
Semantics and Evaluation Techniques for Window
Aggregates in Data Streams

Jin Li1, David Maier1, Kristin Tufte1, Vassilis Papadimos1, Peter A. Tucker2

1Portland State University 2Whitworth College
 Portland, OR, USA Spokane, WA, USA

{jinli, maier, tufte, vpapad}@cs.pdx.edu ptucker@whitworth.edu

ABSTRACT
A windowed query operator breaks a data stream into possibly
overlapping subsets of data and computes a result over each.
Many stream systems can evaluate window aggregate queries.
However, current stream systems suffer from a lack of an explicit
definition of window semantics. As a result, their
implementations unnecessarily confuse window definition with
physical stream properties. This confusion complicates the stream
system, and even worse, can hurt performance both in terms of
memory usage and execution time. To address this problem, we
propose a framework for defining window semantics, which can
be used to express almost all types of windows of which we are
aware, and which is easily extensible to other types of windows
that may occur in the future. Based on this definition, we explore
a one-pass query evaluation strategy, the Window-ID (WID)
approach, for various types of window aggregate queries. WID
significantly reduces both required memory space and execution
time for a large class of window definitions. In addition, WID can
leverage punctuations to gracefully handle disorder. Our
experimental study shows that WID has better execution-time
performance than existing window aggregate query evaluation
options that retain and reprocess tuples, and has better latency-
accuracy tradeoffs for disordered input streams compared to using
a fixed delay for handling disorder.

1. INTRODUCTION
Many types of data present themselves in stream format:
environmental sensor readings, network monitoring data,
telephone call records, traffic sensor data and auction bids, to
name a few. For applications monitoring and processing streams,
window aggregates are an important query feature. A window
specifies a moving view that decomposes the stream into
(possibly overlapping) subsets that we call window extents, and
computes a result over each. (Think of a window specification as
a “cookie cutter” and window extents as cookies cut with it.) For
example, “compute the number of vehicles on I-95 between
milepost 205 and milepost 245 over the past 10 minutes; update
the count every 1 minute” is a window aggregate query where
successive window extents overlap by 9 minutes.

Evaluating window aggregate queries over streams is non-trivial.
The potential for high data-arrival rates, and huge data volumes,
along with near real-time requirements in many stream
applications, make memory and execution-time performance of
stream query evaluation critical. Bursty and out-of-order data
arrival raises problems with detecting the boundaries of window
extents. Out-of-order arrival also complicates the process of
determining the content of window extents and can lead to
inaccurate aggregate results or high latency in the output of the
results. We have observed that accommodating out-of-order
arrival can introduce significant complexity into window query
evaluation.
We see two major issues with current stream systems that process
window queries. One is the lack of explicit window semantics. As
a result, the exact content of each window extent tends to be
confused with window operator implementation and physical
stream properties. The other issue is implementation efficiency, in
particular, memory usage and execution time. To evaluate sliding-
window aggregate queries where consecutive window extents
overlap (i.e., each tuple belongs to multiple window extents),
most current proposals keep all active input tuples in an in-
memory buffer. In addition, each tuple is reprocessed multiple
times—once for each window extent to which it belongs. We will
propose an approach that avoids intra-operator buffering and tuple
reprocessing.

In this paper, we present a framework for defining window
semantics and a window query evaluation technique based on it.
In the framework, we define window semantics explicitly—
independent of any algorithm for evaluating window queries.
From our definitions, it is clear that many commonly used types
of windows do not depend on physical stream order. However,
most existing window-query evaluation techniques assume that
stream data are ordered or are ordered within some bound. Our
window query evaluation technique, called the Window-ID (WID)
approach, is suggested by the semantic framework. Our technique
processes each input tuple on the fly as it arrives, without keeping
tuples in buffers and without reprocessing tuples. Our
experimental study shows significantly improved execution-time
performance over existing evaluation techniques that buffer and
reprocess tuples.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In contrast to other techniques, WID can process out-of-order
tuples as they arrive without sorting them into the “correct” order.
It does not require a specific type of assumption about the
physical order of data in the stream. Instead, it uses punctuation
[16] to encode whatever kind of ordering information is available.
In the later part of the paper, we examine real-life examples of

ACM SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06…$5.00.

311

stream disorder and discuss disorder-handling methods. Slack [2]
and heartbeats [14] are mechanisms proposed for handling
disorder in input streams. Different means for handling disorder
can affect the flexibility, scalability and performance of window-
query evaluation approaches. We experimentally evaluated
latency-accuracy tradeoffs in handling disorder using WID and
sort-based slack.

SUSPECT

PRESUMPTIVE

CONFIRMED

INTERCEPTED

Figure 1: Four detection stations in a detection task
(from Yonnel Gardes, The Transpo Group, Kirkland, WA, with permission)

This paper is organized as follows: Section 2 provides a running
example that illustrates the basic concepts of WID; Section 3
introduces our framework for defining window semantics; Section
4 discusses implications of window semantics for query
evaluation; Sections 5 and 6 present the implementation of WID;
Section 7 analyzes disorder using network flow data and discusses
mechanisms for handling it; Section 8 presents performance
results; and Section 9 concludes.

2. RUNNING EXAMPLE
We introduce a running example that illustrates the operations
used in WID. Via this example, we show that with WID 1) there
is no need to retain input tuples in buffers, although there may be
queues to pass tuples between steps; 2) each tuple is processed
only once at a given step; and 3) no assumptions about the
physical order of the input are required.
Consider a radiation-detection system that can be installed along
freeways, such as the one under study in the New Jersey Turnpike
Radiation Detection project at Lawrence Livermore National Lab
[12]. A radiation-detection system identifies potentially dangerous
vehicles, tracks them as they progress along the freeway, and
targets a vehicle confirmed to have radioactive material for
interception. Figure 1 shows four detection stations involved in a
detection task on I-95 northbound from I-195 to the Holland
Tunnel. While tracking vehicles, it is critical to accurately
forecast travel time between detection stations, so that the system
does not lose track of suspicious vehicles. One way to address this
problem is to estimate the max and min travel time between
stations.
A freeway is separated into non-overlapping segments by
adjacent ramps. Suppose that there exists a speed sensor (such as
a pair of inductive loop detectors commonly found near freeway
on-ramps) per segment along the freeway, and that speed readings
are streamed to a central system, where the min and max speed
for each segment of the freeway over the past five minutes are

computed, and updated periodically. Then, min and max travel
time between stations can be calculated easily and continuously
updated based on the current speed bound for each segment and
the length of the segment.
Assume the schema of speed sensor readings is <seg-id, speed,
ts>, where seg-id is the segment id and ts is the timestamp for a
sensor reading. We might choose to continuously compute the
min and max speed of each segment by computing the min and
max over the past 5 minutes, and updating the results every
minute. We call this query Q1, shown below in a CQL-like
language [3]. Note that the time notion (e.g., over the past 5
minutes) in Q1 is defined on the ts attribute of the sensor
readings.
Q1: SELECT seg-id, max(speed), min(speed)
 FROM Traffic [RANGE 300 seconds

