Remembrance of Streams Past:
Overload-Sensitive Management of Archived Streams

Sirish Chandrasekaran
EECS Department, UC Berkeley
srish@cs.berkeley.edu

Abstract

This paper studies Data Stream Management Systems
that combine real-time data streams with historical
data, and hence access incoming streams and ar-
chived data simultaneously. A significant problem
for these systems is the I/O cost of fetching historical
data which inhibits processing of the live data
streams. Our solution is to reduce the I/O cost for ac-
cessing the archive by retrieving only a reduced
(summarized or sampled) version of the historical
data. This paper does not propose new summariza-
tion or sampling techniques, but rather a framework
in which multiple resolutions of summariza-
tion/sampling can be generated efficiently. The query
engine can select the appropriate level of summariza-
tion to use depending on the resources currently
available. The central research problem studied is
whether to generate the multiple representations of
archived data eagerly upon data-arrival, lazily at
guery-time, or in a hybrid fashion. Concrete tech-
niques for each approach are presented, which are
tied to a specific data reduction technique (random
sampling). The tradeoffs among the three approaches
are studied both analytically and experimentally.

1. Introduction

The queries that can be posed on a Data Stream Manage-
ment System (DSMS) [1,3,5] can be distinguished into three
classes (see Figure 1). The first consists of queries over ar-
chived disk data that is already present in the system before
the query is posed. Traditional database literature haslargely
focused on supporting these historical queries. The second
class consists of queries over live network data that enters
the system after the query is posed. These live queries have
been the subject of much recent research on continuous
query (CQ) processing [14]. Neither CQ engines nor tradi-
tional databases, however have adequately addressed the
problem of supporting queries that access a combination of
Thiswork was funded in part by the NSF under ITR grants [1S-0086057
and SI-0122599, by the IBM Faculty Partnership Award

program, and by research funds from Intel, Microsoft, and the UC
MICRO program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-
ment

Proceedings of the 30" VL DB Conference,

Toronto, Canada 2004

Michadl Franklin
EECS Department, UC Berkeley
franklin@cs.berkeley.edu

disk and live data. This third class of hybrid queries is the
focus of this paper. The following are representative exam-
ples of hybrid queries, based on the scenario of a freeway
embedded with sensors that record information about pass-
ing cars.

Query 1 — Load on Freeway: This is a single-stream query
that accesses a window of data that begins in history, and
continues into the future: “Perform a running count on the
increase in number of cars between Ashby exit and the Bay
Bridge since the beginning of rush hour. Compute this value
once every fifteen minutestill the end of rush hour.”

Query 2 — How many Commuters: This is a join query
where the the live data is combined with different portions
of history: “For the cars that have been observed to pass
Ashby exit, choose those that have been seen at the same
exit at the same hour every day this last week. Count the
total numbers that match this condition today.”

As the number of such hybrid queries accessing different
portions of the archive increases, so do the number of ran-
dom disk accesses. Given the dramatic improvements in
computation power and network bandwidth witnessed re-
cently, the cost of interleaving random disk accesses with
the processing of live network data has become substantial.
These /O costs can have a debilitating effect on the ability
of a query processor to run multiple hybrid queries and
cause it to fall increasingly behind in the processing of the
live data.

Q‘és'z'ss TRADITAL DBMS

QUERIES CQ ENGINE

OVERLIVE ~ ,—3 o
v, il el il
LIVE DATA

HYBRID ENGINE
d L4 4

(LIVE DATA
" HISTORICAL DATA

FOCUS OF
THIS PAPER
QUERIES ¢
OVER LIVE
AND
HISTORICAL
DATA

Figure 1. DSM S design following query classification

While it is tempting to reuse solutions developed in tra-
ditional DBMSs and in CQ engines to address this problem,
the approaches developed in those systems to handle over-
load are either inapplicable or inadequate for workloads of
hybrid queries. Historical queries do not typically have rea
time (or near real-time) requirements, alowing traditional
databases the option of postponing some computation in the
case of overload (e.g., data warehousing). This is, however,

not possible in a hybrid engine since query processing is
coupled to the arrival of live data. Suspending a query only
causes it to fall even further behind the live data. Further, in
24x7 applications, there might not even be a time of suffi-
ciently reduced load at which to execute all the postponed
gueries. Indexing techniques combined with batched 1/0 can
be used to support fast simultaneous inserts and reads of
historical data[15,16]. However, even if the correct index is
available for use by the query, it only pushes away the point
at which a system is overloaded: it does not address what
happens then.

Admission control at the network (also called load-
shedding), on the other hand, has been proposed for CQ
engines as a way to directly deal with overload [3,4]. Drop-
ping the network datais, however, an unsuitable solution for
hybrid-query workloads for two reasons. First, disk accessis
a more significant bottleneck for hybrid query workloads
than the processing of network data. Dropping the network
data therefore does not confront the root of the problem.
Second, and more importantly, the dropped network data is
lost forever, and unavailable for any future hybrid queries.

The key to immediately and precisely addressing over-
load in a hybrid query processor isto retrieve only a reduced
version of the data on disk. A wealth of literature exists in
the area of data reduction (henceforth abbreviated as DR)
including sampling, summarization (such as aggregates, his-
tograms) and compression. Rather than propose a new DR
method, this paper focuses on the architectural issues of
allowing a DSMS to exploit a variety of these pre-existing
techniques to handle overload. In particular, we concentrate
our efforts on designing mechanisms within the storage sys-
tem to generate multiple resolutions of data reduced through
random sampling or windowed aggregation. The query en-
gine can select the appropriate level of summarization to use
depending on the resources currently available.

By focusing our solution to the architectural issues con-
cerning the storage system, rather than the DR methods or
the query engine, we alow the DSMS considerable flexibil-
ity in handling overload. For example, the query engine can
employ various responses to overload ranging from con-
stant-rate data reduction to reduction based on the attribute-
values of the live data or even the age of the historical data.
Further, the DSMS is free to present applications with vary-
ing degrees of information about the fidelity of results rang-
ing from nothing to sophisticated statistical guarantees.

1.1 Our solution: the 10,000 ft. view

In this section, we present an abstraction of the design of the
hybrid query processing engine, and point out the portions
of the system we modify to handle overload.

Figure 2 shows the three principal components of a hy-
brid query engine: the network interface, the executor, and
the disk. The network interface reads the data off the net-
work and is responsible for both making this data directly
available to the executor, as well as writing it to disk. The
queries run in the executor and can access the live data di-
rectly from the network interface and the historical data
from the disk. In order to handle disk overload, we make the
following modifications to the system.

First, al disk accesses (reads and writes) are controlled
through a special access method called the Overload-

sensitive Stream Capture and Archive Reduction access
method (OSCAR). OSCAR organizes the data on disk in a
fashion that makes it possible to trade-off 1/Os for the qual-
ity of data scanned. For example, OSCAR might store mul-
tiple versions of the stream on disk, with each version repre-
senting a different choice in the trade-off of quality and size
of data. The OSCAR access method can then scan the ap-
propriate version at query time.

The second modification to the system has to do with in-
forming OSCAR about the degree of data reduction desired
by the query for scans of historical data. To do this, we re-
quire all queries to associate each scan module over histori-
cal data with a reduction User-Defined-Function (r-UDFs).
As data scanned from the disk passes through the scan mod-
ule at the leaf of the query plan, this r-UDF communicates
back to OSCAR the degree of data reduction that is re-
quired. OSCAR uses this feedback to control the quality of
data returned by the scan.

