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ABSTRACT 
A windowed query operator breaks a data stream into possibly 
overlapping subsets of data and computes a result over each. 
Many stream systems can evaluate window aggregate queries. 
However, current stream systems suffer from a lack of an explicit 
definition of window semantics. As a result, their 
implementations unnecessarily confuse window definition with 
physical stream properties. This confusion complicates the stream 
system, and even worse, can hurt performance both in terms of 
memory usage and execution time. To address this problem, we 
propose a framework for defining window semantics, which can 
be used to express almost all types of windows of which we are 
aware, and which is easily extensible to other types of windows 
that may occur in the future. Based on this definition, we explore 
a one-pass query evaluation strategy, the Window-ID (WID) 
approach, for various types of window aggregate queries. WID 
significantly reduces both required memory space and execution 
time for a large class of window definitions. In addition, WID can 
leverage punctuations to gracefully handle disorder. Our 
experimental study shows that WID has better execution-time 
performance than existing window aggregate query evaluation 
options that retain and reprocess tuples, and has better latency-
accuracy tradeoffs for disordered input streams compared to using 
a fixed delay for handling disorder. 

1. INTRODUCTION 
Many types of data present themselves in stream format: 
environmental sensor readings, network monitoring data, 
telephone call records, traffic sensor data and auction bids, to 
name a few. For applications monitoring and processing streams, 
window aggregates are an important query feature. A window 
specifies a moving view that decomposes the stream into 
(possibly overlapping) subsets that we call window extents, and 
computes a result over each. (Think of a window specification as 
a “cookie cutter” and window extents as cookies cut with it.) For 
example, “compute the number of vehicles on I-95 between 
milepost 205 and milepost 245 over the past 10 minutes; update 
the count every 1 minute” is a window aggregate query where 
successive window extents overlap by 9 minutes. 

Evaluating window aggregate queries over streams is non-trivial. 
The potential for high data-arrival rates, and huge data volumes, 
along with near real-time requirements in many stream 
applications, make memory and execution-time performance of 
stream query evaluation critical. Bursty and out-of-order data 
arrival raises problems with detecting the boundaries of window 
extents. Out-of-order arrival also complicates the process of 
determining the content of window extents and can lead to 
inaccurate aggregate results or high latency in the output of the 
results. We have observed that accommodating out-of-order 
arrival can introduce significant complexity into window query 
evaluation.  
We see two major issues with current stream systems that process 
window queries. One is the lack of explicit window semantics. As 
a result, the exact content of each window extent tends to be 
confused with window operator implementation and physical 
stream properties. The other issue is implementation efficiency, in 
particular, memory usage and execution time. To evaluate sliding-
window aggregate queries where consecutive window extents 
overlap (i.e., each tuple belongs to multiple window extents), 
most current proposals keep all active input tuples in an in-
memory buffer. In addition, each tuple is reprocessed multiple 
times—once for each window extent to which it belongs. We will 
propose an approach that avoids intra-operator buffering and tuple 
reprocessing.  

In this paper, we present a framework for defining window 
semantics and a window query evaluation technique based on it. 
In the framework, we define window semantics explicitly—
independent of any algorithm for evaluating window queries. 
From our definitions, it is clear that many commonly used types 
of windows do not depend on physical stream order. However, 
most existing window-query evaluation techniques assume that 
stream data are ordered or are ordered within some bound. Our 
window query evaluation technique, called the Window-ID (WID) 
approach, is suggested by the semantic framework. Our technique 
processes each input tuple on the fly as it arrives, without keeping 
tuples in buffers and without reprocessing tuples. Our 
experimental study shows significantly improved execution-time 
performance over existing evaluation techniques that buffer and 
reprocess tuples. 
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not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

In contrast to other techniques, WID can process out-of-order 
tuples as they arrive without sorting them into the “correct” order. 
It does not require a specific type of assumption about the 
physical order of data in the stream. Instead, it uses punctuation 
[16] to encode whatever kind of ordering information is available. 
In the later part of the paper, we examine real-life examples of 
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stream disorder and discuss disorder-handling methods. Slack [2] 
and heartbeats [14] are mechanisms proposed for handling 
disorder in input streams. Different means for handling disorder 
can affect the flexibility, scalability and performance of window-
query evaluation approaches. We experimentally evaluated 
latency-accuracy tradeoffs in handling disorder using WID and 
sort-based slack.  

SUSPECT 

PRESUMPTIVE 

CONFIRMED 

INTERCEPTED

Figure 1: Four detection stations in a detection task 
(from Yonnel Gardes, The Transpo Group, Kirkland, WA, with permission) 

This paper is organized as follows: Section 2 provides a running 
example that illustrates the basic concepts of WID; Section 3 
introduces our framework for defining window semantics; Section 
4 discusses implications of window semantics for query 
evaluation; Sections 5 and 6 present the implementation of WID; 
Section 7 analyzes disorder using network flow data and discusses 
mechanisms for handling it; Section 8 presents performance 
results; and Section 9 concludes. 

2. RUNNING EXAMPLE 
We introduce a running example that illustrates the operations 
used in WID. Via this example, we show that with WID 1) there 
is no need to retain input tuples in buffers, although there may be 
queues to pass tuples between steps; 2) each tuple is processed 
only once at a given step; and 3) no assumptions about the 
physical order of the input are required.  
Consider a radiation-detection system that can be installed along 
freeways, such as the one under study in the New Jersey Turnpike 
Radiation Detection project at Lawrence Livermore National Lab 
[12]. A radiation-detection system identifies potentially dangerous 
vehicles, tracks them as they progress along the freeway, and 
targets a vehicle confirmed to have radioactive material for 
interception. Figure 1 shows four detection stations involved in a 
detection task on I-95 northbound from I-195 to the Holland 
Tunnel. While tracking vehicles, it is critical to accurately 
forecast travel time between detection stations, so that the system 
does not lose track of suspicious vehicles. One way to address this 
problem is to estimate the max and min travel time between 
stations.  
A freeway is separated into non-overlapping segments by 
adjacent ramps. Suppose that there exists a speed sensor (such as 
a pair of inductive loop detectors commonly found near freeway 
on-ramps) per segment along the freeway, and that speed readings 
are streamed to a central system, where the min and max speed 
for each segment of the freeway over the past five minutes are 

computed, and updated periodically. Then, min and max travel 
time between stations can be calculated easily and continuously 
updated based on the current speed bound for each segment and 
the length of the segment. 
Assume the schema of speed sensor readings is <seg-id, speed, 
ts>, where seg-id is the segment id and ts is the timestamp for a 
sensor reading. We might choose to continuously compute the 
min and max speed of each segment by computing the min and 
max over the past 5 minutes, and updating the results every 
minute. We call this query Q1, shown below in a CQL-like 
language [3]. Note that the time notion (e.g., over the past 5 
minutes) in Q1 is defined on the ts attribute of the sensor 
readings.  
Q1: SELECT seg-id, max(speed), min(speed) 
   FROM  Traffic [RANGE 300 seconds  

