitioning set PS returns true if the following conditions are 
met: 
• query Q has a two children nodes M1 and  M2 of type merge 

(stream union) 
• each child node of M1 and M2  is operating on single 

partition consistent with PS 
• Q is compatible with PS 
• Q is the only parent of M1 and M2 

An example query execution plan that satisfies Opt_Eligible() test 
is shown in Figure 6. 

Host 1

∪

Host 2 Host 3 Host 1 Host 2 Host 3

∪

 
Figure 6: Original query execution plan 

The main idea behind the Transform() procedure for an eligible 
join query Q is to perform pair-wise joins for each of partition of 
input stream. This is accomplished by creating a copy of join 
operator and pushing it below the child merges. The left side 
partitions that do not have matching right side partitions and 
similarly unmatched right side partitions are ignored for inner join 
computations. For outer join computations, unmatched partitions 
are passed through special projection operator that adds 
appropriate NULL values needed by outer join. The output tuples 
produced by the projection operator are then merged with the rest 
of the final results. The resulting optimized query execution plan 
for inner-join query is shown in Figure 7. 
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∪

 
Figure 7: Join transformation for compatible nodes 

5.4 Transformations for selection/projection 
queries 
Selection/projection queries are always compatible with partition 
optimization and can be trivially pushed below child merge 
operators. Even though this transformation does not necessarily 
provides significant performance improvements, it is critical to 
ensure that partition-related optimization propagate further up the 
query tree. 

6. EXPERIMENTAL EVALUATION 
In this section we present the result of experimental evaluation of 
query-aware partitioning in the context of the AT&T Gigascope 
streaming database [11]. We augmented Gigascope’s query 
analysis framework to add support for stream partitions. We also 
modified the query optimizer to fully implement all query 
transformation rules and thus support partitioned evaluation of 
distributed queries.  
All the experiments were conducted by replaying a one-hour trace 
of network packets and feeding it to a cluster of Gigascope nodes 
(the OC-768 monitor being under construction at the time of the 
writing). The trace was obtained by combining four different one-
hour traces captured concurrently using four data center taps. Each 
network tap captured two separate streams of packets for each 
traffic direction, each direction receiving approximately 100,000 
packets/sec (about 400 Mbits/sec). We used a cluster of four dual 
core 3.0GHz Intel Xeon servers (2 cores per/CPU) with 4 GB of 
RAM running Linux 2.4.21. Servers were equipped with dual 
Intel(R) PRO/1000 network interface cards and were connected 
via Gigabit Ethernet LAN. 
The goal of the experiments was to compare the performance of 
partition-agnostic query evaluation strategy with alternative 
strategies that take advantage of stream partitioning. 

6.1 Partitioning for simple aggregation 
queries 
In this experiment, we observe how the performance of an 
aggregation query is affected by the choice of partitioning 
strategy. The query used in the experiment computes network 
traffic flows returning only suspicious flows that do not follow the 
TCP protocol (i.e. have an abnormal value of OR aggregate of 
TCP flags). In our packet trace, suspicious flows accounted for 
about 5% of the total number of flows. The corresponding GSQL 
statement for the query is shown below. 

SELECT tb, srcIP, destIP, srcPort, 
   destPort, OR_AGGR(flags) as orflag,   
   COUNT(*), SUM(len) 
FROM TCP 
GROUP BY time as tb, srcIP, destIP, 

   srcPort, destPort 
HAVING OR_AGGR(flags) = #PATTERN# 

We varied the number of machines in the cluster from 1 to 4 while 
varying the number of stream partitions from 2 to 8 respectively.  
In each experiment, we assign two partitions to each host to make 
better use of multiple processing cores. We will denote the host 
assigned to execute a root of the query tree as the aggregator node 
and to the rest of the nodes as leaf nodes. 
We compared three different system configurations: 
a) Naïve – data stream is partitioned in a round robin fashion, 

hosts pre-aggregate the data within each partition before 
sending it for final aggregation.  

b) Optimized – data stream is partitioned round robin, but  all 
the host’s data (from multiple partitions) is partially 
aggregated before being sent for final aggregation 

c) Partitioned – data stream is partitioned using  optimal 
compatible partitioning set (srcIP, destIP, 
srcPort, destPort) 