In this paper, we focus on the design of OSCARs for
handling r-UDFs based on random sampling and windowed
aggregation. Supporting other classes of r-UDFs is the sub-
ject of future work and discussed in Section 7.

EXECUTOR

Query Plan

Figure 2: Our solution: the 10,000 ft. view

1.2 Contributions of this paper

In this section, we summarize the contributions of our paper.

Our first contribution is the identification of disk over-
load as a key problem in the support of hybrid queries that
simultaneously access disk and network data, and the ac-
companying observation that load-shedding is an unsuitable
solution to address this problem.

Second, we propose Overload-sensitive Stream Capture
and Archive Reduction (OSCAR), an access method which
can interface with a variety of user defined data reduction
functions (r-UDFs) to retrieve reduced versions of the ar-
chive for correspondingly fewer 1/Os.

Third, we present concrete OSCAR designs for r-UDFs
based on random sampling and windowed aggregation.
These designs differ as to when they perform most of their
work generating the multiple resolutions of archived data.
We describe the implementation of three OSCAR designs
for r-UDFs based on random sampling in TelegraphCQ. The
tradeoffs among these three designs are studied both analyti-
cally and experimentally, with an emphasis on the effects of
a real file-system and operating system on the behavior of
the solutions.

The rest of this paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we describe OSCAR,

the r-UDFs, and their interaction in more detail using an
example. In Section 4, we present different OSCAR designs
for both r-UDFs based on sampling and windowed aggrega-
tion. In Section 5, we describe the implementation of the
mechanisms for sampling-based DR schemes in Tele-
graphCQ. Section 6 demonstrates and compares the per-
formance benefits of our various storage schemes. We dis-
cuss future work in Section 7, and conclude in Section 8.

2. Related Work

Data reduction, admission control, and optimized disk ac-
cess are al areas that have been extensively research by the
database community. In this section, we discuss some repre-
sentative and relevant work in each, discussing their appli-
cability to overload in hybrid query workloads.

We cover the related work according to how they can be
applied to the problem of disk overload.
Converting random to sequential 1/O: The first important
area of related work is the literature on fast inserts and reads
in traditional databases. Saving random 1/Os has aways
been a key theme of database systems research, and the goal
of avoiding random I/Osin favor or sequential 1/0 hasled to
the proposal of various extent-based storage systems (e.g.,
[9,16]). Indexes [15] also can be used very effectively to
reduce random 1/O if the data is clustered. While it is diffi-
cult to ensure clustered organization of data in the presence
of continually growing streams, the batching of writes of live
data to disk offers an approximation. Both these approaches
can reduce the impact of disk accesses; however, they suffer
from some shortcomings. First, these solutions require peri-
odic reorganization of the disk in order to make the above
batches coalesce into larger ones. Second, given that it is not
feasible to maintain indexes over every attribute on a high-
throughput stream, and also that the queries might not be
known ahead of time; the indexes maintained by the system
might be inefficient for the query at hand. Finaly, while
these approaches increase the extent to which the system can
scale, they still do not address the problem of overload, they
only delay the problem.
Postponing query processing to a later time of lower
load: This works for situations involving historical queries
which do not typically have real time (or near real-time)
requirements. A traditional database therefore has the option
of postponing some computation in case of overload, for
example, to the end of the business day. Examples of this
can be seen in data-warehousing [13]. This is however not
an option for the hybrid engine where query processing is
coupled to the arrival of live data. Suspending a query only
causes it to fall even further behind the live data. Further, for
24x7, high data-rate applications, it is unclear if there are
any periods of lower |oad.
Shed load at the network: In CQ engines which neither
archive nor revisit stream data, admission control at the net-
work pipe has been proposed for dealing with overload
[3,4]. As stated previousdly, however, this solution is not well
suited to hybrid query workloads for the following reasons.
For workloads involving hybrid queries, disk access is a
more significant bottleneck than the main memory process-
ing of live data: dropping data on the network pipe therefore
does not directly address the current cause of overload,
which is disk access. Second, and more importantly, the data

dropped in the network is lost for ever, and cannot be que-
ried by future hybrid queries.

Data Reduction (DR): There is a wealth of literature pro-
posing different DR techniques [17]. Our work aims to
complement these efforts by providing a framework where
these techniques can be plugged into a DSMS. Since these
techniques often require the special modifications to the
executor, we restrict our focus to those based on sampling
and windowed aggregation. These techniques have the dual
advantage of requiring ssimpler enhancements to the execu-
tor, while still allowing a range of application-specific re-
sponses to the problem of overload. Other previous work,
such as [8] has looked at ways to store the data on disk at
multiple resolutions in order to tradeoff disk I/Os and accu-
racy. While we share the same goals, we are attempting to
define an architectural solution that can encompass a wider
range of DR techniques, and by extension, queries.

3. Our solution —the 100 ft. view

In this section, we expand on the overview of the solution
we presented in Section 1.1, revealing more detail about
OSCAR and the r-UDF. Figure 3 shows our solution for a
specific disk organization and r-UDF.

OSCAR: We first discuss the most important component of
our solution, the Overload-sensitive Stream Capture and
Archive Reduction access method (OSCAR). OSCAR or-
ganizes the data on disk in a fashion that allows reduced
versions to be retrieved in order to save I/Os. While the data
should ideally be retrievable at any reduction level between
0 and 100% with matching savings in 1/Os, in practice there
can only be a finite number of reduction levels for which
OSCAR can provide exactly matching 1/0 savings. In Figure
3, these levels are 25%, 50% and 75%. The disk therefore
logically appears to have three additional copies of the
stream containing 75%, 50%, and 25% of the original data
respectively. The actual content of the disk isinvisible to the
executor and as we shall show in Section 4.1 for example,
this logical view can be physically implemented using one,
two or more copies of the stream on disk.

Query

Disk Scan Module
Uniform Random Sampler

Further 20% Desired Reduction
drop (o =40%
2

%OSCAR

75%
50% || redustion

25% | | Reduction

Original
Stream

OSCAR

DISK
ARCHIVE

Figure 3: 100 ft. view of solution
In order to organize the data on disk and allow access at
multiple levels of the reduction, OSCAR controls al disk
accesses, both by the network interface and by the executor.
It can therefore perform its modifications to the archive ei-
ther eagerly when the network interface cals its insert()
method to write the incoming data to disk, or lazily when the

executor subsequently calls its read() method. In this paper,
we present different approaches that perform most of their
work either at data-arrival time or at query time, or split
their work between the two phases. We aso show how the
approach chosen influences the physical implementation of
the logical view of the disk.

The Reduction UDF: The second important part of our
solution is the r-UDFs. Each physical scan over historical
data is associated with an r-UDF that notifies OSCAR as to
the degree of reduction required. The r-UDF is a piece of
user code that takesin dataasit is scanned from the disk and
continuously returns values representing the degree of re-
duction desired in the scan. For example, an r-UDF that per-
forms random sampling returns a value between 0 and 1 that
indicates the fraction of data that can be dropped from the
scan. To implement windowed aggregation, the r-UDF re-
turns a time-interval that indicates the size of the window
over which the aggregation is to be performed. The r-UDF
shown in Figure 3 is a uniform random sampler that always
returns 0.4; i.e., it drops 40% of the data passing through it.
The r-UDF can be considerably more sophisticated. For
example, an age-based r-UDF can determine the reduction
level based on the age of the tuples in the section of the ar-
chive being scanned: it can thus demand increasingly higher
fidelity for more recent data as in [11]. The r-UDF can aso
determine the level of reduction according to the current
load on the system. Finaly, the r-UDF can maintain internal
state on the tuples that it has seen, and perform more sophis-
ticated statistical analyses according to the desired approxi-
mation levels of the output (asin CONTROL [18]).