 SLIDE 60 seconds
 WATTR ts]
GROUP BY seg-id

Figure 2 shows the steps that WID uses to process Q1. The details
of the operators are given in later sections. The traffic-speed
stream, with punctuations, arrives at the query system. Briefly, a
punctuation is information embedded in a data stream indicating
that no more tuples having certain attribute values will be seen in
the stream. For example, punctuation p1 indicates that no more
tuples will arrive from segment s6 that have a timestamp attribute
value less than 12:11:00PM. In our example, we assume that each

 (seg-id, speed, ts, wid)
 t1′ (s5, 47, 12:10:05, 10-14)
 t2′ (s6, 48, 12:10:02, 10-14)
 t3′ (s6, 50, 12:10:30, 10-14)
 p1′ (s6, *, *, 10)
 t4′ (s5, 47, 12:10:30, 10-14)
 p2′ (s5, *, *, 10)
 … …

tags with
window-ids

group on
seg-id
and wid

wid seg-id max min

10 s5 47 47
10 s6 50 48
… … … …
14 s5 51 50
14 s6 52 50

 (wid, seg-id, max, min)
 m1 (10, s6, 47, 47)
 m2 (10, s5, 50, 48)

 (seg-id, speed, ts)
 t1 (s5, 47, 12:10:05)
 t2 (s6, 48, 12:10:02)
 t3 (s6, 50, 12:10:30)
 p1 (s6, *, 12:11:00)
 t4 (s5, 47, 12:10:30)
p2 (s5, *, 12:11:00)
 … …

Figure 2: Operations on input tuples, using the WID approach to evaluate Q1

312

individual sensor provides such a punctuation every minute.
As Figure 2 shows, in the first step, each input tuple is tagged
with a range of window-ids. In WID, each window extent is
identified by a unique window-id. In this example, we use non-
negative integers for window-ids. Suppose Q1 starts at
12:00:00PM. Each window extent is a 5-minute sub-stream,
which overlaps with adjacent window extents. In our case, for
example, window extent 10 is the 12:06:00PM – 12:11:00PM
sub-stream; and window extent 11 is the 12:07:00PM –
12:12:00PM sub-stream. For each input tuple, we can calculate
the window-ids for the window extents to which it belongs. For
example, t1 belongs to window extents 10 through 14. A similar
calculation is applied to punctuations. Input punctuations, which
punctuate on the seg-id and ts attributes, are transformed into
punctuations on the seg-id and wid attributes. For example, p1 is
transformed into p1′, which indicates that no more tuples from the
sensor at segment s6 for window extent 10 will arrive. Note that
we extend the input scheme of the speed tuple by adding the wid
as an explicit attribute. Also note that in the first step, each tuple
or punctuation is processed immediately as it arrives, and is
streamed out immediately after processing.
The second step is an aggregation where tuples tagged with
window-ids are grouped by the seg-id attribute, as well as the wid
attribute. Note that a tuple tagged with a range of window-ids
represents a set of tuples, each tagged with a single window-id.
An internal hash table is used to maintain the partial max and min
value for each group. Upon the arrival of a punctuation, the hash
entry that matches the punctuation is output and purged from the
hash table. For example, when punctuation p1′ arrives, m1 is
output and its corresponding hash entry is cleared.
Overall, introducing window-ids into query execution brings
benefits to both performance and system implementation. It
reduces operator buffer space and execution time; and it
transforms window aggregate queries into group-by aggregate
queries and thus reduces the implementation complexity of the
system. Also observe that WID does not need to reorder tuples on
ts, as long as punctuations are placed correctly. WID does require
calculations for multiple window extents to be underway
concurrently, but the storage overhead is trivial unless there are
many more window extents than tuples.

3. WINDOW SEMANTICS
As can be seen from our example, the key to WID is the
association of tuples with window-ids. In this section we present a
semantic framework that makes this association explicit,
independent of any particular operator implementation. In Section
4 we return to window-aggregate evaluation based on this
semantics.

3.1 Motivation
In previous work, window semantics has often been described
operationally. However, operational window definitions tend to
lead to confusion of the window extent definition with physical
data properties and implementation details. For example, some
current window query operators process window extents
sequentially— that is, they close the active window when a tuple
past it arrives, which translates into a requirement that their input
arrive in order of the windowing attribute. If the data is not in
order, some sort mechanism such as Aurora’s BSort [2] must be

used to reorder the data. Without a mechanism to explicitly
identify what extents tuples belong to, tuples cannot be processed
in their arrival order (unless it corresponds to window order),
which leads to retaining tuples in the implementation, latency,
and inflexibility in query evaluation.
We propose a semantic framework, and define the semantics of
some existing types of windows under this framework. While our
window semantics definition is independent of any
implementation algorithm, having explicit window semantics
leads directly to a flexible implementation that can handle a wide
variety of windows and that can handle disordered data in several
ways. In addition, an explicit definition makes it easier to verify
the correctness of a window operator implementation.
Note that defining window semantics and implementing the
defined semantics are two separate issues. A window semantics
definition specifies the content of window extents, while
implementation issues, such as determining when to process an
extent (and whether to approximate its actual value), are handled
by separate mechanisms or directives.

3.2 Window Specification
A window specification consists of a window type and a set of
parameters that define a window to be used by a query. For
example, the specification of the sliding window in Q1 has
parameters RANGE, SLIDE and WATTR. In our window
semantics, the content of a window extent is determined by
applying a window specification to a set of input tuples. Our goal
in discussing window specifications is to introduce the parameters
used to express different windows whose semantics will be
defined later, but not to provide a universal specification for all
possible windows. However, our window specification parameters
are general enough to express almost all stream window aggregate
queries we have seen [5, 15].
Our window specification for sliding window aggregate queries
consists of three parameters, RANGE, SLIDE and WATTR,
which specify the length of the window, the step by which the
window moves, and the windowing attribute—the attribute over
which RANGE and SLIDE are specified. For ease of presentation,
we assume the arrival time and the arrival position of tuples in a
stream are explicit attributes arrival-ts and row-num in the input
tuples. In the remainder of this section, we introduce different
types of windows and their corresponding specifications.
A time-based sliding window query, such as Q1 in Section 2, is
expressed with RANGE = 300 seconds, SLIDE = 60 seconds and
WATTR = ts. (Note that in this example, ts is the timestamp
attribute provided by the sensors and not the arrival timestamp.)
Tuple-based sliding window queries are also common. A tuple-
based query uses the row-num attribute of tuples as the WATTR.
For example, consider Q2, which requests “Count the number of
vehicles for each segment over the past 1000 rows, update that
result every 10 rows” and is expressed as:
Q2: SELECT seg-id, count(*)
 FROM Traffic [RANGE 1000 rows