                     SLIDE 60 seconds 
                     WATTR ts] 
GROUP BY seg-id  

   
Figure 2 shows the steps that WID uses to process Q1. The details 
of the operators are given in later sections. The traffic-speed 
stream, with punctuations, arrives at the query system. Briefly, a 
punctuation is information embedded in a data stream indicating 
that no more tuples having certain attribute values will be seen in 
the stream. For example, punctuation p1 indicates that no more 
tuples will arrive from segment s6 that have a timestamp attribute 
value less than 12:11:00PM. In our example, we assume that each 

          (seg-id,    speed,   ts,       wid) 
          t1′  (s5,   47,   12:10:05, 10-14) 
        t2′  (s6,   48,   12:10:02, 10-14)        
        t3′  (s6,   50,  12:10:30, 10-14) 
       p1′ (s6,     *,        *,           10  ) 
      t4′  (s5,   47,  12:10:30, 10-14) 
     p2′ (s5,     *,        *,          10  ) 
                     … …     

tags with 
window-ids 

group on 
seg-id 
and  wid

wid seg-id max min 

10 s5 47 47 
10 s6 50 48 
… … … … 
14 s5 51 50 
14 s6 52 50 

    (wid, seg-id, max, min) 
 m1 (10,   s6,    47,    47  )  
 m2 (10,   s5,    50,    48  ) 

       (seg-id,   speed,    ts) 
     t1  (s5,    47,   12:10:05) 
    t2  (s6,    48,   12:10:02)           
   t3  (s6,    50,   12:10:30) 
  p1 (s6,      *,   12:11:00) 
 t4  (s5,    47,   12:10:30) 
p2 (s5,      *,   12:11:00) 
           … …     

Figure 2: Operations on input tuples, using the WID approach to evaluate Q1 
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individual sensor provides such a punctuation every minute.  
As Figure 2 shows, in the first step, each input tuple is tagged 
with a range of window-ids. In WID, each window extent is 
identified by a unique window-id. In this example, we use non-
negative integers for window-ids. Suppose Q1 starts at 
12:00:00PM. Each window extent is a 5-minute sub-stream, 
which overlaps with adjacent window extents. In our case, for 
example, window extent 10 is the 12:06:00PM – 12:11:00PM 
sub-stream; and window extent 11 is the 12:07:00PM – 
12:12:00PM sub-stream. For each input tuple, we can calculate 
the window-ids for the window extents to which it belongs. For 
example, t1 belongs to window extents 10 through 14. A similar 
calculation is applied to punctuations. Input punctuations, which 
punctuate on the seg-id and ts attributes, are transformed into 
punctuations on the seg-id and wid attributes. For example, p1 is 
transformed into p1′, which indicates that no more tuples from the 
sensor at segment s6 for window extent 10 will arrive. Note that 
we extend the input scheme of the speed tuple by adding the wid 
as an explicit attribute. Also note that in the first step, each tuple 
or punctuation is processed immediately as it arrives, and is 
streamed out immediately after processing.  
The second step is an aggregation where tuples tagged with 
window-ids are grouped by the seg-id attribute, as well as the wid 
attribute. Note that a tuple tagged with a range of window-ids 
represents a set of tuples, each tagged with a single window-id. 
An internal hash table is used to maintain the partial max and min 
value for each group. Upon the arrival of a punctuation, the hash 
entry that matches the punctuation is output and purged from the 
hash table. For example, when punctuation p1′ arrives, m1 is 
output and its corresponding hash entry is cleared.  
Overall, introducing window-ids into query execution brings 
benefits to both performance and system implementation. It 
reduces operator buffer space and execution time; and it 
transforms window aggregate queries into group-by aggregate 
queries and thus reduces the implementation complexity of the 
system. Also observe that WID does not need to reorder tuples on 
ts, as long as punctuations are placed correctly. WID does require 
calculations for multiple window extents to be underway 
concurrently, but the storage overhead is trivial unless there are 
many more window extents than tuples. 

3. WINDOW SEMANTICS 
As can be seen from our example, the key to WID is the 
association of tuples with window-ids. In this section we present a 
semantic framework that makes this association explicit, 
independent of any particular operator implementation. In Section 
4 we return to window-aggregate evaluation based on this 
semantics. 

3.1 Motivation 
In previous work, window semantics has often been described 
operationally. However, operational window definitions tend to 
lead to confusion of the window extent definition with physical 
data properties and implementation details. For example, some 
current window query operators process window extents 
sequentially— that is, they close the active window when a tuple 
past it arrives, which translates into a requirement that their input 
arrive in order of the windowing attribute. If the data is not in 
order, some sort mechanism such as Aurora’s BSort [2] must be 

used to reorder the data. Without a mechanism to explicitly 
identify what extents tuples belong to, tuples cannot be processed 
in their arrival order (unless it corresponds to window order), 
which leads to retaining tuples in the implementation, latency, 
and inflexibility in query evaluation.  
We propose a semantic framework, and define the semantics of 
some existing types of windows under this framework. While our 
window semantics definition is independent of any 
implementation algorithm, having explicit window semantics 
leads directly to a flexible implementation that can handle a wide 
variety of windows and that can handle disordered data in several 
ways. In addition, an explicit definition makes it easier to verify 
the correctness of a window operator implementation. 
Note that defining window semantics and implementing the 
defined semantics are two separate issues. A window semantics 
definition specifies the content of window extents, while 
implementation issues, such as determining when to process an 
extent (and whether to approximate its actual value), are handled 
by separate mechanisms or directives. 

3.2 Window Specification 
A window specification consists of a window type and a set of 
parameters that define a window to be used by a query. For 
example, the specification of the sliding window in Q1 has 
parameters RANGE, SLIDE and WATTR. In our window 
semantics, the content of a window extent is determined by 
applying a window specification to a set of input tuples. Our goal 
in discussing window specifications is to introduce the parameters 
used to express different windows whose semantics will be 
defined later, but not to provide a universal specification for all 
possible windows. However, our window specification parameters 
are general enough to express almost all stream window aggregate 
queries we have seen [5, 15].  
Our window specification for sliding window aggregate queries 
consists of three parameters, RANGE, SLIDE and WATTR, 
which specify the length of the window, the step by which the 
window moves, and the windowing attribute—the attribute over 
which RANGE and SLIDE are specified. For ease of presentation, 
we assume the arrival time and the arrival position of tuples in a 
stream are explicit attributes arrival-ts and row-num in the input 
tuples. In the remainder of this section, we introduce different 
types of windows and their corresponding specifications. 
A time-based sliding window query, such as Q1 in Section 2, is 
expressed with RANGE = 300 seconds, SLIDE = 60 seconds and 
WATTR = ts. (Note that in this example, ts is the timestamp 
attribute provided by the sensors and not the arrival timestamp.) 
Tuple-based sliding window queries are also common. A tuple-
based query uses the row-num attribute of tuples as the WATTR. 
For example, consider Q2, which requests “Count the number of 
vehicles for each segment over the past 1000 rows, update that 
result every 10 rows” and is expressed as: 
Q2: SELECT seg-id, count(*) 
  FROM  Traffic [RANGE 1000 rows  