Putting it all together: A hybrid live/historical query is
specified by associating each archived stream in the FROM
clause of the query with one of the r-UDFs registered with
the system. For example, the scan module over the archived
stream in Figure 3 is associated with a uniform random sam-
pler that drops 40% of all input. This level of reduction
specified by the r-UDF (0.4) does not equal any of the levels
of the reduction that OSCAR can directly satisfy (0.25, 0.5
and 0.75). OSCAR does the best it can and reads from the
copy with 25% reduction. Though it will not save any more
I/Os, the scan module can choose to drop 20% of this data,
if it wishes to achieve the original target of 40% reduction
((100 — 20)% of (100 — 25)% = (100 — 40)% of original).

4. The OSCAR access method

In this section, we present various OSCAR designs that sup-
port r-UDFs based on sampling and windowed aggregation.
In Section 5, we discuss the actual implementation of differ-
ent OSCARSs for sampling-based r-UDFsin TelegraphCQ.

4.1 OSCAR designsfor random sampling

In this section, we present three different OSCAR designsto
enable a variety of sampling-based r-UDFs to reduce over-
load caused by disk accessesin a hybrid query engine.

As shown in Figure 4, the three solutions perform their
actions at different points in the system: OnWriteReplicate
is an eager data-driven mechanism, performing most of its
work at data arrival. OnReadModify lazily peforms most of
its work modifying the archive at query time. The Random-

izeThenSort method splits its work between data-arrival and
query-execution.

RANDOMIZE

THEN ON READ MODIFY
SORT

POINT OF ACTION

ON WRITE
REPLICATE

DATA-ARRIVAL-DRIVEN
Figure 4. Different mechanismsfor sampling-based DR

4.1.1 OnWriteReplicate: The Eager Approach

We first discuss an eager data-driven approach that exploits
the fact that while random disk 1/Os are expensive, disk
spaceis not.

QUERY-ARRIVAL-DRIVEN

CONTENTS OF ARCHIVE

. Stream
100% original stream [id[ts[a [b replication granularity = 0.5
83 |p|x
Write 7|50y
Data pristine data 6[6[q|w ﬂﬂ
Archiver Slijtiz ARimly
4 13|m|y
3[14[p|v
2|16 p|x
Wit 1]20]0]z @ Sampling
sampled dal St - Function
to replica | Steam |
idjts|a|b
8|3 |p|x Pass 25% of
f 153 g w original data
o my
50% reduced copy [1]20]0 |z

Figure5: OnWriteReplicate in action

In this method, we always keep one pristine (non-reduced)
copy of the stream on disk. This copy is referred to as the
primary. In addition, there are a set of copies at increasing
levels of reduction. The number and levels of reduction of
these copiesis specified at the time the streamis created, but
can also be changed at any later time. OSCAR writes apris-
tine copy of the incoming data to the primary, while also
randomly sampling this data at the different pre-determined
levels to populate the various copies. Later, as the executor
scans tuples, it continuously feeds the values returned by the
r-UDF back to OSCAR. OSCAR uses these values to con-
tinuoudly identify (and if needed switch the scan to) the copy
whose data granularity is closest to (and finer than) the de-
sired coarseness.

Figure 5 shows an example of this technique in action.
The stream has one copy (in addition to the primary) at a
reduction level of 50%. At data arrival (step 1 in the figure),
OSCAR populates the primary with all the incoming data,
and the copy with half of this data. The r-UDF in the exam-
ple specifies a uniform sample rate of 25% (i.e., a reduction
level of 75%). Therefore, at query time (step 2), OSCAR
reads data from the copy, rather than the primary. Note that
this, however, only reduces 1/0Os by 50%, rather than 75%.
The scan module can drop 50% of the data scanned from the
copy to achieve the desired 75% reduction on the original.

4.1.2 OnReadModify: The Lazy Approach

In this section, we discuss a lazy, query-driven technique
that performs most of its work at the executor.

One way to design this method is to maintain multiple
copies of the stream at pre-determined levels and populate
them on demand. This solution, however, is problematic. It
increases the implementation complexity without offering
significant new insight into the cost trade-offs with respect
to the eager solution. To understand the increased imple-
mentation complexity, consider Figure 6, which shows the

above approach in action for a stream with three copies.
Different hybrid queries have caused the different copies to
be filled arbitrarily. Each copy thus has sequences of extents
of tuples followed by holes corresponding to the portions of
the archive that have not yet been accessed by any hybrid
gueries.

Because of the arbitrary order in which these holes are
filled, and the potentially unknown sizes of the tuples that
will fill them, we can no longer use a simple heap file to
store the copies; an extent-based storage structure must be
used for each copy of the stream.

DISK ARCHIVE
75%
Reduction
50%
Reduction
25%
E————' Reduction 1 filled
Original
Stream 1 holes

Figure 6: Effect of eager filling on pre-defined copies

A database like PostgreSQL does not have an inbuilt ex-
tent-based storage method, requiring one to be implemented
from scratch. Further, the above solution would also require
a managing data structure that continuously directs scan to
the smallest possible copy while also filling these copies on
demand. For these reasons, we have developed a solution
that uses a simpler storage structure: a heap file for the
original stream, and another for a reduced copy. The result-
ing design is different from the above mirror of the eager
solution. We describe our solution below for the case of one
r-UDF. In the presence of multiple r-UDFs, the solution is
just repeated in parallel, with multiple copies.

In this technique, at data-arrival time, OSCAR simply
streams a complete copy of the arriving data to disk. Later,
at query time, OSCAR randomly marks some of the tuples
that are scanned as dead, at the reduction rates returned by
the r-UDF. These tuples do not make it to the query plan. A
periodic vacuumer process later copies the remaining live
tuples to a new location on disk. Future incoming tuples are
written to both the original and to this copy. Subsequent disk
accesses by the same or a different query using the same r-
UDF are then directed to this new, smaller copy so they will
incur fewer 1/0s. As before, thiswill result in OSCAR mark-
ing some of the tuplesin this copy as dead. Instead of mov-
ing them to yet another copy, the vacuumer just purges the
tuples from this copy and compactsit in-place.

If the reduction level of any portion of this copy be-
comes too low for a new query using the same r-UDF, then
the new query switches to scanning the original, with no
further modifications to the archive. If the fraction of ac-
cesses that switch to the original crosses a preset threshold,
then the copy can be deleted and the whole process repeated.

Figure 7 illustrates this approach. In Step 1, OSCAR
writes al the data to disk. At query time (Step 2), let us as-
sume that the sampling r-UDF requires a 50% reduction in
data. These tuples are then marked dead in the original. At
Step 3, the vacuumer copies the remaining live tuples to a
new location on disk. A future query (shown in Step 4) uses
the same r-UDF over this stream. At this time, however, the
r-UDF requests a 75% reduction on the origina data. This

can be satisfied entirely by scanning only the copy. The vac-
uumer, however, had already removed 50% of the original
data in congtructing this copy. We therefore, only retrieve
(25/50)*100 = 50% of the current copy. The remaining tu-
ples are purged from the copy on a subsegquent pass by the
vacuumer.