 SLIDE 10 rows
 WATTR row-num]
GROUP BY seg-id

Potentially, WATTR can be any tuple attribute with a totally
ordered domain. Having this option allows us to define windows
over timestamps assigned by external data sources or internally

313

by the system; to handle a stream with a schema containing
multiple timestamp attributes; and to window over non-temporal
attributes.
Another kind of sliding window has RANGE and SLIDE
specified on different attributes. In such a case, SATTR (slide
attribute) and RATTR (range attribute) are used in place of
WATTR. A common example of this type of window is a query
with RANGE over a timestamp attribute (ts, in our example) and
SLIDE 1 row over row-num. In such a case, each tuple arrival
introduces a new window extent that has length RANGE and ends
at the newly-arrived tuple, as shown in query Q3 below. We use
the term slide-by-tuple for this type of windows. The window
operator in CQL uses slide-by-tuple windows to transform the
input stream into instantaneous relations.
Q3: SELECT seg-id, count(*)
 FROM Traffic [RANGE 300 seconds
 RATTR ts
 SLIDE 1 row
 SATTR row-num]

A partitioned window-aggregate query uses an additional
partitioning attribute, PATTR, to split the input stream into sub-
streams before applying the other parameters in the window
specification to each. Q4, shown below, is identical to Q2 except
that seg-id is now a partitioning attribute instead of a group-by
attribute.
Q4: SELECT seg-id, count(*)
 FROM Traffic [RANGE 1000 rows

 SLIDE 10 rows
 WATTR row-num
 PATTR seg-id]

This change in the window specification leads to significant
changes in the window semantics. Q2, a non-partitioned query,
takes a sequence of 1000 tuples from input stream as a window
extent, then divides those 1000 tuples into groups by segment id
and counts the vehicles in each group. In short, Q2 first computes
the window extent and then divides the extent into groups. In
contrast, Q4 first divides a stream into “partitions” (sub-streams)
by the partitioning attribute, and then divides each partition into
window extents independently, based on the other three
parameters. Note that for time-based window queries, the PATTR
parameter does not bring more expressive power—the effect of a
PATTR attribute is the same as using it as a group-by attribute
[4].
Discussion: Our window specifications are similar to the window
construct in CQL (Continuous Query Language) [3], a SQL-based
language for expressing continuous queries over data streams.
Our window specification differs from CQL in the use of explicit
user-specified WATTR and SLIDE parameters, whereas the
published version of CQL [3] assumes a “slide-by-tuple” window
semantics and uses a pre-defined timestamp or tuple sequence
number as the windowing attribute.
SQL-99 defines a window clause for use on stored data. SQL-99
limits windows to sliding by each tuple (i.e., each tuple defines a
window extent), thus tying each output tuple to an input tuple. We
call such windows data-driven. In comparison, stream queries
often use domain-driven window semantics, where users specify
how far the consecutive window extents are spaced from each
other in terms of domain values [15]. We believe domain-driven
windows are more suitable for applications with bursty or high-

volume data. Consider a network monitoring application—one
might want network statistics updated at regular intervals,
independent of surges or lulls in traffic.
A variation of our window specifications is to use functions in
parameters. For example, the following query Q5 is a variation of
Q3.
Q5: SELECT seg-id, count(*)
 FROM Traffic [RANGE 300 seconds
 RATTR ts
 SLIDE 5 rows
 SATTR rank(ts)]

The function rank (ts) maps each tuple t in the input stream to its
rank in order of the ts attribute values. So instead of advancing a
window based on tuple-arrival order, we advance it based on the
logical order implied by ts. So, the window in Q5 is of the length
300 seconds over the ts attribute, and slides by 5 rows over the
logical order defined by ts. Conceptually, this window suggests
sorting before windowing, similar to the window clause with the
ORDER BY construct defined in SQL-99. In this paper, we only
consider rank(RATTR) in SATTR—the attribute defining the slide
order needs to agree with the range attribute.

3.3 Window-Ids and Window Extents
Our framework defines window semantics using mappings
between window-ids and tuples in both directions. The framework
consists of three functions: windows, extent, and wids.
In this sub-section, we describe windows and extent over a set of
tuples, T, for each type of window we just discussed. For a given
window type, windows defines the window-ids to use for that type
of window—values from different domains are used as window-
ids for different types of window. The extent function specifies
which tuples belong to the window extent denoted by a given
window-id—the mapping from window-ids to tuples. More
precisely, given a window specification S and the set of tuples T
that compose a stream, windows(T, S) is the set of window-ids
that identify window extents to which tuples in T may belong.
Given a window-id w ∈ windows(T, S), extent(w, T, S) is the set
of tuples in T belonging to the window extent identified by w. We
require that extent(w, T, S) be finite. Note that T is an unordered,
possibly infinite, logical entity—we do not expect an
implementation to actually materialize it.
For ease of presentation, we assume that RANGE, SLIDE and
WATTR (or, SATTR and RATTR) are all in the same units. For
example in Q1, RANGE and SLIDE are both in seconds.
For window queries in which RANGE and SLIDE are specified
on the WATTR attribute, such as Q1 or Q2, the window and
extent functions are as below. Here, we use the non-negative
integers for window-ids, which depend on neither T nor S.
 windows(T, S[RANGE, SLIDE, WATTR]) = {0, 1, 2, …}.
 extent(w, T, S[RANGE, SLIDE, WATTR]) =

 {t∈T | max

 ≤ t.WATTR < min
min () () *
min ()

WATTR

WATTR

T w
T

+ + −
⎛
⎝⎜

⎞
⎠⎟1 SLIDE RANGE

WATTR(T) + (w+1)*SLIDE}.
The extent function is defined using only the WATTR values of
tuples, independent of physical arrival order. In the extent
function, the value minWATTR(T) represents the minimum value
that WATTR takes over all tuples in T. This exact value may be