                     SLIDE 10 rows 
                     WATTR row-num] 
GROUP BY seg-id 

 
Potentially, WATTR can be any tuple attribute with a totally 
ordered domain. Having this option allows us to define windows 
over timestamps assigned by external data sources or internally 
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by the system; to handle a stream with a schema containing 
multiple timestamp attributes; and to window over non-temporal 
attributes.  
Another kind of sliding window has RANGE and SLIDE 
specified on different attributes. In such a case, SATTR (slide 
attribute) and RATTR (range attribute) are used in place of 
WATTR. A common example of this type of window is a query 
with RANGE over a timestamp attribute (ts, in our example) and 
SLIDE 1 row over row-num. In such a case, each tuple arrival 
introduces a new window extent that has length RANGE and ends 
at the newly-arrived tuple, as shown in query Q3 below. We use 
the term slide-by-tuple for this type of windows. The window 
operator in CQL uses slide-by-tuple windows to transform the 
input stream into instantaneous relations. 
Q3: SELECT seg-id, count(*) 
   FROM  Traffic [RANGE 300 seconds  
                        RATTR ts 
                        SLIDE 1 row 
            SATTR row-num] 
 
A partitioned window-aggregate query uses an additional 
partitioning attribute, PATTR, to split the input stream into sub-
streams before applying the other parameters in the window 
specification to each. Q4, shown below, is identical to Q2 except 
that seg-id is now a partitioning attribute instead of a group-by 
attribute.  
Q4: SELECT seg-id, count(*) 
   FROM  Traffic [RANGE 1000 rows  

                     SLIDE 10 rows 
                     WATTR row-num 
                     PATTR seg-id] 

 
This change in the window specification leads to significant 
changes in the window semantics. Q2, a non-partitioned query, 
takes a sequence of 1000 tuples from input stream as a window 
extent, then divides those 1000 tuples into groups by segment id 
and counts the vehicles in each group. In short, Q2 first computes 
the window extent and then divides the extent into groups. In 
contrast, Q4 first divides a stream into “partitions” (sub-streams) 
by the partitioning attribute, and then divides each partition into 
window extents independently, based on the other three 
parameters. Note that for time-based window queries, the PATTR 
parameter does not bring more expressive power—the effect of a 
PATTR attribute is the same as using it as a group-by attribute 
[4]. 
Discussion: Our window specifications are similar to the window 
construct in CQL (Continuous Query Language) [3], a SQL-based 
language for expressing continuous queries over data streams. 
Our window specification differs from CQL in the use of explicit 
user-specified WATTR and SLIDE parameters, whereas the 
published version of CQL [3] assumes a “slide-by-tuple” window 
semantics and uses a pre-defined timestamp or tuple sequence 
number as the windowing attribute.  
SQL-99 defines a window clause for use on stored data. SQL-99 
limits windows to sliding by each tuple (i.e., each tuple defines a 
window extent), thus tying each output tuple to an input tuple. We 
call such windows data-driven. In comparison, stream queries 
often use domain-driven window semantics, where users specify 
how far the consecutive window extents are spaced from each 
other in terms of domain values [15]. We believe domain-driven 
windows are more suitable for applications with bursty or high-

volume data. Consider a network monitoring application—one 
might want network statistics updated at regular intervals, 
independent of surges or lulls in traffic.  
A variation of our window specifications is to use functions in 
parameters. For example, the following query Q5 is a variation of 
Q3.  
Q5: SELECT seg-id, count(*) 
   FROM  Traffic [RANGE 300 seconds  
                        RATTR ts 
                        SLIDE 5 rows 
            SATTR rank(ts)] 
 
The function rank (ts) maps each tuple t in the input stream to its 
rank in order of the ts attribute values. So instead of advancing a 
window based on tuple-arrival order, we advance it based on the 
logical order implied by ts. So, the window in Q5 is of the length 
300 seconds over the ts attribute, and slides by 5 rows over the 
logical order defined by ts. Conceptually, this window suggests 
sorting before windowing, similar to the window clause with the 
ORDER BY construct defined in SQL-99. In this paper, we only 
consider rank(RATTR) in SATTR—the attribute defining the slide 
order needs to agree with the range attribute. 

3.3 Window-Ids and Window Extents 
Our framework defines window semantics using mappings 
between window-ids and tuples in both directions. The framework 
consists of three functions: windows, extent, and wids.     
In this sub-section, we describe windows and extent over a set of 
tuples, T, for each type of window we just discussed. For a given 
window type, windows defines the window-ids to use for that type 
of window—values from different domains are used as window-
ids for different types of window. The extent function specifies 
which tuples belong to the window extent denoted by a given 
window-id—the mapping from window-ids to tuples. More 
precisely, given a window specification S and the set of tuples T 
that compose a stream, windows(T, S) is the set of window-ids 
that identify window extents to which tuples in T may belong. 
Given a window-id w ∈ windows(T, S), extent(w, T, S) is the set 
of tuples in T belonging to the window extent identified by w. We 
require that extent(w, T, S) be finite. Note that T is an unordered, 
possibly infinite, logical entity—we do not expect an 
implementation to actually materialize it.  
For ease of presentation, we assume that RANGE, SLIDE and 
WATTR (or, SATTR and RATTR) are all in the same units. For 
example in Q1, RANGE and SLIDE are both in seconds.  
For window queries in which RANGE and SLIDE are specified 
on the WATTR attribute, such as Q1 or Q2, the window and 
extent functions are as below. Here, we use the non-negative 
integers for window-ids, which depend on neither T nor S. 
  windows(T, S[RANGE, SLIDE, WATTR]) = {0, 1, 2, …}. 
  extent(w, T, S[RANGE, SLIDE, WATTR]) =  

     {t∈T | max  

                ≤ t.WATTR < min
min ( ) ( ) *
min ( )