Contents of Archive
8[3[|p|x
Stream 6(5|o|y
Write \gtga b @ 4 [13[mly
- P x 216
pristine TTsToty] L
Data data [6]6[q|w Sampling)"k eep 50% of
Archiver Sl function [iginal data
@ 3[14|p|vVv
2[16]p|x
1]20jo0 |z
Mark Rest
Stream Dead

Move
Live

BN | &l o N | &
N ko)
o3| +elPlo|»

2

Vacuumer

Tuples
Stream Stream
3 -

Keep 25% of
original data

N|»|o|o| &
o
o|3|o[o|w
Ni<[|<|x|o

=N w0 o|~| x| g
ololo|3|~|la|olo|w
N|x|<[<|N|g < [x]|o]

Mark Rest
Deleted

»|P| |5
|
o

l<d[x]|o

SN[wlS]olo] ~olw
oo|o|3|~|a|loo|w
nx[<[<[n[gl<]x]o

Purge
Deleted
Tuples

Vacuumer

i

4]18[m][y
Copy

n|x|<|<|n]gl<]x|o]

Figure 7: OnReadM odify in action

4.1.3 In RandomizeThenSort: The Hybrid Approach

The solutions described in the previous sections perform
significant amounts of work either at data-arrival or query-
time in order to enable sampled access to disk data. Depend-
ing on the query and data workloads, they might even exac-
erbate the degree of overload. The method we discussin this
section fixes this problem by spreading the burden across
these two phases and improving the performance of both
reads and writes.

In this technique, there is a single copy of the stream on
disk, which is divided into separate “runs’ or batches, with
each “run” corresponding to a fixed number of blocks. The
data source writes the arriving tuples uniformly at random to
one of the blocks in the current run. When any of the blocks
in the current run fills up, the entire set of the blocks in the
run is flushed to disk and a new run is created for inserting
new tuples. At query time, when OSCAR begins to scan a
new run of blocks, it uses the latest value returned by the r-
UDF to only read from a corresponding fraction of the
blocks in this new run. Since the tuples within each block

are sorted by timestamp, a merge sort is employed to re-
trieve the original order of tuples across the different blocks
intherun.

CONTENTS OF ARCHIVE

108,000 blocks. We also measured the time it took to popu-
|ate the strawman with these tuples to be 430 seconds.

Based on the above parameters, Figure 9 displays a gen-
erated plot that shows the analytically computed time for the

[(813]p[x]
Stream ZT3[m[y
id[ts[a]b
Run2
Write data 511 t |z
Data into runs, 83| p |x Sampling
. [and .
Avrchiver randomize ? g g vyv Function
winn Run 1 Pass 25 % of
4113[m |y o
216 p [x original data
Run length = 4 1120/ 0 |z
#tuples/Block = 1 314/ p |V

Figure 8: RandomizeThenSort in action
Figure 8 shows an example of this technique in action.
The stream is defined to have runs of size 4 blocks each (In
the above figure, we assume one tuple per block for ease of
visualization). The r-UDF specifies a 75% level of reduc-
tion. Therefore, OSCAR reads exactly block from each run.

4.1.4 Comparison of the solutions

Having discussed our three basic agorithms, we briefly
compare them analytically. In Section 6, we will compare
them experimentally. Table 1 summarizes the analytically
computed 1/O costs of three OSCAR designs and a straw-
man that performs all the sampling in the executor, does not
modify the archive, and saves no I/Os.

As can be seen, OnWriteReplicate, aways maintains the
original data, and in fact, pays a higher insertion cost by
maintaining extra copies in the hope of saving 1/0s at query
time. It however pays alow cost on every read.

OnReadModify, on the other hand, performs most of its
work on the first time it scans an archive. Both its original
write costs, and subsequent read costs are restricted to the
minimum possible. It does however require additional work
by the vacuumer. The fact that it removes tuples from the
copy can be an asset. If the solution is modified to allow the
vacuumer to purge tuples from the original itself, it can be
used to limit the size of the archive.

RandomizeThenSort is a hybrid solution that has both
low write and read costs, with the #1/Os at write time being
the same as that for the OnReadModify solution, and the
#/Os at read time very close to the minimum possible #/Os.

4.1.5 Analytical Plots

In order to better visualize the formulae in Table 1, we use
them to analytically compute and plot the write and read
rates for the various OSCAR designs.

First, we parametrize the eager and hybrid OSCAR de-
signs as follows. We assume that OnWriteReplicate has four
copies in addition to the origina stream at reduction levels
of 20%, 40%, 60% and 80%. This determines the function
o(r) in the table. For the hybrid solution, we assume a run
length (R) of a hundred blocks.

To determine the values of the other parameters in the
analytical formulae, we ran some tests on our implementa-
tion of OSCAR in TelegraphCQ. We measured the size on
disk of a stream (based on the strawman described above)
containing 20 million tuples to be 108,000 blocks of 8192-
bytes each. Since the size of each index entry is only 20
bytes, we approximate I/S to be zero. Therefore, B =

M echa- :
nism Cost of Writes Cost of reads
OnWrite : I 8 .
Replicate Zl B; (1+5) ;g(f(.))
i= i=
B
1% Read: B+) [1- f (i
No copy: B(1+|—) 2_1:’_ (ﬂ
OnRead S nd I_.
- 2" Read: B
Modify I
1 copy: 2*B(1+—) B
S Post Vac.:Zf(i)
i=1
B/R
Randomize | .
ThenSort B+ R*S) Z;(R f (J)-‘
J:
Strawman B(1+Iz) B

B = # blocks of streamin ar-
chive

| = size of index entry
S=sizeof ablock

R = run-length

n = # copies of stream

f(i) = 1 — min(reduction
level for tuplesini™ block)
f'(j) = 1 —min(reduction
level for tuplesinj™ run)
g(r) = 1 —(reduction level
amongst copies closest to

r

Table 1: 1/0 costs of storage mechanisms

different OSCAR designs to write the same stream. As can
be seen, the hybrid solution, RandomizeThenRead, pays the
same cost as the strawman, requiring very little work at data
insertion time. The lazy solution takes the same time as the
strawman and hybrid solution prior to vacuuming. After
being vacuumed, however, it contains an additional copy
that also receives all the incoming data, doubling the write
cost. The eager solution is computed to take the most time,
since the sum of the sizes of its copiesis twice the size of the
original stream. The cost of writing the stream for the eager
solution is thus thrice that of the strawman.
1400 1290

1200 +
1000
800
600
400

200
0

Time (in seconds)

Eager Lazy (pre- Lazy (post- Hybrid Strawman
vacuum) vacuum)

Storage Design

Figure9: Timetoinsert 20 million tuples

Next, we ran a count(*) query over the entire strawman
archive; this took 20 seconds. Based on this measurement,
we computed the time it would take to query the data for
different values of the reduction level (f(i)) for the different
OSCAR designs. Figure 10 shows the plot for these gener-
ated values.

In the figure, the first and second reads for the lazy de-
sign are assumed to occur before the vacuuming. In order to

reduce the visual clutter, we group together designs that
have very similar or identical performance. The performance
of the strawman is independent of the reduction level. As
can be seen, the first query pays a high price for OnRead-
Modify, the lazy solution. The second query performs as
well as the strawman. After vacuuming, the lazy solution
matches the hybrid solution, and has the best possible per-
formance. The cost of the eager solution is a step function,
since the OnWriteReplicate solution can only offer savings
commensurate to the granularities of its pre-stored copies. It
has much lower cost than the pre-vacuuming lazy solution. It
gtill has comparable, but dightly higher cost relative to the
post-vacuum version of the lazy solution.