314

difficult to measure, but in practice any approximation that is less
than minWATTR(T) is acceptable, and does not affect the window
extent definition. Assuming WATTR values are non-negative
numbers, one can always think of minWATTR(T) as 0. The ‘max’ in
the extent function deals with the boundary cases where the
window “straddles” minWATTR(T), by permitting “partial” window
extents. For example, in Q1, window extents 0 through 3 are
partial, and they are of length 1, 2, 3, 4 minutes respectively.
The windows and extent functions above also apply to tumbling
windows, and naturally extend to landmark windows. Tumbling
windows are a special case of sliding windows, where RANGE
equals SLIDE and thus window extents do not overlap. Landmark
windows are similar to sliding windows except that each window
extent starts at the “beginning” of the stream.
For slide-by-tuple window queries, such as Q3, the number of
window extents is data-dependent and we do not use a simple
integer sequence for window-ids. Instead, we use values of
T.RATTR—the projection of input tuples on RATTR—for
window-ids. The windows and extent functions for slide-by-tuple
windows are given below.
windows(T, S[RANGE, RATTR, 1, row-num]) =
 {w | t ∈ T, w = t.RATTR}.
extent(w, T, S [RANGE, RATTR, 1, row-num]) =
 {u ∈ T | w – RANGE < u.RATTR ≤ w}.
Assuming unique RATTR values, each RATTR attribute value
identifies a window extent that ends at that tuple.
A variation on slide-by-tuple windows is a window for which the
SLIDE is n tuples. Here, every nth tuple defines a window extent.
Thus, we use the RATTR-value of every nth tuple in T as window-
ids. The extent function is the same as that of slide-by-tuple
windows. The windows function is given by:
windows(T, S[RANGE, RATTR, SLIDE, row-num]) =
 {w | t ∈ T, mod(t.row-num, SLIDE) = 0, w = t.RATTR}.
For windows in which the SLIDE is n tuples over the logical
order of the stream given by rank(RATTR), as shown in Q5, the
extent function is also the same as for slide-by-tuple windows.
The windows definition uses a rank(t, attr, T) function, which,
given a tuple t and attribute attr, returns t’s rank in T in the order
of attr.
windows(T, S[RANGE, RATTR, SLIDE, rank(RATTR)]) =
 {w | t ∈ T, mod (rank(t, RATTR, T)), SLIDE) = 0,
 w = t.WATTR}.
For partitioned tuple-based window queries, such as Q4, window-
ids are compound values consisting of a non-negative integer
representing a window extent in a partition and a partitioning
attribute value.
windows(T, S[RANGE, SLIDE, WATTR, PATTR]) =
 {(i, p) | i∈{0, 1, 2, …}, p∈T.PATTR}.
The extent function in this case determines the content of the
window extent based both on its integer index and partitioning
attribute value. In the extent function definition, we use the
function rank(t, attr, p, T), which given a tuple t, an attribute attr,
a partitioning attribute p, and a set of tuples T, returns t’s rank in
the p partition of T, in the order of attr. For example, rank(t, row-
num, PATTR, T) in the following extent function returns tuple t’s
arrival position in the partition to which it belongs, i.e., t.PATTR.

extent ((i, p), T, S[RANGE, SLIDE, row-num, PATTR]) =
 {t∈T | t.PATTR = p,

 max ≤

 rank(t.row-num, PATTR, T) < min
min () () *
min ()

WATTR

WATTR

T i
T

+ + −
⎛
⎝⎜

⎞
⎠⎟1 SLIDE RANGE

WATTR(T) + (i+1)*SLIDE}.

3.4 Mapping Tuples to Window-ids
The extent function defines window semantics in a window-
centric way from the perspective of understanding the content of
each window extent. In this section, we define the function wids,
which is an inverse to the extent function, and maps each input
tuple to a set of window-ids (representing window extents). The
wids function provides the same window semantics information,
in tuple-centric manner. Intuitively, this tuple-centric version of
the window semantics definition corresponds to operations on
each input tuple in the implementation. For a given window type,
let W = windows (T, S). Then, for a tuple t, wids (t, T, S) is the set
of window-ids in W that identify window extents to which tuple t
belongs: wids (t, T, S) = {w∈W | t ∈ extent(w)}.
The wids function for non-partitioned windows whose RANGE
and SLIDE are both specified on the WATTR attribute, such as
Q1 and Q2, is defined as follows:
wids (t, T, S[RANGE, SLIDE, WATTR]) =
 {w∈W | (t.WATTR – minWATTR(T)) / SLIDE – 1 < w
 ≤ (t.WATTR + RANGE – minWATTR(T)) / SLIDE –1}.
Note that in this wids function, a tuple t is mapped to a set of
window-ids, without reference to other tuples nor to t’s arrival
position in T.
For slide-by-tuple windows such as Q3, and its two variations, the
wids function is given by:
wids (t, T, S[RANGE, RATTR, 1, row-num]) =
 {w∈W | t.RATTR ≤ w < t.RATTR + RANGE}.
Here, the window-ids of window extents to which tuple t belongs
fall between t.RATTR and t.RATTR+RANGE.
For partitioned tuple-based windows, the wids function is given
below, where r = rank (t, row-num, PATTR, T):
wids (t, T, S[RANGE, row-num, PATTR]) =
 {(i, p)∈W | t.PATTR = p, (r – minrow-num(T)) / SLIDE – 1 <
 w ≤ (r + RANGE – minrow-num(T)) / SLIDE –1}.
The correctness of each wids definition can be verified relative to
the corresponding extent definition. We have proved that the
discussed extent and wids pairs are inverses. The proof consists of
two cases, based on whether minWATTR(T) is greater than
minWATTR(T)+(w+1)*SLIDE – RANGE or not.

Discussion: Our window specification is quite expressive and the
semantic framework suggests a general way to define window
semantics. We have discussed several types of windows that we
are familiar with. However, not all windows well-defined in our
specification are guaranteed to be meaningful; further, the wids
functions might not always be effectively computable. In future
work, we plan to characterize the functions used in the framework
in order to guarantee a feasible implementation of wids functions.