Note that naïve configuration matches query-independent 
partitioning that is performed by current state of the art DSMS. In 
a course of the experiments we observed that all three 
configurations are very effective at reducing the CPU load on leaf 
nodes.  The load on each host drops from 80.4% to 23.9% 
(combined CPU utilizations of the leaf nodes) as the number of 
hosts grows from 1 to 4. However, the load on the aggregator node 
shows completely opposite behavior. The results of the measuring 
the load on aggregator node are shown in Figure 8. 
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Figure 8: CPU load on aggregator node 

As we can observe from the graphs for Naïve configuration, the 
load grows linearly with a number of hosts and reaches almost 
100% CPU utilization for 4 machines. At this point the system is 
clearly overloaded and starts dropping input tuples. Enabling 
partial aggregation helps reduce the load by 20-22% but overall 
trend of linear growth continues. The configuration using 
partitioning set recommended by the query analyser, on other 
hand, reduces the load on both aggregator and leaf nodes and 
enables true linear scaling. 

In addition to the CPU load on aggregator nodes, we also 
measured network load that query evaluation places on aggregator 
node. The results of the experiments are shown in Figure 9.  
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Network load on aggregator node
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Figure 9: Network load on aggregator node 

As we can see from the graph, both partition-agnostic 
configurations suffer from transmitting the same partial flows to 
aggregator multiple times and exhibit linear growth in the network 
load. The slope of the Partitioned configuration is nearly flat with 
maximum network load limited by the cardinality of the query 
output. 

We observed similar scaling behavior while studying the 
performance of join queries on naively and optimally partitioned 
configurations. We observed similar scaling behavior while 
studying the performance of join queries on naive and optimally 
partitioned configurations.  

6.2 Partitioning for query sets 
In our second set of experiments, we study the performance of a 
query set consisting of independent aggregation and self-join 
queries. The aggregation query computes the statistics for packets 
sent between the source subnets and destination hosts (grouping 
attributes are (srcIP & 0xFFF0, destIP)). The self-join query 
computes delays between consecutive TCP packets within the 
same traffic flow. This particular query is often used by network 
analysis for monitoring TCP session jitter. The optimal 
partitioning set for aggregation query is (srcIP & 0xFFF0, destIP), 
while for the join query it is (srcIP, destIP, srcPort. destPoirt). We 
model a scenario where the restrictions of the partitioning 
hardware do not allow us to partition the data in a way that is 
compatible with both queries. According to the cost model 
presented in Section 4, the optimal partitioning set is (srcIP & 
0xFFF0, destIP), which is compatible only with the 
aggregation query.  
We compared three different system configurations: 
a) Naïve – data stream is partitioned in a round robin fashion 
b) Partitioned (suboptimal) – the data stream is partitioned using  

the suboptimal partitioning set (srcIP, destIP, srcPort. 
destPoirt) compatible with the join query 

c) Partitioned (optimal) – the data stream is partitioned using 
the optimal compatible partitioning set (srcIP & 0xFFF0, 
destIP). 

We varied the number of machines in the cluster in the cluster 
from 1 to 4 with 2 partitions assigned to each host. The results of 
the measuring the load on aggregator (root of the query tree) node 
are shown in Figure 10. 
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Figure 10: CPU load on aggregator node 

As we can see from the graph, the load rises rapidly for the 
partitioning-agnostic scheme and reaches 95% CPU utilization for 
4 participating hosts. Suboptimally partitioned configuration 
compatible with the join query reduces the load by 43-47% 
reaching 54% utilization for a 4 host configuration. However, the 
linear load growth trend is still present due the fact since the 
workload is dominated by incompatible aggregation query. The 
load growth curve for the optimal partitioning scheme is much 
flatter, reducing the load to 31% for 4 host configuration. 
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Figure 11: Network load on aggregator node 

Figure 11 shows the results of the experiments measuring the 
network load on the aggregator node. Unable to perform any 
significant load reduction, the partition-agnostic configuration 
exhibits an almost linear increase in the network load. Suboptimal 
configuration, on other hand, evaluates all the joins locally and 
reduces the network load on aggregator node by 36-52% as the 
number of participating nodes increases to 4. The optimal 
configuration has an almost flat growth and effectively reduces the 
network load by 64-70% depending on number of hosts. These 
experiments demonstrate that our cost model correctly identifies 
the dominant queries in a query set and computes the globally 
optimal partitioning. 