—o— Eager

—8— Lazy (1st-Read)
—&— Lazy (2nd-read), Straw man —A— Lazy (post-vacuum), Hybrid

50

I

w
o

Time (in seconds)

= N
o o

o

0% 25% 50% 75% 100%

Reduction Level (in %)

Figure 10: Timeto query 20 million tuplesfor different
reduction levels

The analysis of the performance of the system when the
write and the reads occur simultaneously is as follows. Since
the disk is the bottleneck, the available disk bandwidth will
be parcelled out between the queries and the insertion proc-
ess at the rate at which they access the disk. Therefore, the
total time for insertion will increase in proportion to the
number of disk accesses by the queries for a given query-
completion rate. As we shall see in Section 6, however, real-
ity is quite different: the disk elevator algorithm used in
Linux (and the ext3 file system) removes contention be-
tween the writes and reads, by guaranteeing each a minimum
latency. Further, the operation system unfairly schedules the
write process more if it does not realize that the queries are
performing sequential /0.

In this analysis, the hybrid OSCAR design emerges as
the best solution because it offers both low insert and re-
duces 1/Os at exactly the rate demanded by the r-UDF.

4.2 OSCARsfor windowed aggregation

In Section 4.1 we described storage schemes for sampling-
based r-UDFs. In this section, we will discuss a mechanism
for supporting summary-based techniques such as grouped
averages.

We propose solutions here similar to the lazy (OnRead-
Modify) and eager (OnWriteReplicate) methods described
in Section 4.1. Like those other techniques, these two work
by storing multiple copies of the data at different degrees of
summarization. The main difference is that unlike sampling,
decisions about the reduction are now made on a per-
window rather than per-tuple basis. This observation leads
us to our key insight in supporting windowed-aggregation:

the r-UDFs in this case can be abstracted away as a query on
the window of tuples being summarized. The results of this
guery can then be written to the replicas.

To drive the rest of the discussion, we use the following
example of an r-UDF over a stream of stock-ticker data.
Example windowed aggregation r-UDF: For each hour of
data, return a tuple per distinct stock symbol containing the
average value of that symbol over that hour. Thisr-UDF isa
tumbling-window [1] grouped-average query.

4.2.1 The Eager Approach

As before, OSCAR writes one complete copy of the data on
disk, and other reduced versions of the data. The number of
these other versions is specified at stream creation time, as
are windowed-aggregation queries that populate them. Cop-
ies can also be added and removed at a later time.

As an example, consider the stock ticker and r-UDF pre-
sented above. Let us also assume that the stream is created
with two additional copies. the first (copy#1) stores the
hourly averages and the other (copy#2), the daily averages
of the stock data, both grouped by company symbol.

OSCAR writes the individua records to the master copy
of the stream on disk. In addition, it populates these two
additional copies using either triggered historical queries, or
tumbling window continuous queries. The trigger approach
requires one purely historical copy for each of the copies
that have to be populated. Copy#1, is therefore populated by
a grouped average query that is triggered every hour and
executes over the previous hour of data. Copy#2, is popu-
lated by a similar query that is triggered every day. The CQ
approach, on the other hand has two permanently running
grouped average continuous queries, one with a window that
tumbles every hour, and the other with a window that tum-
bles every day. In either case, a new query that uses the r-
UDF described above (which requires hourly averages) can
scan Copy#1 to reduce overload.

4.2.2 The Lazy Approach

As with OnReadMadify, there is a single copy of the com-
plete data on disk, and one additional reduced copy per r-
UDF. At data-arrival OSCAR simply writes the complete
datato disk. At query time as data is scanned from disk, it is
passed to the through the tumble query in the r-UDF. The
result of this DR query is passed on to the user query. These
results are also written back to disk in a new temporary loca-
tion on disk. Each of these tuples is also encoded with in-
formation about the time window to which it corresponds. A
vacuumer process can later combine the data from the origi-
nal with the tuples in this temp location to create a new
copy, replacing those original tuples that were scanned
through the r-UDF with the summarized version in the temp
copy. Future queries can then access this new copy. As with
OnReadModify, modifications to this copy are made in
place. Again, asin the case of OnReadModify, the reduction
level of this copy might be too low for a certain query, in
which case the original must be scanned.

In summary, the design of eager and lazy OSCAR
mechanisms for r-UDFs based on windowed aggregation is
essentially the same as that for random-sampling. They only
differ in their details, to accommodate the different proper-
ties of the input and output to these r-UDFs.

5. Implementation in TelegraphCQ

We implemented the above OSCAR designs for sampling-
based r-UDFs in TelegraphCQ, the CQ extension to Post-
greSQL v7.3. The implementation closely follows the de-
scription in Section 4.1; therefore we only describe our ex-
periences that were specific to building within TelegraphCQ
(and PostgreSQL). In the rest of this section, we discuss the
implementation of hybrid queries in TelegraphCQ, the cus-
tom vacuumer and free space map we built for OnRead-
Modify, the implementation of stream copies and the special
tuple format used for OnReadM odify.

5.1 Running hybrid queriesin TelegraphCQ

We first describe the changes we make to TelegraphCQ to
run hybrid queries. These include the addition of an access
method that retrieves archived streams, and modifications to
the symmetric join operator to allow the executor to com-
bine network and disk data properly.

The access method underlying OSCAR consists of an
append-only heap file clustered by timestamp, and a sparse
BTree on the timestamp attribute. This design allows both
efficient archiving and scans by hybrid queries. Most
streaming systems assume that incoming streams are in time-
stamp-order (modulo a maximum finite skew that can be
handled through a reorder buffer). The append-only time-
stamp-clustered heap file therefore allows for very efficient
inserts. Further, hybrid queries such as those shown in Sec-
tion 1 require access, in increasing timestamp order, to all
tuples with timestamp greater than a certain historical value.
The Btree can be used to efficiently locate the starting point,
after which a sequential scan on the heap file can be used to
retrieve further tuples.

The second change we made to TelegraphCQ to support
hybrid queries was to its executor, which uses an eddy and
SteMg[19] to implement main-memory Ssymmetric joins.
Since TelegraphCQ only supports dliding window band
joins, the SteMs only maintain a limited main memory win-
dow on the each input stream. In order to extend this
mechanism to disk data, we force the eddy to coordinate the
rate of data access from the network and the disk for queries
that access both the network and disk. This prevents the disk
scan from outstripping the rate of arrival of live data during
periods of low data arrival rate.

5.2 Changesto PostgreSQL

We now discuss implementation details relating to Post-
greSQL components and data structures.

The vacuumer: While PostgreSQL v7.3 has two vacuum
modes, both are inapplicable in the streaming scenario, and
we had to implement the vacuumer for OnReadyModify
from scratch.

The full vacuuming mode requires a lock on the entire
relation. This is clearly unsuitable for unbounded streams,
since it blocks read and write accesses to the stream for a
potentially unbounded time. Further, the full vacuumer de-
stroys the original ordering of the tuples during compaction
of the relation heap files. While this does not matter for rela-
tions, we care about preserving the ordering of tuples in a
stream according to timestamp, as described in Section 5.1.