315

4. BEYOND SEMANTICS: Towards
Window Query Evaluation
To map a tuple to a set of window-ids, the wids functions for
different types of windows require different information. In this
section, we categorize different types of information that may be
required, and classify windows based on this requirement. That
categorization in turn helps dictate the appropriate
implementation techniques for given types of windows.
We define two types of “context” information that may be
involved in the implementation of a wids function: backward-
context and forward-context. Given a tuple t, its backward-context
is information about tuples that have arrived before t. Forward-
context is information about tuples that will arrive after t. If a
wids function requires backward-context, it implies that the
implementation will need to maintain information about
previously arrived tuples. For example, the implementation of a
partitioned tuple-based window must maintain a count of tuples
that have arrived for each partition. Typically, having to maintain
backward-context is not a significant restriction, and does not
prevent one from determining window-ids immediately upon
tuple arrival. In contrast, if a wids function requires forward-
context, then information from tuples arriving after a tuple t is
required to calculate the window-ids for t. This requirement
implies that the exact window-ids for tuple t cannot all be
determined until those later tuples arrive. Thus a wids function
requiring forward-context implies that tuples may need to be
buffered and delayed. For example, slide-by-tuple windows
require forward-context. The rank function in the wids definition
for partitioned windows (e.g., Q4) reflects a backward-context
requirement, because rank uses row-num as the attribute on which
to define order. Using the RATTR-values of later tuples (i.e.,
t.RATTR ≤ w < t.RATTR + RANGE) in the wids definition for
slide-by-tuple windows (e.g., Q3) reflects a forward-context
requirement.
We categorize windows as FCF (forward-context free), or FCA
(forward-context aware), based on their forward-context
requirements. A window is FCF if the wids implementation does
not require forward-context. Time-based windows, tuple-based
sliding windows, and partitioned tuple-based windows are FCF. A
window is FCA if the wids implementation requires forward-
context. Slide-by-tuple windows and its two variations (slide by n
tuples over row-num and rank(RATTR), respectively) are FCA.
Under the FCF category, a window is CF (context free) if the
implementation of its wids function requires neither forward- nor
backward-context. Tuple-based and time-based sliding windows
are CF. The wids function of a CF window maps each input tuple
to a set of window-ids based only on the window specification
and the tuple itself; correspondingly, in the implementation,
window-ids for each tuple can be determined as the tuple arrives
and no state needs to be maintained. We proceed to discuss the
implementation details for different categories of windows.

5. FCF WINDOWS: The WID Approach
We present our evaluation technique, WID, for window aggregate
queries for FCF windows in this section, and for FCA windows in
the next section. WID is a direct application of our window
semantics definition, of the wids function in particular. By using
window-ids in the implementation, WID encapsulates window

semantics in the operation that tags tuples with window-ids and
explicitly transforms the window semantics of queries into data
semantics via a wid attribute.
WID provides one-pass query evaluation for sliding window
aggregate queries, eliminating the need to retain input tuples in
intra-operator buffers, and greatly reduces memory usage during
query evaluation. WID is very flexible and scalable. The
implementation does not put constraints on physical properties of
the input streams. For example, other window aggregate
algorithms require the data be sorted before being aggregated. In
contrast, WID does not have such constraints. In addition, the
aggregation step is window-agnostic, since wid is treated as any
other attribute. We proceed to describe the system in which we
implemented WID, and then discuss WID in detail for FCF
windows.

5.1 System Overview and Punctuation
Our implementation of WID is based on an extended version of
the Niagara Query Engine [10] for processing data streams.
Niagara was initially developed at the University of Wisconsin-
Madison as a system for querying XML data on the Internet. It is
written in Java and has a push-based (pipelined) query-processing
model. The extended version of Niagara supports data streams
through the use of Niagara operators enhanced to support
punctuation [16].
WID leverages punctuations for query execution and disorder
handling. A punctuation is a message embedded in a data stream
indicating that a certain subset of data is complete; a punctuation
indicates that no more tuples having certain attribute values will
be seen in the stream. Punctuations are used in stream query
processing to adapt blocking and stateful operators to data
streams. Tucker et al. have defined punctuation behavior for
query operators [16]. Some operators, such as select, simply pass
punctuations through to the next operator in the query plan.
Group-by operators use punctuations to recognize when groups
are complete so they can output results for those groups, and
purge associated state. WID uses punctuations to signal the end of
window extents.
The generation and source of punctuations is an interesting
research problem in itself. Punctuations may come from many
sources. In the running example, punctuations come from the
external data source; another common source of punctuations is
operators in the query system. For example, if traffic sensors in
the running example do not provide punctuations, punctuations
can be generated based on the assumption that each traffic sensor
produces sorted data. When the first tuple with a timestamp
greater than 12:11 from segment s6 is received by an operator,
that operator can assume that all data from segment s6 with
timestamp before 12:11 have been received and can promptly
generate a punctuation: (s6, *, 12:11:00), the same as p1 in
Figure 2. We can also generate punctuations based on a slack
bound on the maximal disorder in a data stream [2].

5.2 Query Evaluation for FCF Windows
WID tags tuples with ranges of window-ids, keeps aggregate
operators window-agnostic, and uses punctuation to indicate when
to output results.

316

5.2.1 Bucket Operator
The first step in WID is to map each tuple explicitly to a set of
window-ids. We introduce a new operator, bucket, that tags each
tuple with its associated window-ids by using the appropriate wids
function. A range of window-ids is appended to each tuple as a
data attribute, wid. (Alternatively, a wid value can also be an
explicit set, or tuples can be duplicated with different ids, if
necessary.) Figure 3 shows the query plan for Q1, a CF query,
using WID. As shown, the bucket operator takes a window
specification as a parameter.
The implementation of bucket varies for different types of
windows. A key aspect is the amount of state that bucket must
maintain. For CF windows, such as Q1 and Q2, bucket need not
maintain any state and can append a range of window-ids to each
input tuple immediately when the tuple arrives, since the wids
function for an FCF window does not require forward-context.
Bucket also applies a similar calculation to transform
punctuations on WATTR into punctuations on the wid attribute.

5.2.2 Aggregation
Bucket tags tuples with window-ids; the aggregate operator
processes these tuples to produce an aggregate value for each
window extent. Using the wid attribute as an additional grouping
attribute is the key to this aggregation step. Given a tuple t tagged
with a range of window-ids w1–wn (t.wid = w1–wn), the aggregate
operator uses t to update n aggregate values whose wid-values fall
between w1 and wn inclusive. Note that the window specification,
and thus the window semantics, is not exposed to the aggregate
operator. However, we have extended the aggregate operator to
understand range values.
The aggregate operator must detect when each window extent is
complete and then output the result for that extent. Detecting the
ends of window extents is particularly challenging when the input
stream is disordered, or when the data arrival rate is bursty or
slow [7], because disordered input streams may lead to
incomplete window extents, and bursty or slow streams may
result in a high delay in outputting results. In WID, we use
punctuations to indicate the ends of extents. When the aggregate
operator receives a punctuation, it outputs the results for the
matching window extents and purges the corresponding state.
Using punctuations to convey end-of-extent messages transforms
the complexity of detecting the end of window extents into the
generation of punctuations. In contrast to hardwiring arrival order
information or assumptions into the implementation, using
punctuation to signal the ends of window extents is more flexible.
The correctness of punctuations affects the accuracy of results,
and the regular arrival of punctuations can reduce the delay in
outputting results. Delays in punctuation arrival delay results, and
increase the state that the aggregate operator must keep, but do
not affect the correctness of results.