6.3 Partitioning for complex queries 
In the final set of experiments, we use a more complex query set 
involving multiple related aggregation and join queries. This 
query set is identical to the one we used in Section 3 to illustrate 
query-aware partitioning framework. The corresponding GSQL 
statements for the queries are shown below. 
   Query flows: 
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SELECT tb,srcIP,destIP,COUNT(*) as cnt 
FROM TCP 
GROUP BY time/60 as tb,srcIP,destIP 

   Query heavy_flows: 
SELECT  tb,srcIP,max(cnt) as max_cnt 
FROM flows 
GROUP BY tb, srcIP 

   Query flow_pairs: 
SELECT S1.tb, S1.srcIP, 
    S1.max_cnt,S2.max_cnt 
FROM heavy_flows S1, heavy_flows S2 
WHERE S1.srcIP = S2.srcIP and S1.tb  
    = S2.tb+1 

We compared four different system configurations: 
d) Naïve – data stream is partitioned in a round robin fashion 
e) Optimized – data stream is partitioned round robin,  all the 

host’s data is partially aggregated before being sent for final 
aggregation 

f) Partitioned (partial) – the data stream is partitioned using  the 
suboptimal partitioning set (srcIP, destIP) 

g) Partitioned (full) –the  data stream is partitioned using the 
optimal compatible partitioning set (srcIP) 

Note that in the Partitioned (partial) configuration, only query 
flow is compatible with partitioning set while the rest of the 
queries are incompatible. The query plan generated by the 
optimizer for suboptimal partitioning is shown in Figure 12.  
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Figure 12: Plan for partially compatible partitioning set 

As in previous experiments we varied the number of machines in 
the cluster from 1 to 4 with 2 partitions assigned to each host.  
Since the CPU load on leaf nodes followed the same patterns as in 
previously shown experiments, we concentrate on discussing the 
load on aggregator node. The results of the measuring the CPU 
load on aggregator (root of the query tree) node are shown in 
Figure 13. 
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Figure 13: CPU load on aggregator node 

As we can observe from the graphs for the Naïve configuration, 
the load on aggregator node grows linearly with a number of 
hosts. For a four machine configuration, the system overloaded 
and is forced to drop tuples from the input stream. The optimized 
configuration with partial aggregation enabled reduces the load by 
23-24% reaching 82% utilization for a 4 host configuration. 
However, the linear load growth trend is still present and adding 
one more machine to the cluster will lead to the aggregator 
overload.  

The load for the partially compatible configuration exhibits a 
nearly flat growth curve, primarily due to the fact that the most 
expensive query in a query set flows fully takes advantage of the 
compatible partitioning set. The load on aggregator node reaches 
only 18.4% which leaves a lot of room for further increase in the 
number of hosts. Finally, the fully compatible configuration 
exhibits true linear scaling, with the load on the aggregator node 
reaching 8.4% for a 4 machine setup. 
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Figure 14: Network load on aggregator node. 

Figure 14 shows the results of the experiments measuring the 
network load on the aggregator node. Here we observe the trends 
similar to previous experiments. Both Naïve and Optimized 
configuration with partial aggregates suffer from transmitting 
duplicate partial flows to the aggregator node and exhibit linear 
load growth. The partially and fully compatible configurations, on 
other hand, have flat growth curve with the maximum load 
approaching the cardinalities of flows and flow_pairs 
respectively. 
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7. CONCLUSIONS 
New deployments of very high speed (OC768) networks place 
unprecedented demands on network monitoring systems, requiring 
the use parallel and distributed stream processing. Two main 
approaches used to distribute the load across the cooperating 
machines are query plan partitioning and query-independent data 
stream partitioning. However, for a large class of queries both 
approaches fail to reduce the load compared to centralized system, 
and can even lead to increase in the load. 

In this paper, we introduce the idea of query-aware data stream 
partitioning that allows us to scale the performance of streaming 
queries in close to linear fashion. Our stream partitioning 
mechanism consists of two main components. The first component 
is a query analysis framework for determining the optimal 
partitioning for a given set of queries. The second component is a 
partition-aware distributed query optimizer that transforms an 
unoptimized query plan into a semantically equivalent query plan 
that takes advantage of existing partitions.  These components 
operate within the limitations of currently available networking 
hardware, while being able to take advantage of new capabilities 
as they become available. 

We evaluate our query-aware partitioning approach by running 
sets of streaming queries of various complexities on a small cluster 
of processing nodes using high-rate network data streams. The 
results of our experiments confirm that the partitioning mechanism 
leads to highly efficient distributed query execution plans that 
scale linearly with the number of cooperating processing hosts. 
We also demonstrate that even suboptimal query-aware partitions 
offer significantly better performance that conventionally used 
query-independent partitioning.  The techniques described in this 
paper make OC-768 monitoring feasible using a DSMS. 
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