The other vacuum mode, called lazy, does not compact

the relation: it only removes the dead tuples in-place. The
uncompacted heap file is of no use to us asit cannot be used
to save any 1/Os upon future scans. Also, this vacuum mode
performs no index maintenance (PostgreSQL removes index
entries for tuples as soon as they are marked dead in the
executor). We found that index deletion operation as per-
formed in PostgreSQL is very expensive; invoking it in the
fast path during query time in the executor therefore se-
verely impacts the performance of the system. Hence, we
move all index maintenance to the vacuumer.
The Free Space M ap: A key data-structure in implementing
vacuuming is the free space map (FSM) which records the
available space on each page. PostgreSQL has a free space
map, which however, is soft-state, and even worse, possibly
stale. We therefore implement our own free space map that
uses fast Judy arrays [7] to record for each stream which
pages have atleast one dead tuple (these need to be proc-
essed by the vacuumer), and how much free space is avail-
able on each page (to determine which pages to compact).

5.3 Miscellaneousimplementation details

Stream copies: The multi-copy streams in the lazy and ea-
ger solutions are implemented in a straightforward manner.
Each copy is stored in an append-only heap file, and has an
index on the timestamp attribute as described in Section 5.1.
Creation, destruction, write and read calls to the stream are
conducted through wrapper functions that are responsible
for managing the copies.

Tuple format for OnReadM odify: Finally, we discuss the
unique tuple attribute requirements of OnReadModify. Re-
call from Section 4.1.2, that the copy stream might not exist
at a uniform level of reduction. Rather, different portions of
the stream might be reduced to different levels, according to
the run-time reduction levels demanded by the r-UDF. To
allow OSCAR to decide if the copy can be used or not to
satisfy a certain query, we add an implicit attribute to each
tuple in the stream, called samplerate that indicates the level
of reduction for each tuple. This overhead of 25% to the 32
byte header of a TelegraphCQ tuple can be reduced even
further if we sample all the tuplesin a block at the same rate
and store that granularity in the disk block header.

6. Performance

In this section, we test our central thesis that reducing 1/0s
at the disk scans is an essentia tool for hybrid engines if
they wish to support high insert rates in the presence of nu-
merous hybrid queries. We describe the setup for the ex-
periments in Section 6.1. In Section 6.2, we examine the
insertion times for the different OSCAR designs for sam-
pling-based r-UDFs in the absence of any queries. In Section
6.3, we look at the query-times for these schemes in the ab-
sence of concurrent insertions. In Section 6.4, we study the
performance of simultaneous queries and data archiving. We
summarize our resultsin Section 6.5.

6.1 Experimental Setup

In this section, we first explain our data and query workload
and then describe the hardware and software environment
for our experiments.

6.1.1 Data and Query Workloads

In addition to the three OSCAR designs described in this
paper for sampling-based r-UDFs, we also measure the per-
formance of a strawman in which al the sampling takes
place in the executor. We tried three variants of our hybrid
RandomizeThenSort solution with run-lengths of 10, 100
and 500 blocks respectively. For the OnWriteReplicate solu-
tion, we replicated the original stream into four additional
copies at reduction levels of 20%, 40%, 60% and 80%.
OnWriteReplicate, OnReadModify and Random-
izeThenSort are referred to as Eager, Lazy and Hybrid in the
plot legends. Suffixes are used to indicate different states or
parametrizations for the eager and hybrid solutions. We now
describe the tuples that populate the streams and the queries
over them.
Input Data: For the strawman and for the eager and hybrid
OSCAR designs the input tuples have the schema “(float8
timestamp, int4 userattr)”, where userattr is a dummy at-
tribute. As explained in Section 5.3, the input tuples to On-
ReadModify have an additional samplerate attribute of type
float8. The value of this attribute is set to 1 on entry (indi-
cating pristine data). The timestamp attribute for tuples of all
streams is set by the network interface to the time of entry.
Queries: Since our experiments focus on OSCAR, and not
the executor, we use very simple count(*) landmark queries
(e.g. Query 1 in Section 1) rather than hybrid join queries
(e.g. Query 2 of Section 1). As we shall see in Section 6.4,
however, the behavior of the OS affects the processing of
live datain away that is also applicable to join queries.

6.1.2 Execution Environment

Machine and OS: All the experiments were run on a Linux
box (kernel 2.4.18) with a 1390 MHz Pentium I11 processor
with 512 KB cache size. The machine had 512 MB RAM
and 2 GB swap space. The underlying file system was ext3.
One Seagate Cheetah 36ES disk using the SCSI Ultra 160
interface was dedicated to our experiments. The response
time of the disk is 5.2 ms, its peak data transfer rate is
320MBps, and it has an internal buffer of 4MB. The ob-
served raw throughput through the file system is much lower
at about 60MBps.

PostgreSQL Settings: We initialized PostgreSQL to have a
buffer pool with 4096 frames. The size of each frame (and
also disk pages) is 8K bytes. The buffer replacement policy
is LRU. We modified our vacuumer to be invoked on de-
mand, rather than execute periodically. This alows us to
generate repeatable observations. We also disabled logging
because we only had access to one disk to store our data-
base. This is acceptable because most real systems write log
records to a separate disk.

6.2 Insertingintothe Archive

In this section, we present an experiment that measures the
insertion-performance into streams for the three OSCAR
designs and the strawman.

To perform this test, we measured the time it took to in-
sert 20 million tuples into a stream for each OSCAR design.
Data was generated online by a C program and piped to the
data archiver. The total overhead generated by this data gen-
erator was less than a half second, and is negligible. At the
end of the insertion of the 20 million tuples, we flush the

buffer pool and sync the filesystem buffers to ensure that we
measure the complete cost to write and disk the relation.

600 568

520
i 453 W Eager

435 44499435

@ Lazy (pre-vac)
O Lazy (post-vac)
& Hybrid-10
W Hybrid-100
Hybrid-500
O Strawman

500

400 +

300 +

200 +

Time (in seconds

100 -

[

Storage Design

Figure 11: Insertion Timesfor 20M tuples

Figure 11 shows the time taken to insert the data into the
various schemes. The three RandomizeThenRead solutions
(marked as Hybrid in the legend) write the stream at about
the same rate as the strawman. The dight differences be-
tween the three can be attributed to the different amounts of
wasted space in the different runs of the streams. As the run
size increases, so does the wasted space, increasing the size
of the stream that must be written to disk. OnReadM odify
(‘Lazy’ in the plot) is a little sSlower than the strawman and
hybrid solutions since the extra samplerate attribute results
in increased total #1/0s. As the tuple payload increases, this
overhead will disappear, and OnReadModify will approach
the performance of the strawman. The cost of replication in
OnWriteReplicate (‘Eager’) is sub-linear in the total size of
the original stream and its copies. This is due to the amorti-
zation of the overhead of the processing in the wrapper
clearing house. From these results, it might seem that the
strawman is better than the eager and lazy OSCAR designs.
As we shall see in the next section, however, the strawman
performs poorly at query time under overload overload that
OSCAR isintended to solve.

In terms of absolute bandwidth, the insertion rates are
much lower than can be supported by the disk. It might thus
seem that the network interface is the bottleneck, not the
disk. As we shall see shortly, however, with multiple que-
ries, disk accesses rapidly becomes a problem.

6.3 Queryingthe Archive

In this section, we present an experiment that measures the
time taken for a count(*) query over the entire archive for
the three OSCAR designs, and also the strawman. We repeat
this test for different reduction levels to study the response
of the different designs to overload. Figure 12 shows the
results of the experiment.