Discussion: Compared to existing techniques that retain and
reprocess input tuples, WID reduces both buffer space and
execution time, as our experimental results in Section 8 attest.
The main space savings come from never explicitly materializing
window extents, but instead maintaining partial aggregates for
multiple extents simultaneously—almost always a beneficial
tradeoff. For example, if RANGE is 60 minutes, and SLIDE is 5
minutes, current window query evaluation algorithms would
buffer one hour’s worth of tuples; in contrast, WID needs to

buffer only 12 (= 60/5) aggregate values—one for each active
window extent. Secondary space savings come from avoiding any
buffer space devoted to sorting out-of-order tuples. The tuples can
be tagged and processed as they arrive. The only offsetting
expense is sometimes retaining a few more aggregate values for
incomplete window extents. The main time saving comes from
handling each tuple once, and recording its contribution to all its
window extents at that time, rather than revisiting it multiple
times.
One optimization possible with WID that we investigated is to
pre-aggregate tuples on panes (sub-windows), and then use those
pane aggregates to get full window aggregates [9]. Using panes
with WID leads to further execution-time savings, due to
computation sharing among consecutive windows. In addition,
using panes to evaluate holistic aggregates [6] can reduce
execution-time, which plain WID does not.

6. FCA WINDOWS: the WID Approach
Recall that a FCA window has a wids function that requires
forward-context. In many implementations, the requirement of
forward-context leads to buffering and delay of tuples. We
propose an algorithm that uses window-id ranges to process
several types of FCA windows, including slide-by-tuple windows,
in one pass. Ours is the only algorithm we know of that can
process FCA windows, as well as FCF windows, without
buffering and reprocessing tuples.
We observe that we can further differentiate FCA windows into
FCB (forward-context bounded) and FCU (forward-context
unbounded) windows based on whether we can bound the range
of forward-context that the wids function requires. Loosely, for
FCB windows, when a tuple t arrives, we can determine the range
of window-ids for the extents in which t participates, but not all
the specific window-ids. For FCU windows, it is not possible to
determine the range of window-ids for each input tuple as it
arrives.
We first present WID for slide-by-tuple windows, as they are the
most commonly discussed FCA windows. Then we discuss WID
for the two variations of slide-by-tuple windows, which slide by n
tuples over row-num attribute and rank(RATTR), respectively.
The latter is FCU.

 (seg-id, speed, ts)

t (s6, 50, 12:10:30)
p (s6, *, 12:11:00)

 (seg-id, speed, ts, wid)

t (s6, 50, 12:10:30, 10-14)
p (s6, *, *, 10)

streamscan

 bucket
 (range = 5 minutes
 slide = 1 minute)

AggrFun (max, min)
(group on seg-id, wid)

Figure 3: Query plan for Q1

317

6.1 Slide-by-tuple Windows
In WID for FCF windows, the bucket operator tags each tuple
with a range of window-ids and a window-agnostic aggregate
operator computes the results. In WID for FCA windows, the
bucket operator also tags tuples with a window-id range; however
this range has a different meaning and in fact the binding of
window-ids to input tuples is deferred to the aggregate operator.
With this design, we process each tuple only once and handle out-
of-order tuples the same as in-order tuples.
The aggregate operator for slide-by-tuple windows requires a
more sophisticated design as will be described below. We avoid
retaining and re-processing tuples by maintaining partial
aggregates for extents and by using these partial aggregates to
initialize partial aggregates for new extents.

6.1.1 Example
For FCA windows, we know we cannot calculate a set of
window-ids for a tuple t immediately upon t’s arrival. Recall that
for slide-by-tuple windows and variations, we use RATTR values
as window-ids. Careful examination of the wids function for such
windows reveals that we can determine the range into which these
window-ids will fall. For example, given the range of a slide-by-
tuple window, RANGE, and a tuple t with t.RATTR = s, the set of
windows-ids to which t is mapped fall into the interval [t.RATTR,
t.RATTR + RANGE), and thus bucket can tag t with this range.
We proceed to consider how the aggregate operator works. For
each input tuple t with t.RATTR = s, the first window extent that t
belongs to is s: {u ∈ T | s – RANGE < u.RATTR ≤ s}, which ends
with the arrival of t. We define an auxiliary extent for t, s +
RANGE: {u ∈ T | s < u.RATTR ≤ s + RANGE}, which is the
earliest subsequent extent to which t does not contribute. (Note
that an auxiliary extent need not correspond to an actual tuple in

T.) For ease of presentation, we denote the window extent s and
the auxiliary extent s + RANGE of tuple t as Ss and Es
respectively, and refer to them as bins collectively. One can think
of Ss and Es as the “start bin” and “end bin”, respectively. We use
B to refer to the wid for bin B, i.e., Ss = s and Es = s + RANGE.
Figure 4 shows the processing of a slide-by-tuple query where the
aggregate is count, RATTR is A, and RANGE is i. We depict the
bins as laid out in order of the A attribute, with a bin B associated
with the position of its B. We mark the region to the right of the
end of the bin, up to the end of the next bin with the partial
aggregate value for the bin. For example, in Figure 4(d), the
partial aggregate for Es1 is 2 and for Ss4 is 3. The reason we label
regions in this way is to indicate that any extent whose wid is in
the region would have that contribution to its partial aggregate
from tuples contributed to that bin. Thus, an extent for wid s,
where Es1 ≤ s < Ss4, would have a contribution of 2 to its count
from tuples in Figure 4(d). We consider the arrival of tuples t1 –
t5, where si = ti.A. We start with an initial bin, init, with count =
0. The arrival of t1 adds bins Ss1 and Es1 (Figure 4(a)), with
initial values 1 and 0, respectively. Tuple t2 with s2 > s1 starts
bins Ss2 and Es2, with Ss2 set initially to the value of Ss1 plus 1,
and Es2 initialized to Es1 (Figure 4(b)). Es1 is incremented by 1,
to reflect the contribution of t2. Figure 4(c) show the effect of t3,
where s3 > s2: Ss3 and Es3 are created and initialized, and Es1
and Es2 are incremented. Figure 4(d) shows the need for E-bins:
Ss4 is initialized from Es1, reflecting the contribution of t2 and t3,
but with t1 out of the extent for Ss4. Finally, Figure 4(e) shows
the arrival of an out-of-order tuple t5, with s1 < s5 < s2. Ss5 is
initialized from Ss1 and Es5 from Es1, with bins Ss2, Ss3 and Es1
incremented. If at this point, punctuation arrives indicating future
WATTR-values are greater than s2, the operator can emit the
aggregate values for Ss1, Ss5 and Ss2 (and discard Ss1 and Ss5).

0 01(a)

0 1(b) 2 1 0

0(c) 1 2 3 2 1 0

t4.A t4.A+i.