WATTR

WATTR

T w
T

+ + −
⎛
⎝⎜

⎞
⎠⎟1 SLIDE RANGE

WATTR(T) + (w+1)*SLIDE}. 
The extent function is defined using only the WATTR values of 
tuples, independent of physical arrival order. In the extent 
function, the value minWATTR(T) represents the minimum value 
that WATTR takes over all tuples in T. This exact value may be 
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difficult to measure, but in practice any approximation that is less 
than minWATTR(T) is acceptable, and does not affect the window 
extent definition. Assuming WATTR values are non-negative 
numbers, one can always think of minWATTR(T) as 0. The ‘max’ in 
the extent function deals with the boundary cases where the 
window “straddles” minWATTR(T), by permitting “partial” window 
extents. For example, in Q1, window extents 0 through 3 are 
partial, and they are of length 1, 2, 3, 4 minutes respectively. 
The windows and extent functions above also apply to tumbling 
windows, and naturally extend to landmark windows. Tumbling 
windows are a special case of sliding windows, where RANGE 
equals SLIDE and thus window extents do not overlap. Landmark 
windows are similar to sliding windows except that each window 
extent starts at the “beginning” of the stream.  
For slide-by-tuple window queries, such as Q3, the number of 
window extents is data-dependent and we do not use a simple 
integer sequence for window-ids. Instead, we use values of 
T.RATTR—the projection of input tuples on RATTR—for 
window-ids. The windows and extent functions for slide-by-tuple 
windows are given below.  
windows(T, S[RANGE, RATTR, 1, row-num]) =  
                                         {w | t ∈ T, w = t.RATTR}. 
extent(w, T, S [RANGE,  RATTR, 1, row-num]) =  
                                         {u ∈ T | w – RANGE < u.RATTR ≤ w}. 
Assuming unique RATTR values, each RATTR attribute value 
identifies a window extent that ends at that tuple.  
A variation on slide-by-tuple windows is a window for which the 
SLIDE is n tuples. Here, every nth tuple defines a window extent. 
Thus, we use the RATTR-value of every nth tuple in T as window-
ids. The extent function is the same as that of slide-by-tuple 
windows. The windows function is given by: 
windows(T, S[RANGE, RATTR, SLIDE, row-num]) =  
          {w | t ∈ T, mod(t.row-num, SLIDE) = 0,  w = t.RATTR}. 
For windows in which the SLIDE is n tuples over the logical 
order of the stream given by rank(RATTR), as shown in Q5, the 
extent function is also the same as for slide-by-tuple windows. 
The windows definition uses a rank(t, attr, T) function, which, 
given a tuple t and attribute attr, returns t’s rank in T in the order 
of attr. 
windows(T, S[RANGE, RATTR, SLIDE, rank(RATTR)]) =  
               {w | t ∈ T, mod (rank(t, RATTR, T)), SLIDE) = 0,  
                        w = t.WATTR}. 
For partitioned tuple-based window queries, such as Q4, window-
ids are compound values consisting of a non-negative integer 
representing a window extent in a partition and a partitioning 
attribute value.  
windows(T, S[RANGE, SLIDE, WATTR, PATTR]) =  
               {(i, p) | i∈{0, 1, 2, …}, p∈T.PATTR}. 
The extent function in this case determines the content of the 
window extent based both on its integer index and partitioning 
attribute value. In the extent function definition, we use the 
function rank(t, attr, p, T), which given a tuple t, an attribute attr, 
a partitioning attribute p, and a set of tuples T,  returns t’s rank in 
the p partition of T, in the order of attr. For example, rank(t, row-
num, PATTR, T) in the following extent function returns tuple t’s 
arrival position in the partition to which it belongs, i.e., t.PATTR. 

extent ((i, p), T, S[RANGE, SLIDE, row-num, PATTR]) = 
 {t∈T | t.PATTR = p,  

        max ≤ 

        rank(t.row-num, PATTR, T) < min 
min ( ) ( ) *
min ( )

WATTR

WATTR

T i
T

+ + −
⎛
⎝⎜

⎞
⎠⎟1 SLIDE RANGE

WATTR(T) + (i+1)*SLIDE}. 

3.4 Mapping Tuples to Window-ids 
The extent function defines window semantics in a window-
centric way from the perspective of understanding the content of 
each window extent. In this section, we define the function wids, 
which is an inverse to the extent function, and maps each input 
tuple to a set of window-ids (representing window extents). The 
wids function provides the same window semantics information, 
in tuple-centric manner. Intuitively, this tuple-centric version of 
the window semantics definition corresponds to operations on 
each input tuple in the implementation. For a given window type, 
let W = windows (T, S). Then, for a tuple t, wids (t, T, S) is the set 
of window-ids in W that identify window extents to which tuple t 
belongs: wids (t, T, S) = {w∈W | t ∈ extent(w)}. 
The wids function for non-partitioned windows whose RANGE 
and SLIDE are both specified on the WATTR attribute, such as 
Q1 and Q2, is defined as follows:  
wids (t, T, S[RANGE, SLIDE, WATTR]) =  
        {w∈W | (t.WATTR – minWATTR(T)) / SLIDE – 1 < w 
                    ≤ (t.WATTR + RANGE – minWATTR(T)) / SLIDE –1}. 
Note that in this wids function, a tuple t is mapped to a set of 
window-ids, without reference to other tuples nor to t’s arrival 
position in T. 
For slide-by-tuple windows such as Q3, and its two variations, the 
wids function is given by: 
wids (t, T, S[RANGE, RATTR, 1, row-num]) = 
        {w∈W | t.RATTR ≤ w < t.RATTR + RANGE}. 
Here, the window-ids of window extents to which tuple t belongs 
fall between t.RATTR and t.RATTR+RANGE.  
For partitioned tuple-based windows, the wids function is given 
below, where r = rank (t, row-num, PATTR, T): 
wids (t, T, S[RANGE, row-num, PATTR]) =  
       {(i, p)∈W | t.PATTR = p, (r – minrow-num(T)) / SLIDE – 1 <  
                         w ≤ (r + RANGE – minrow-num(T)) / SLIDE –1}. 
The correctness of each wids definition can be verified relative to 
the corresponding extent definition. We have proved that the 
discussed extent and wids pairs are inverses. The proof consists of 
two cases, based on whether minWATTR(T) is greater than 
minWATTR(T)+(w+1)*SLIDE – RANGE or not. 

Discussion: Our window specification is quite expressive and the 
semantic framework suggests a general way to define window 
semantics. We have discussed several types of windows that we 
are familiar with. However, not all windows well-defined in our 
specification are guaranteed to be meaningful; further, the wids 
functions might not always be effectively computable. In future 
work, we plan to characterize the functions used in the framework 
in order to guarantee a feasible implementation of wids functions.  
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4. BEYOND SEMANTICS: Towards 
Window Query Evaluation 
To map a tuple to a set of window-ids, the wids functions for 
different types of windows require different information. In this 
section, we categorize different types of information that may be 
required, and classify windows based on this requirement. That 
categorization in turn helps dictate the appropriate 
implementation techniques for given types of windows. 
We define two types of “context” information that may be 
involved in the implementation of a wids function: backward-
context and forward-context. Given a tuple t, its backward-context 
is information about tuples that have arrived before t.  Forward-
context is information about tuples that will arrive after t. If a 
wids function requires backward-context, it implies that the 
implementation will need to maintain information about 
previously arrived tuples. For example, the implementation of a 
partitioned tuple-based window must maintain a count of tuples 
that have arrived for each partition. Typically, having to maintain 
backward-context is not a significant restriction, and does not 
prevent one from determining window-ids immediately upon 
tuple arrival. In contrast, if a wids function requires forward-
context, then information from tuples arriving after a tuple t is 
required to calculate the window-ids for t. This requirement 
implies that the exact window-ids for tuple t cannot all be 
determined until those later tuples arrive. Thus a wids function 
requiring forward-context implies that tuples may need to be 
buffered and delayed. For example, slide-by-tuple windows 
require forward-context. The rank function in the wids definition 
for partitioned windows (e.g., Q4) reflects a backward-context 
requirement, because rank uses row-num as the attribute on which 
to define order. Using the RATTR-values of later tuples (i.e., 
t.RATTR ≤ w < t.RATTR + RANGE) in the wids definition for 
slide-by-tuple windows (e.g., Q3) reflects a forward-context 
requirement. 
We categorize windows as FCF (forward-context free), or FCA 
(forward-context aware), based on their forward-context 
requirements. A window is FCF if the wids implementation does 
not require forward-context. Time-based windows, tuple-based 
sliding windows, and partitioned tuple-based windows are FCF. A 
window is FCA if the wids implementation requires forward-
context. Slide-by-tuple windows and its two variations (slide by n 
tuples over row-num and rank(RATTR), respectively) are FCA. 
Under the FCF category, a window is CF (context free) if the 
implementation of its wids function requires neither forward- nor 
backward-context. Tuple-based and time-based sliding windows 
are CF. The wids function of a CF window maps each input tuple 
to a set of window-ids based only on the window specification 
and the tuple itself; correspondingly, in the implementation, 
window-ids for each tuple can be determined as the tuple arrives 
and no state needs to be maintained. We proceed to discuss the 
implementation details for different categories of windows. 