The strawman uniformly takes around 20 seconds be-
cause it scans the same number of blocks irrespective of the
reduction level. The size of each tuple is around 50 bytes;
the strawman therefore runs near the peak 60MBps disk
bandwidth available at the application level.

For each of the reduction levels, the first query on the
OnReadModify stream (Lazy-1% read in plot) has the great-
est cost of all the schemes. This is because it pays a write
cost in addition to the read cost for all buffers it dirties.
Thus, even at 99% reduction, the method continues to pay
almost twice the cost of the strawman, since it dirties at least

one tuple in each page. On the second pass through the On-
ReadModify stream, the write cost does not have to be paid
again, and the cost of this solution drops almost to that of
the strawman. After the vacuuming has been performed, the
copy is smaller than the origina by a fraction egual to the
reduction level. The cost of subsequent scans drop dramati-
cally, by the same fraction.

m Eager m Lazy (1st read) @ Lazy (2nd read) O Lazy (post-vac)

Hybrid-10 @ Hybrid-100 Hybrid-500 O Strawman

45
40
35 +

Time (in seconds)

Reduction Level

Figure 12: Query timefor different reduction levels

The cost of the query for the OnWriteReplicate design
drops with the reduction level. It is slightly more expensive
than the post-vacuuming version of OnReadModify, since
the method can only reduce 1/Os according to the
granularities of the pre-stored copies.

The different hybrid alternatives offer the most interest-
ing results. Based on the earlier theoretical analysis, we
would expect al the hybrid solutions to have improving
query times as the reduction level increases. This improve-
ment is, however, always realized only for the hybrid design
with run-length of 500. For some of the reduction levels,
Hybrid-100 also shows improvement in performance. Hy-
brid-10, however, is never better than the strawman. The
reason for this has to do with the pre-fetching and buffering
in the file system. For the hybrid design with run-length 10,
and for low reduction levels for Hybrid-100, the blocks that
are read are so close on disk that the file-system ends up
performing a sequential read, instead of only picking exactly
the required blocks. As a result, in these cases, the hybrid
solution performs no better than the strawman.

6.4 Putting Insertionsand Queriestogether

In this section, we test our central hypothesis that disk ac-
cesses have a significant impact on the insertion processin a
hybrid stream query processor.

To conduct this test, we measure the time taken to insert
20 million tuples into a stream in the presence of simultane-
ous count(*) queries over N other streams which each have
previously had 20 million tuplesinserted into them. We then
vary N to measure the effect of an increasing number of si-
multaneous queries. Since query rates are much higher than
insertion rates (see Sections 6.2 and 6.3), the queries com-
plete much before the insertions are completed. To maintain
a constant number of simultaneous queries we start a new
guery on a stream, once the previous one compl etes.

Measuring the insertion rate by itself, however, does not
tell us anything, since the insertion-performance can be arti-
ficialy inflated if the queries are not scheduled at all. There-
fore, for each of the above readings, we also measure the

corresponding number of queries that are completed in the
time it took to insert the 20 M tuples.

Figures 13 through 16 show these measurements for 25%
and 75% reduction (we also measured these values for re-
duction levels of 0%, 50% and 99%; the trends are similar).
Figures 13 and 15 show the insertion time and the total que-
ries completed in that time for varying number of simultane-
ous queries, for 25% reduction. Figure 14 and 16 show the
corresponding figures for 75% reduction.

Let us first analyze Figures 13 and 15. In the absence of
any archived queries, the strawman can populate the stream
in about 430 seconds. As we increase the number of queries,
the insertion-time increases, but once we reach 3 archived
queries, it stabilizes at around 1500 seconds. Looking at the
corresponding numbers in Figure 15, we see that the total
number of completed queries increases from 13 for a single
query to about 25 for two queries, and then stabilizes at
around 30. This number does not increase, or decrease sig-
nificantly with increasing number of simultaneous queries.

This pattern is also observed for all the OSCAR designs.
This curious phenomenon is explained by looking at the
disk-elevator algorithm used by the system. The algorithm
sets separate latency limits for reads and writes. This means
that hybrid queries cannot affect the write process beyond a
certain limit. Initially, the insertion process is not disk-
bound (see Section 6.2). With increasing number of queries,
however, the disk bandwidth available to the insertion proc-
ess reduces, reducing its performance. However, once the
disk subsystem is saturated for reads, the write process can-
not be affected further. Therefore, the write throughput stays
constant after a certain number of simultaneous queries.
Further, since the same read bandwidth has to be shared
amongst the concurrent queries, no matter how many of
them there are, the total number of completed queries also
stays fixed.

Figures 13 and 15, however, also suggest that for the
strawman, if the total number of simultaneous queries is
increased past the early-thirties, the system cannot run them
at the rate of data arrival. This is because with all queries
running at the same rate, no single query will actually be
able to reach completion in the time it takes to insert the 20
M tuples. This therefore represents a bound on the number
of simultaneous hybrid queries in system before it starts to
fall behind.

The OnReadModify stream (‘Lazy’ in the figures) per-
forms marginally poorer than the strawman solution prior to
vacuuming, both with respect to the insertion times and the
number of completed scans. This is because the sizes of the
tuples are larger than in the other solutions, as explained in
Section 6.1.1. The real savings with this mechanism kicksin
after the stream has been vacuumed. The size of the archive
is reduced by a quarter and the total number of completed
scans increases correspondingly. Since the overhead of the
network interface is amortized between the original and the
new copy, the write performance for the lazy solution is
largely unaffected from the pre-vacuum version.

The OnWriteReplicate method (‘Eager’) has higher in-
sertion times than the others, as expected. But again, the cost
of the extrawritesis sub-linear in the size of the stream, and
the increase in insertion time is not significant. The number
of completed queriesis amost as good as the post-

W Eager mLazy (pre-vac) 0O Lazy (post-vac) N Hybrid-10
| Hybrid-100 El Hybrid-500 0O Straw man
2000
w q
S 1500 N
: \
3 \
» 1000 4 N
c \
° N
e 500 - §
iz N
= N
0 4 &

o F
=

2 3

N

Number of Simultaneous Queries

Figure 13: Insertion timefor 20M tuples, 25% reduction

W Eager mLazy (pre-vac) [O0Lazy (post-vac) S Hybrid-10
| Hybrid-100 El Hybrid-500 0 Straw man
2000

1500

1000 -

500 -

Time (in seconds)

0+

o
-
o b
w
~

Number of Simultaneous Queries

Figure 14:Insertion time for 20M tuples, 75% reduction

queries completed

60
50
40
30
20
10 +

04

Number of Simultaneous Queries

Figure 15: #queries completed within 20M tuplesinsertion,

25% reduction

200

150

100

50

queries completed

0+

Number of Simultaneous Queries

75% reduction

Figure 16: #queries completed within 20M tuplesinsertion

queries / 1000 seconds

10000

1000

100 +

10 +

0%

25% 50% 75%

Reduction Level

Figure 17: Queries completed/1000 sec, 2 ssimultaneous que-

ries

10000

1000

100

10 +

queries / 1000 seconds

25% 75% 99%

50%

Reduction Level

ries

Figure 18: Queries completed/1000 sec, 4 smultaneous que-

vacuumed lazy solution. It is dlightly lower, since this so-

Iution can only offer performance improvement in steps ac-
cording to the reduction levels of its pre-stored copies.