0 3 1 0(d) 1 2 3 2 2

(e) 0 2 3 4 323 011 2

t2.A t2.A+i

t1.A t1.A+i

init Es1 Es2Ss2Ss1

init Es1Ss3 Es2Ss2Ss1 Es3

init Es1Ss3 Es2Ss2Ss1 Ss4 Es4Es3

init Es1Ss3 Es2Ss2 Es5Ss1 Ss5 Ss4 Es4Es3

t3.A t3.A+i

t5.A t5.A+i

init Ss1 Es1

Figure 4: Example of insertion, initialization, and
update of bins as new tuples arrive.

Figure 5 shows the general case for the arrival of tuple tn, when
(Ssn, Esn) spans bins B1, B2, …, Bm. Bins B1 and Bm are “split”
and used to initialize Ssn and Esn; every bin Bi, 1 < i ≤ m is also
updated.

v1 vmv1+1 vm+1vi+1

Ssn BmB1 Bi Esn

Before

After

v1 vi vm

tn.A tn.A+i
B1 Bi Bm

Figure 5: Bin updates for arrival of tuple tn.

6.1.2 Algorithm
In this section, we present the algorithms used by the bucket and
the aggregate operator in WID for slide-by-tuple window queries.
The implementation of bucket is straightforward. For each tuple t,
where t.RATTR = s, it adds an attribute t.wid = (Ss, Es) giving the
maximal range of window-ids for extents to which it belongs. It
also transforms punctuations on RATTR to punctuations on wid.

318

Figure 6 contains pseudo-code for the aggregate operator. The
aggregate operator needs to store partial aggregates for bins that
are not expired. Initialize sets up the special “init” bin, labeled
with -∞. ProcessTuple sets up new start and end bins for each
arriving tuple, then updates appropriate bins. ProcessPunctuation
outputs results and purges appropriate bins.

State
We maintain two collections, S and E, each storing pairs
of the form [wid, pa] where pa is the partial aggregate
for bin with window-id wid. S stores start bins and E
stores end bins.

Initialize ()
 /* aggr-init depends on the aggregate function; for

example, aggr-init = 0 for count */
/* We use -∞ as the wid value of the init bin*/

 1. add [-∞, aggr-init] to E

ProcessTuple (t)
Let t.wid = (Ss

Our WID implementation for slide-by-tuple windows does not
retain and reprocess tuples; and it accommodates out-of-order
tuples. For slide-by-tuple windows, we avoid reprocessing tuples
at the cost of maintaining auxiliary extents (end bins). On the
other hand, our approach does not need space to retain input
tuples. Therefore, our approach still compares favorably to the
existing buffering approaches with regards to buffer space and
execution-time performance. In addition, as WID maintains
partial aggregates for active window extents incrementally, the
latency of outputting results is kept low.

, Es)

 1. Add [Ss, pa] to S, where [w, pa] ∈ S ∪ E has the
largest bin id w < Ss

6.1.3 Variations 2. Add [Es
This approach can be extended to variations of slide-by-tuple
windows, again with no tuple needing to be retained and
reprocessed, but at the cost of maintaining partial aggregates for
additional extents. The bucket operator for these two variations is
the same as the bucket for slide-by-tuple windows. We first
discuss the variation that slides over the row-num attribute, which
is a FCB window.

, pa] to S, where [w, pa] ∈ S ∪ E has the
largest bin id w < Es

/* the update operation depends on the aggregate-
function; for example, if aggregate-function = count,
the update operation is +1 */

 3. For each [w, pa] in S ∪ E where Ss ≤ w < Es
update pa using t

ProcessPunctuation (p)

 1. Output each [w, pa] in S with w < p.wid and remove
it from S

 2. Remove each [w, pa] in E with w < p.wid and w ≠ -∞

Figure 6: The Aggregate Operator Implementation for
Slide-by-tuple Window

For each tuple t with t.RATTR = s, the ProcessTuple function in
the aggregate operator still maintains partial aggregates for two
bins, Ss and Es; but it stores the t.row-num with the two partial
aggregates for it, e.g., [Ss, t.row-num, pa]. The
ProcessPunctuation function then only outputs the aggregates for
the appropriate window extents.
For the variation that slides over the tuple count of the logically
ordered input stream over RATTR, the ProcessTuple function
stores the current tuple count of t with the partial aggregates, e.g.,
[Ss, tup-cnt, pa]. The stored tuple count is updated as each new
tuple arrives. The ProcessPunctuation function is the same as the
function for windows that slide over tuple’s row-num attribute.
In summary, just as for slide-by-tuple windows, WID for these
two variations processes each tuple only once, and handles
disordered input; but it needs to maintain extra partial aggregates.
In particular, for the second variation, since its wids function
definition uses rank over RATTR attribute, it potentially requires
global information over the entire stream. Using punctuations can
unblock this “sort” requirement in an implementation. Therefore,
comparing the space and time performance of WID with the
buffering approach, there is a tradeoff on internal space usage
versus execution-time and output latency. For example, when a
stream is slow and the slide is large, the buffering approach might
outperform WID in terms of internal space usage. However,
execution-time is normally a more critical requirement for stream
applications.

7. DISORDER
Out-of-order tuples can cause both accuracy and latency problems
in window query evaluation. In this section, we first discuss
sources of disorder; then we examine information that can be used
to handle disorder and compare different ways of incorporating
the information into an implementation. Because of non-uniform
disorder patterns and the different types of information needed to

handle disorder, it is important that a disorder-handling
mechanism be flexible, while retaining efficiency.

7.1 Source and Nature of Disorder
There are various causes of disorder in data streams. Two simple
causes are merging unsynchronized streams and network delays.
In addition, query processing—join processing in particular—may
introduce disorder [8]. Further, stream data may appear disordered
when a window is defined on an attribute other than the natural
ordering attribute. For example, network flow records typically
have a start time and an end time; records typically arrive in end-
time order, but some network flow queries define windows on
start time [5]. Finally, data prioritization can create significant
disorder. For example Raman et al. [13] and Urhan and Franklin
[17] present methods for reordering data on the fly to give certain
sets of tuples processing priority.
To further understand the nature of disorder, we obtained network
flow data from the Abilene Observatory, a consortium using a
high-performance (Internet2) network to study advanced Internet
applications [1]. In networking terminology, a network flow is a
connection between a source IP address and port and a destination
IP address and port. A flow comprises one or more packets, which
each have a timestamp and size (among other information). Each

319

flow has a start and end time, which are the min and max
timestamps of packets in the flow.
Figure 7 shows a scatter plot of a sample of a stream of netflow
records emitted by a router in the Abilene Network. Each netflow
record is associated with a network flow. The x-axis is the
position of the packet in the stream, and the y-axis is network-
flow start time. The graph shows an ascending set of disjoint
blocks, with data points scattered apparently at random in each
block. The reason for the surprising shape of this graph is that
each minute the router outputs all its netflow records. At this
point, it purges its cache of netflow records and starts over. Thus
a block represents the records emitted during a cache purge; the
order within a block may be related to the structure of the router
hash table. Note that a flow that spans a block boundary is
represented in two separate blocks as two separate netflow
records.
Many stream systems handle disorder by assuming there is a fixed
bound on disorder. However, from the disorder pattern shown in
Figure 7, it is clear that a fixed bound on disorder is not a good
match to this pattern. Setting the bound to less than a minute will
drop many tuples; setting the bound to a minute will
accommodate the disorder but unduly delay result output. What
makes more sense is for the router to output a message—a
punctuation perhaps—to indicate it has completed a cache purge.