5. FCF WINDOWS: The WID Approach 
We present our evaluation technique, WID, for window aggregate 
queries for FCF windows in this section, and for FCA windows in 
the next section. WID is a direct application of our window 
semantics definition, of the wids function in particular. By using 
window-ids in the implementation, WID encapsulates window 

semantics in the operation that tags tuples with window-ids and 
explicitly transforms the window semantics of queries into data 
semantics via a wid attribute.  
WID provides one-pass query evaluation for sliding window 
aggregate queries, eliminating the need to retain input tuples in 
intra-operator buffers, and greatly reduces memory usage during 
query evaluation. WID is very flexible and scalable. The 
implementation does not put constraints on physical properties of 
the input streams. For example, other window aggregate 
algorithms require the data be sorted before being aggregated. In 
contrast, WID does not have such constraints. In addition, the 
aggregation step is window-agnostic, since wid is treated as any 
other attribute. We proceed to describe the system in which we 
implemented WID, and then discuss WID in detail for FCF 
windows. 

5.1 System Overview and Punctuation  
Our implementation of WID is based on an extended version of 
the Niagara Query Engine [10] for processing data streams. 
Niagara was initially developed at the University of Wisconsin-
Madison as a system for querying XML data on the Internet. It is 
written in Java and has a push-based (pipelined) query-processing 
model. The extended version of Niagara supports data streams 
through the use of Niagara operators enhanced to support 
punctuation [16]. 
WID leverages punctuations for query execution and disorder 
handling. A punctuation is a message embedded in a data stream 
indicating that a certain subset of data is complete; a punctuation 
indicates that no more tuples having certain attribute values will 
be seen in the stream. Punctuations are used in stream query 
processing to adapt blocking and stateful operators to data 
streams. Tucker et al. have defined punctuation behavior for 
query operators [16]. Some operators, such as select, simply pass 
punctuations through to the next operator in the query plan. 
Group-by operators use punctuations to recognize when groups 
are complete so they can output results for those groups, and 
purge associated state. WID uses punctuations to signal the end of 
window extents.  
The generation and source of punctuations is an interesting 
research problem in itself. Punctuations may come from many 
sources. In the running example, punctuations come from the 
external data source; another common source of punctuations is 
operators in the query system. For example, if traffic sensors in 
the running example do not provide punctuations, punctuations 
can be generated based on the assumption that each traffic sensor 
produces sorted data. When the first tuple with a timestamp 
greater than 12:11 from segment s6 is received by an operator, 
that operator can assume that all data from segment s6 with 
timestamp before 12:11 have been received and can promptly 
generate a punctuation: (s6, *, 12:11:00), the same as p1 in 
Figure 2. We can also generate punctuations based on a slack 
bound on the maximal disorder in a data stream [2].  

5.2 Query Evaluation for FCF Windows 
WID tags tuples with ranges of window-ids, keeps aggregate 
operators window-agnostic, and uses punctuation to indicate when 
to output results. 
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5.2.1 Bucket Operator 
The first step in WID is to map each tuple explicitly to a set of 
window-ids. We introduce a new operator, bucket, that tags each 
tuple with its associated window-ids by using the appropriate wids 
function. A range of window-ids is appended to each tuple as a 
data attribute, wid. (Alternatively, a wid value can also be an 
explicit set, or tuples can be duplicated with different ids, if 
necessary.) Figure 3 shows the query plan for Q1, a CF query, 
using WID. As shown, the bucket operator takes a window 
specification as a parameter. 
The implementation of bucket varies for different types of 
windows. A key aspect is the amount of state that bucket must 
maintain. For CF windows, such as Q1 and Q2, bucket need not 
maintain any state and can append a range of window-ids to each 
input tuple immediately when the tuple arrives, since the wids 
function for an FCF window does not require forward-context. 
Bucket also applies a similar calculation to transform 
punctuations on WATTR into punctuations on the wid attribute.

5.2.2 Aggregation 
Bucket tags tuples with window-ids; the aggregate operator 
processes these tuples to produce an aggregate value for each 
window extent. Using the wid attribute as an additional grouping 
attribute is the key to this aggregation step. Given a tuple t tagged 
with a range of window-ids w1–wn (t.wid = w1–wn), the aggregate 
operator uses t to update n aggregate values whose wid-values fall 
between w1 and wn inclusive. Note that the window specification, 
and thus the window semantics, is not exposed to the aggregate 
operator. However, we have extended the aggregate operator to 
understand range values. 
The aggregate operator must detect when each window extent is 
complete and then output the result for that extent. Detecting the 
ends of window extents is particularly challenging when the input 
stream is disordered, or when the data arrival rate is bursty or 
slow [7], because disordered input streams may lead to 
incomplete window extents, and bursty or slow streams may 
result in a high delay in outputting results. In WID, we use 
punctuations to indicate the ends of extents. When the aggregate 
operator receives a punctuation, it outputs the results for the 
matching window extents and purges the corresponding state. 
Using punctuations to convey end-of-extent messages transforms 
the complexity of detecting the end of window extents into the 
generation of punctuations. In contrast to hardwiring arrival order 
information or assumptions into the implementation, using 
punctuation to signal the ends of window extents is more flexible. 
The correctness of punctuations affects the accuracy of results, 
and the regular arrival of punctuations can reduce the delay in 
outputting results. Delays in punctuation arrival delay results, and 
increase the state that the aggregate operator must keep, but do 
not affect the correctness of results. 

Discussion: Compared to existing techniques that retain and 
reprocess input tuples, WID reduces both buffer space and 
execution time, as our experimental results in Section 8 attest. 
The main space savings come from never explicitly materializing 
window extents, but instead maintaining partial aggregates for 
multiple extents simultaneously—almost always a beneficial 
tradeoff. For example, if RANGE is 60 minutes, and SLIDE is 5 
minutes, current window query evaluation algorithms would 
buffer one hour’s worth of tuples; in contrast, WID needs to 

buffer only 12 (= 60/5) aggregate values—one for each active 
window extent. Secondary space savings come from avoiding any 
buffer space devoted to sorting out-of-order tuples. The tuples can 
be tagged and processed as they arrive. The only offsetting 
expense is sometimes retaining a few more aggregate values for 
incomplete window extents. The main time saving comes from 
handling each tuple once, and recording its contribution to all its 
window extents at that time, rather than revisiting it multiple 
times. 
One optimization possible with WID that we investigated is to 
pre-aggregate tuples on panes (sub-windows), and then use those 
pane aggregates to get full window aggregates [9]. Using panes 
with WID leads to further execution-time savings, due to 
computation sharing among consecutive windows. In addition, 
using panes to evaluate holistic aggregates [6] can reduce 
execution-time, which plain WID does not.  