All the hybrid solutions have insert performance ap-

proximately as good as the strawman. At query time, how-
ever, the hybrid solutions display interesting behavior. As
explained in Section 6.3, at 25% reduction, Hybrid-10 and
Hybrid-100 are essentially performing sequential scans be-
cause of pre-fetching and buffering by the file system. Their
performance numbers are therefore similar to the strawman.
Hybrid-500 on the other hand, does save some physica
1/Os, leading to higher queries completed.

Now, let us look at Figures 14 and 16. These show the

insertion-time and number of queries completed in the
meanwhile, for 75% reduction. The insertion rates in Figure

14

are largely the same as in Figure 13 because of the

above-mentioned effect of the disk scheduler. In Figure 16
(note that the scale is different from Figure 14), the number
of completed queries increases only dightly for the straw-

man, since its actions are independent of the reduction level.
The dlight increase corresponds to the available bandwidth
till the disk saturates. The same is true for the OnRead-
Modify solution.

The post-vacuum version of OnReadModify, and On-
WriteReplicate have significantly higher completed queries
than in Figure 14 because of the greater reduction level. Of
the two, the eager version is dightly better since it tracks the
reduction level exactly, while the eager solution only offers
reduction at preset rates.

As before, the hybrid design offers the most interesting
results. At 75% reduction, the hybrid-10 continues to per-
form sequential scan (since it till reads 3 out of every 10
contiguous blocks). Hybrid-100 is, however, reading fewer
blocks now. Instead of showing improved performance, the
number of completed queries actually decreases. The reason
for this lies with the OS process scheduler. When the OS
guesses that a query is not performing sequential 1/O (in our
system this happens if two blocks that are accessed consecu-

tively are more than 8 blocks apart), it gets scheduled less
often. The number of physical 1/0Os saved by Hybrid-100 is
not sufficient to overcome this scheduling bias. Hybrid-500,
however, does save enough physical 1/0s (since it skips 375
blocks at a time) and has more completed queries as com-
pared to the 25% reduction.

We aso ran the above tests for reduction levels of 0%,
50%, and 99%. Figures 17 and 18 (note the log-scale on the
y-axis) give a flavor of the results, showing the number of
gueries completed per 1000 seconds for the different reduc-
tion levels. The eager solution stops providing improved
performance once the reduction level is less than its smallest
copy. The lazy solution and Hybrid-500 continue to support
more queries with greater reduction levels.

6.5 Summary of Results

In this section, we summarize the results of our performance
study. The behavior of the file-system prevents us from di-
rectly proving our central hypothesis that the processing of
live data suffers with increasing number of hybrid
live/historical queries. On the other hand, the results shown
in Figures 15 through 18 demonstrate the performance bene-
fits of the different OSCAR designs for hybrid queriesin the
presence of overload.

The strawman, which samples only in the executor, has
excellent write performance, but does poorly when over-
loaded. Among the OSCAR designs, the hybrid solution
offers the most benefit. It has low write costs and offers ex-
cellent 1/0 savings with different reduction levels provided
the run-length is suitably large to prevent interference from
the file-system and OS process scheduler. The lazy approach
has even better response to overload than the hybrid solu-
tion, but only after it is vacuumed. The eager solution per-
forms well as long as the desired reduction levels are close
to those of the pre-stored copies.

These performance results underscore an additional im-
portant point: the OS kernel and its various policies have a
tremendous effect on the benefits, or lack thereof, of storage
level solutions. For example, pre-fetching and buffering in
the file system and the OS process scheduler cause our hy-
brid OSCAR design to show widely different behavior de-
pending on the size of the runs. On a more global level, the
disk scheduling algorithm on the platform we used for our
experiments limited the interference between read and write
accesses to disk.

7. FutureWork

There is much interesting work to be done in the area of
supporting hybrid stream queries. One avenue for further
work in the area of overload handling is the extension of the
framework presented in this paper to include more classes of
data reduction. Ancther is to provide overload handling for
index access methods just as OSCAR does for scan-based
disk access. We are currently engaged in studying a frame-
work for making run-time decisions as to which indexes are
updated on data-arrival, and handling the resulting “holes’
in other indexes that do not get built. Other challenges in-

volving hybrid query include intelligent buffer management
that can exploit the predictable access patterns of long-
running windowed queries. Finally, current techniques
[20,21,5] for shared computation of stream queries rely on
all queries processing the same tuple at the same time. This
is not possible for hybrid queries that access different por-
tions of the archive; anew soluton is therefore needed.

8. Conclusion

Random disk accessesin a DSMS that processes hybrid que-
ries can have a detrimental effect on the performance of a
system. Under sufficiently high load, the system might fall
further and further behind in its processing of the stream.
We therefore propose that such systems should support
means to deliver reduced versions of historical data to these
gueries to ease the disk load on the system. In this paper we
propose the Overload-sensitive Stream Capture and Data
Reduction (OSCAR) access method to achieve this. We dis-
cuss different designs of OSCAR to handle data reduction
based on random sampling and windowed aggregation. We
describe its implementation in TelegraphCQ for doing this,
and present experimental results validating our thesis.

9. References

[1] Carney et al., “Monitoring Streams - A New Class of Data M anage-
ment Applications’, In VLDB 2002

[2] Madden et al. “Continuously Adaptive Continuous Queries’, In SIG-
MQOD 2002

[3] Motwani et al. “Query Processing, Approximation, and Resource
Management in a Data Stream Management System”. In CIDR 2003.

[4] Tatbul et al., “Load Shedding in a Data Stream Manager”, In VLDB
2003.

[5] Chandrasekaran et a. “TelegraphCQ: Continuous Dataflow Process-
ing for an Uncertain World”. In CIDR 2003.

[6] TelegraphCQ source code: http:/telegraph.cs.berkeley.edu/

[7] Judy Arrays sourceforge project: http:/judy.sourceforge.net/

[8] Lazaridisl. and Mehrotra, S.. “Progressive Approximate Aggregate
Queries with a multi-resoltion tree structure’. In SIGMOD 2001.

[9] Roesenblum et a, “The Design and Implementation of a LogStruc-
tured File System”, ACM TOCS 1991

[10] Manku and Motwani, “ Approximate Frequency Counts over Data
Streams’, In VLDB 2002.

[11] Bronimann et al, “Efficient DR Methods for On-Line Association
Rule Discovery”.

[12] R. Read et al. A multi-resolution relational data model. VLDB 1992

[13] S. Chaudhuri and U. Dayal: An Overview of Data Warehousing and
OLAP Technology. In SIGMOD Record (1): 65-74 (1997)

[14] L. Golab and M. T. Ozsu: “Issues in data stream management”. SIG-
MOD Record(2): 5-14 (2003)

[15] P.Muth et a.. “The LHAM Log-Structured History Data Access
Method”. VLDB J. 8(3-4): 199-221 (2000)

[16] M. Overmars: “The design of dynamic data structures’. LNCS 1983

[17] Barbaraet al. “The new jersey data reduction report”. Data Engineer-
ing Bulletin, September 1996

[18] IM. Hellerstein, et al. Informix under CONTROL: Online Query
Processing. Data Min. Knowl. Discov. 4(4): 281-314 (2000)

[19] V. Raman et a. Using State Modules for Adaptive Query Processing.
In ICDE 2003.

[20] Chen et al. NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In SIGMOD 2000.

[21] S. Chandrasekaran and M. Franklin. Streaming Queries over Stream-
ing data. In VLDB 2002