6. FCA WINDOWS: the WID Approach 
Recall that a FCA window has a wids function that requires 
forward-context. In many implementations, the requirement of 
forward-context leads to buffering and delay of tuples. We 
propose an algorithm that uses window-id ranges to process 
several types of FCA windows, including slide-by-tuple windows, 
in one pass. Ours is the only algorithm we know of that can 
process FCA windows, as well as FCF windows, without 
buffering and reprocessing tuples. 
We observe that we can further differentiate FCA windows into 
FCB (forward-context bounded) and FCU (forward-context 
unbounded) windows based on whether we can bound the range 
of forward-context that the wids function requires. Loosely, for 
FCB windows, when a tuple t arrives, we can determine the range 
of window-ids for the extents in which t participates, but not all 
the specific window-ids. For FCU windows, it is not possible to 
determine the range of window-ids for each input tuple as it 
arrives. 
We first present WID for slide-by-tuple windows, as they are the 
most commonly discussed FCA windows. Then we discuss WID 
for the two variations of slide-by-tuple windows, which slide by n 
tuples over row-num attribute and rank(RATTR), respectively. 
The latter is FCU.  

    (seg-id,  speed,  ts) 

t   (s6,       50,    12:10:30)   
p  (s6,        *,     12:11:00)   

    (seg-id, speed,    ts,       wid) 

t   (s6,       50,    12:10:30, 10-14)   
p  (s6,        *,          *,            10 )    

 

streamscan

          bucket 
  (range = 5 minutes 
    slide = 1 minute) 

AggrFun (max, min)
(group on seg-id, wid) 

    

Figure 3: Query plan for Q1 
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6.1 Slide-by-tuple Windows 
In WID for FCF windows, the bucket operator tags each tuple 
with a range of window-ids and a window-agnostic aggregate 
operator computes the results. In WID for FCA windows, the 
bucket operator also tags tuples with a window-id range; however 
this range has a different meaning and in fact the binding of 
window-ids to input tuples is deferred to the aggregate operator. 
With this design, we process each tuple only once and handle out-
of-order tuples the same as in-order tuples.  
The aggregate operator for slide-by-tuple windows requires a 
more sophisticated design as will be described below. We avoid 
retaining and re-processing tuples by maintaining partial 
aggregates for extents and by using these partial aggregates to 
initialize partial aggregates for new extents.  

6.1.1 Example 
For FCA windows, we know we cannot calculate a set of 
window-ids for a tuple t immediately upon t’s arrival. Recall that 
for slide-by-tuple windows and variations, we use RATTR values 
as window-ids. Careful examination of the wids function for such 
windows reveals that we can determine the range into which these 
window-ids will fall. For example, given the range of a slide-by-
tuple window, RANGE, and a tuple t with t.RATTR = s, the set of 
windows-ids to which t is mapped fall into the interval [t.RATTR, 
t.RATTR + RANGE), and thus bucket can tag t with this range.  
We proceed to consider how the aggregate operator works. For 
each input tuple t with t.RATTR = s, the first window extent that t 
belongs to is s: {u ∈ T | s – RANGE < u.RATTR ≤ s}, which ends 
with the arrival of t. We define an auxiliary extent for t, s + 
RANGE: {u ∈ T | s < u.RATTR ≤ s + RANGE}, which is the 
earliest subsequent extent to which t does not contribute. (Note 
that an auxiliary extent need not correspond to an actual tuple in 

T.) For ease of presentation, we denote the window extent s and 
the auxiliary extent s + RANGE of tuple t as Ss and Es 
respectively, and refer to them as bins collectively. One can think 
of Ss and Es as the “start bin” and “end bin”, respectively. We use 
B to refer to the wid for bin B, i.e., Ss = s and Es = s + RANGE. 
Figure 4 shows the processing of a slide-by-tuple query where the 
aggregate is count, RATTR is A, and RANGE is i. We depict the 
bins as laid out in order of the A attribute, with a bin B associated 
with the position of its B. We mark the region to the right of the 
end of the bin, up to the end of the next bin with the partial 
aggregate value for the bin. For example, in Figure 4(d), the 
partial aggregate for Es1 is 2 and for Ss4 is 3. The reason we label 
regions in this way is to indicate that any extent whose wid is in 
the region would have that contribution to its partial aggregate 
from tuples contributed to that bin. Thus, an extent for wid s, 
where Es1 ≤ s < Ss4, would have a contribution of 2 to its count 
from tuples in Figure 4(d). We consider the arrival of tuples t1 – 
t5, where si = ti.A. We start with an initial bin, init, with count = 
0. The arrival of t1 adds bins Ss1 and Es1 (Figure 4(a)), with 
initial values 1 and 0, respectively. Tuple t2 with s2 > s1 starts 
bins Ss2 and Es2, with Ss2 set initially to the value of Ss1 plus 1, 
and Es2 initialized to Es1 (Figure 4(b)). Es1 is incremented by 1, 
to reflect the contribution of t2. Figure 4(c) show the effect of t3, 
where s3 > s2: Ss3 and Es3 are created and initialized, and Es1 
and Es2 are incremented. Figure 4(d) shows the need for E-bins: 
Ss4 is initialized from Es1, reflecting the contribution of t2 and t3, 
but with t1 out of the extent for Ss4. Finally, Figure 4(e) shows 
the arrival of an out-of-order tuple t5, with s1 < s5 < s2. Ss5 is 
initialized from Ss1 and Es5 from Es1, with bins Ss2, Ss3 and Es1 
incremented. If at this point, punctuation arrives indicating future 
WATTR-values are greater than s2, the operator can emit the 
aggregate values for Ss1, Ss5 and Ss2 (and discard Ss1 and Ss5). 

0 01(a)

0 1(b) 2 1 0

0(c) 1 2 3 2 1 0

t4.A t4.A+i.

0 3 1 0(d) 1 2 3 2 2

(e) 0 2 3 4 323 011 2

t2.A t2.A+i

t1.A t1.A+i

init Es1 Es2Ss2Ss1

init Es1Ss3 Es2Ss2Ss1 Es3

init Es1Ss3 Es2Ss2Ss1 Ss4 Es4Es3

init Es1Ss3 Es2Ss2 Es5Ss1 Ss5 Ss4 Es4Es3

t3.A t3.A+i

t5.A t5.A+i

init Ss1 Es1

Figure 4: Example of insertion, initialization, and 
update of bins as new tuples arrive. 

Figure 5 shows the general case for the arrival of tuple tn, when 
(Ssn, Esn) spans bins B1, B2, …, Bm. Bins B1 and Bm are “split” 
and used to initialize Ssn and Esn; every bin Bi, 1 < i ≤ m is also 
updated. 

v1 vmv1+1 vm+1vi+1

Ssn BmB1 Bi Esn

Before

After

v1 vi vm

tn.A tn.A+i
B1 Bi Bm

 

Figure 5: Bin updates for arrival of tuple tn. 

6.1.2 Algorithm 
In this section, we present the algorithms used by the bucket and 
the aggregate operator in WID for slide-by-tuple window queries. 
The implementation of bucket is straightforward. For each tuple t, 
where t.RATTR = s, it adds an attribute t.wid = (Ss, Es) giving the 
maximal range of window-ids for extents to which it belongs. It 
also transforms punctuations on RATTR to punctuations on wid. 
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Figure 6 contains pseudo-code for the aggregate operator. The 
aggregate operator needs to store partial aggregates for bins that 
are not expired. Initialize sets up the special “init” bin, labeled 
with -∞. ProcessTuple sets up new start and end bins for each 
arriving tuple, then updates appropriate bins. ProcessPunctuation 
outputs results and purges appropriate bins.  

State 
We maintain two collections, S and E, each storing pairs 
of the form [wid, pa] where pa is the partial aggregate 
for bin with window-id wid. S stores start bins and E 
stores end bins. 

Initialize ( ) 
      /* aggr-init depends on the aggregate function; for 

example, aggr-init = 0 for count */ 
/* We use -∞ as the wid value of the init bin*/ 

    1.  add [-∞, aggr-init] to E 

ProcessTuple (t)  
Let t.wid = (Ss

Our WID implementation for slide-by-tuple windows does not 
retain and reprocess tuples; and it accommodates out-of-order 
tuples. For slide-by-tuple windows, we avoid reprocessing tuples 
at the cost of maintaining auxiliary extents (end bins). On the 
other hand, our approach does not need space to retain input 
tuples. Therefore, our approach still compares favorably to the 
existing buffering approaches with regards to buffer space and 
execution-time performance. In addition, as WID maintains 
partial aggregates for active window extents incrementally, the 
latency of outputting results is kept low. 

, Es)  

    1. Add [Ss, pa] to S, where [w, pa] ∈ S ∪ E has the  
largest bin id w < Ss

6.1.3 Variations      2. Add [Es
This approach can be extended to variations of slide-by-tuple 
windows, again with no tuple needing to be retained and 
reprocessed, but at the cost of maintaining partial aggregates for 
additional extents. The bucket operator for these two variations is 
the same as the bucket for slide-by-tuple windows. We first 
discuss the variation that slides over the row-num attribute, which 
is a FCB window.  

, pa] to S, where [w, pa] ∈ S ∪ E has the  
largest bin id w < Es

/* the update operation depends on the aggregate-
function; for example, if aggregate-function = count, 
the update operation is +1 */ 

    3. For each [w, pa] in S ∪ E where Ss ≤ w < Es 
update pa using t 

ProcessPunctuation (p) 

    1. Output each [w, pa] in S with w < p.wid and remove 
it from S 

    2. Remove each [w, pa] in E with w < p.wid and w ≠ -∞ 

Figure 6: The Aggregate Operator Implementation for 
Slide-by-tuple Window 

For each tuple t with t.RATTR = s, the ProcessTuple function in 
the aggregate operator still maintains partial aggregates for two 
bins, Ss and Es; but it stores the t.row-num with the two partial 
aggregates for it, e.g., [Ss, t.row-num, pa]. The 
ProcessPunctuation function then only outputs the aggregates for 
the appropriate window extents. 
For the variation that slides over the tuple count of the logically 
ordered input stream over RATTR, the ProcessTuple function 
stores the current tuple count of t with the partial aggregates, e.g., 
[Ss, tup-cnt, pa]. The stored tuple count is updated as each new 
tuple arrives. The ProcessPunctuation function is the same as the 
function for windows that slide over tuple’s row-num attribute. 
In summary, just as for slide-by-tuple windows, WID for these 
two variations processes each tuple only once, and handles 
disordered input; but it needs to maintain extra partial aggregates. 
In particular, for the second variation, since its wids function 
definition uses rank over RATTR attribute, it potentially requires 
global information over the entire stream. Using punctuations can 
unblock this “sort” requirement in an implementation. Therefore, 
comparing the space and time performance of WID with the 
buffering approach, there is a tradeoff on internal space usage 
versus execution-time and output latency. For example, when a 
stream is slow and the slide is large, the buffering approach might 
outperform WID in terms of internal space usage. However, 
execution-time is normally a more critical requirement for stream 
applications. 

7. DISORDER 
Out-of-order tuples can cause both accuracy and latency problems 
in window query evaluation. In this section, we first discuss 
sources of disorder; then we examine information that can be used 
to handle disorder and compare different ways of incorporating 
the information into an implementation. Because of non-uniform 
disorder patterns and the different types of information needed to 

handle disorder, it is important that a disorder-handling 
mechanism be flexible, while retaining efficiency. 

7.1 Source and Nature of Disorder 
There are various causes of disorder in data streams. Two simple 
causes are merging unsynchronized streams and network delays. 
In addition, query processing—join processing in particular—may 
introduce disorder [8]. Further, stream data may appear disordered 
when a window is defined on an attribute other than the natural 
ordering attribute. For example, network flow records typically 
have a start time and an end time; records typically arrive in end-
time order, but some network flow queries define windows on 
start time [5]. Finally, data prioritization can create significant 
disorder. For example Raman et al. [13] and Urhan and Franklin 
[17] present methods for reordering data on the fly to give certain 
sets of tuples processing priority.  
To further understand the nature of disorder, we obtained network 
flow data from the Abilene Observatory, a consortium using a 
high-performance (Internet2) network to study advanced Internet 
applications [1]. In networking terminology, a network flow is a 
connection between a source IP address and port and a destination 
IP address and port. A flow comprises one or more packets, which 
each have a timestamp and size (among other information). Each 
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flow has a start and end time, which are the min and max 
timestamps of packets in the flow.  
Figure 7 shows a scatter plot of a sample of a stream of netflow 
records emitted by a router in the Abilene Network. Each netflow 
record is associated with a network flow. The x-axis is the 
position of the packet in the stream, and the y-axis is network-
flow start time. The graph shows an ascending set of disjoint 
blocks, with data points scattered apparently at random in each 
block. The reason for the surprising shape of this graph is that 
each minute the router outputs all its netflow records. At this 
point, it purges its cache of netflow records and starts over. Thus 
a block represents the records emitted during a cache purge; the 
order within a block may be related to the structure of the router 
hash table. Note that a flow that spans a block boundary is 
represented in two separate blocks as two separate netflow 
records.  
Many stream systems handle disorder by assuming there is a fixed 
bound on disorder. However, from the disorder pattern shown in 
Figure 7, it is clear that a fixed bound on disorder is not a good 
match to this pattern. Setting the bound to less than a minute will 
drop many tuples; setting the bound to a minute will 
accommodate the disorder but unduly delay result output. What 
makes more sense is for the router to output a message—a 
punctuation perhaps—to indicate it has completed a cache purge. 

7.2 Disorder Handling: Punctuation 
We leverage punctuation for flexibility in handling of disorder. 
Order is important in detecting when all tuples participating in a 
window extent have arrived, and the result for that extent can be 
released. For example, if one assumes that data arrives in order, 
detecting the end of window extents can be done by inspecting 
tuple timestamps; one can assume that a window extent from 
12:00-12:05 is complete when a tuple with a timestamp greater 
than 12:05 arrives. However, if only tuples from the same sensor 
are guaranteed to be in order, the situation is more complex. We 
need to see a tuple with timestamp greater than 12:05 from every 
sensor to know the extent is complete. Another option, called 
slack, allows disorder within a specified bound. For example, the 
BSort operator of Aurora [2] assumes that tuples will be out of 
order by no more than N positions and maintains a buffer of size 
N to reorder the input stream. BSort produces an ordered stream; 
any tuples that are more than N positions out of order are dropped.  
Rather than develop different implementation techniques to 
handle different disorder patterns and policies, we localize the 
processing related to disorder into a single operator generating 
punctuation, and then use punctuation-aware (but disorder-
unaware) operators [16] elsewhere. The punctuating operator can 
incorporate the techniques we mentioned for dealing with order 
and disorder. It can use knowledge of stream order or sub-stream 
order as described in the example above to generate punctuation. 
The information that no tuple will be more than N tuples or S 
seconds out of order can be exploited to generate punctuation. A 
policy that no tuple more than S seconds late can be used by the 
punctuating operator to generate punctuation and filter tardy 
tuples. Notifications from stream sources, such as the router from 
Figure 7, can be converted into punctuation. The further 
advantage to dealing with disorder through punctuation is that we 

can process tuples in arrival order, thus avoiding latency and 
space costs associated with approaches that buffer and reorder 
input. 
Heartbeats are an alternative approach for handling disorder, 
proposed by Srivastava and Widom [14]. Heartbeats are in effect 
punctuations on timestamp. Their paper proposes several methods 
for generating heartbeats; these methods could be incorporated 
into a punctuationg operator and are complementary to our work. 

8. PERFORMANCE STUDY 
We tested the effectiveness and efficiency of WID by conducting 
two sets of experiments: 1) The first experiment compares the 
execution time performance for sliding windows using WID, and 
the buffering approach—the existing technique that materializes 
each window extent and computes the aggregate over it. 2) The 
second and third experiments compare the latency and accuracy 
of evaluating queries over streams with different disorder-patterns 
using WID with punctuations arising from the data source (i.e., 
external punctuation), and slack implemented using punctuation. 
Our experiments were conducted on an Intel® Pentium® 4 2.40 
MHz machine, running Linux 7.3, with 512MB main memory. 
The data size for the experiments was approximately 35 MB. 

8.1 Experimental Data Generation 
We implemented a data generator to produce tuples with 
increasing timestamps loosely based on the XMark data generator 
[18]. The schema of the data is easily mapped to traffic-speed 
readings. The first experiment uses the data in generated order. 
The second set of experiments uses bounded-disorder and block-
sorted-disorder data sets. To simulate the bounded-disorder 
distribution, we first took ten data sequences (each of them with 
bounded-disorder) resulting from applying a network analysis tool 
[11] over TCP header traces. To get a large data sequence, we 
concatenated randomly chosen copies of the ten data sequences. 
To simulate punctuations from the data source, we pre-processed 
the disordered data and inserted punctuations into the data. To 
simulate the block-sorted-disorder distribution, we divided the 
tuples into segments of equal length on the timestamp attribute, 
and then randomized the positions of tuples in each segment.   
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Figure 7: Block-sorted Disorder 
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Figure 8 (b): Execution Time: WID versus 
Buffering – Zoom-in 

8.2 Results 
We present the results of the three different experiments. The 
experiments used variations of Q1, and varied the parameters 
according to Table 1. In Table 1, Agg Fcn stands for Aggregate 
Function, R for RANGE and S for SLIDE. 

Table 1: Experimental Parameters 

Exp
# 

Agg 
Fcn 

Dis-
order 

Slack 
Size 

Slack 
Approach 

R S 

1 max none 0  4000
rows varies 

2 avg bound varies Consistent 
Generous 64 s 6.4 s 

3 cnt block-
sorted varies Consistent 600 s 60 s 

 
Execution Time Comparison of WID versus Buffering: For 
Experiment 1, we used the ordered data set and measured the 
execution time cost of using WID and the buffering approach. 
The measured time is in ms. For the window specification, we 
used WATTR = row-num, RANGE = 4000 rows, and varied 
SLIDE from 1 to 4000 rows.  
Experiment 1 (Figure 8(a) and (b)) shows that WID in general has 
better time performance than the buffering approach, and the 
comparison favors WID as the ratio of RANGE and SLIDE 
increases. Figure 8(b) is a zoomed-in version of Figure 8 (a); scan 
cost is the measured time of scanning the whole data set.  

Latency-Accuracy Tradeoffs for Bounded-Disorder: For 
Experiment 2, we used the bounded-disorder data set and 
measured the latency-accuracy tradeoff of using punctuation and 
two types of slack [2]: consistent and generous. The two types are 
similar, except that consistent slack requires that if a tuple is late 
and must be dropped from one window, it will be dropped from 
all windows it participates in, regardless if it is late for the other 
windows or not. Generous slack makes no such restriction. 
Average error percentage is the accuracy metric. For consistent 
and generous slack, we vary the amount of slack from 0.32 
seconds through 3.2 seconds and we use RANGE = 64 seconds, 
and SLIDE = 64 seconds. 

Our results (Figure 9) show that as slack increases, error 
decreases and latency increases, as expected. It also shows that 
external punctuation has better latency and accuracy than either 
slack mechanism. In addition, generous slack has significantly 
better accuracy at comparable latency when compared to 
consistent slack. 

Latency-Accuracy Tradeoffs for Block-Sorted-Disorder: 
Experiment 3 is similar to Experiment 2, except that we used 
block-sorted disorder (shown in Figure 7), with block duration 
490 seconds. We varied the amount of slack from 0 to 600 
seconds and used RANGE = 600 seconds and SLIDE = 60 
seconds. The percentage of incorrect answers is the accuracy 
metric for Figure 10. In contrast to Experiment 2, where error 
decreases and accuracy increases as slack increases, for block-
sorted disorder there is no linear relationship between slack and 
latency. For the block-sorted-disorder data set there is one slack 
value that has the best latency, at the optimal accuracy, as shown 
in Figure 10, which is determined by the relationship between 
block size and window size. In our experiment, the optimal slack 
is 491 seconds. When slack is less than optimal, latency is 

Figure 8 (a): Execution Time: WID versus 
Buffering – Overview 

Figure 9: Latency vs. Accuracy Band-Disorder 
(average error percentage) 
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essentially independent of slack. As slack increases above the 
optimal, latency jumps dramatically. In this case, it would be 
difficult to use slack to tune the latency and accuracy of the 
query, as one might hope to do. It also shows that external 
punctuation has better latency and accuracy for block-sorted 
disorder than any slack amount used. 

9. CONCLUSION AND DISCUSSION 
We believe that the work here makes three important 
contributions to the field of data-stream processing: 1) a 
framework for defining window semantics independent of any 
particular operator implementation algorithm; 2) a one-pass query 
evaluation technique for many types of sliding-window 
aggregates, which generally reduces memory space usage and is 
very flexible in handling disorder; 3) an initial investigation on 
the source and nature of naturally occurring disorder in data 
streams, and its effects on stream system performance with 
different disorder-handling strategies.  
We believe that both our framework for window semantics and 
query-evaluation approach are scalable and flexible enough to be 
extended beyond window aggregates. In the future, we plan to 
apply them on window join and multi-query window aggregates. 
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