7.2 Disorder Handling: Punctuation
We leverage punctuation for flexibility in handling of disorder.
Order is important in detecting when all tuples participating in a
window extent have arrived, and the result for that extent can be
released. For example, if one assumes that data arrives in order,
detecting the end of window extents can be done by inspecting
tuple timestamps; one can assume that a window extent from
12:00-12:05 is complete when a tuple with a timestamp greater
than 12:05 arrives. However, if only tuples from the same sensor
are guaranteed to be in order, the situation is more complex. We
need to see a tuple with timestamp greater than 12:05 from every
sensor to know the extent is complete. Another option, called
slack, allows disorder within a specified bound. For example, the
BSort operator of Aurora [2] assumes that tuples will be out of
order by no more than N positions and maintains a buffer of size
N to reorder the input stream. BSort produces an ordered stream;
any tuples that are more than N positions out of order are dropped.
Rather than develop different implementation techniques to
handle different disorder patterns and policies, we localize the
processing related to disorder into a single operator generating
punctuation, and then use punctuation-aware (but disorder-
unaware) operators [16] elsewhere. The punctuating operator can
incorporate the techniques we mentioned for dealing with order
and disorder. It can use knowledge of stream order or sub-stream
order as described in the example above to generate punctuation.
The information that no tuple will be more than N tuples or S
seconds out of order can be exploited to generate punctuation. A
policy that no tuple more than S seconds late can be used by the
punctuating operator to generate punctuation and filter tardy
tuples. Notifications from stream sources, such as the router from
Figure 7, can be converted into punctuation. The further
advantage to dealing with disorder through punctuation is that we

can process tuples in arrival order, thus avoiding latency and
space costs associated with approaches that buffer and reorder
input.
Heartbeats are an alternative approach for handling disorder,
proposed by Srivastava and Widom [14]. Heartbeats are in effect
punctuations on timestamp. Their paper proposes several methods
for generating heartbeats; these methods could be incorporated
into a punctuationg operator and are complementary to our work.

8. PERFORMANCE STUDY
We tested the effectiveness and efficiency of WID by conducting
two sets of experiments: 1) The first experiment compares the
execution time performance for sliding windows using WID, and
the buffering approach—the existing technique that materializes
each window extent and computes the aggregate over it. 2) The
second and third experiments compare the latency and accuracy
of evaluating queries over streams with different disorder-patterns
using WID with punctuations arising from the data source (i.e.,
external punctuation), and slack implemented using punctuation.
Our experiments were conducted on an Intel® Pentium® 4 2.40
MHz machine, running Linux 7.3, with 512MB main memory.
The data size for the experiments was approximately 35 MB.

8.1 Experimental Data Generation
We implemented a data generator to produce tuples with
increasing timestamps loosely based on the XMark data generator
[18]. The schema of the data is easily mapped to traffic-speed
readings. The first experiment uses the data in generated order.
The second set of experiments uses bounded-disorder and block-
sorted-disorder data sets. To simulate the bounded-disorder
distribution, we first took ten data sequences (each of them with
bounded-disorder) resulting from applying a network analysis tool
[11] over TCP header traces. To get a large data sequence, we
concatenated randomly chosen copies of the ten data sequences.
To simulate punctuations from the data source, we pre-processed
the disordered data and inserted punctuations into the data. To
simulate the block-sorted-disorder distribution, we divided the
tuples into segments of equal length on the timestamp attribute,
and then randomized the positions of tuples in each segment.

0 1000 2000 3000 4000
Flow sequence number

0

60

120

180

240

300

360

420

480

Fi
rs

t p
ac

ke
t t

im
es

ta
m

p
(s

)

Figure 7: Block-sorted Disorder

320

Figure 8 (b): Execution Time: WID versus
Buffering – Zoom-in

8.2 Results
We present the results of the three different experiments. The
experiments used variations of Q1, and varied the parameters
according to Table 1. In Table 1, Agg Fcn stands for Aggregate
Function, R for RANGE and S for SLIDE.

Table 1: Experimental Parameters

Exp

Agg
Fcn

Dis-
order

Slack
Size

Slack
Approach

R S

1 max none 0 4000
rows varies

2 avg bound varies Consistent
Generous 64 s 6.4 s

3 cnt block-
sorted varies Consistent 600 s 60 s

Execution Time Comparison of WID versus Buffering: For
Experiment 1, we used the ordered data set and measured the
execution time cost of using WID and the buffering approach.
The measured time is in ms. For the window specification, we
used WATTR = row-num, RANGE = 4000 rows, and varied
SLIDE from 1 to 4000 rows.
Experiment 1 (Figure 8(a) and (b)) shows that WID in general has
better time performance than the buffering approach, and the
comparison favors WID as the ratio of RANGE and SLIDE
increases. Figure 8(b) is a zoomed-in version of Figure 8 (a); scan
cost is the measured time of scanning the whole data set.

Latency-Accuracy Tradeoffs for Bounded-Disorder: For
Experiment 2, we used the bounded-disorder data set and
measured the latency-accuracy tradeoff of using punctuation and
two types of slack [2]: consistent and generous. The two types are
similar, except that consistent slack requires that if a tuple is late
and must be dropped from one window, it will be dropped from
all windows it participates in, regardless if it is late for the other
windows or not. Generous slack makes no such restriction.
Average error percentage is the accuracy metric. For consistent
and generous slack, we vary the amount of slack from 0.32
seconds through 3.2 seconds and we use RANGE = 64 seconds,
and SLIDE = 64 seconds.

Our results (Figure 9) show that as slack increases, error
decreases and latency increases, as expected. It also shows that
external punctuation has better latency and accuracy than either
slack mechanism. In addition, generous slack has significantly
better accuracy at comparable latency when compared to
consistent slack.

Latency-Accuracy Tradeoffs for Block-Sorted-Disorder:
Experiment 3 is similar to Experiment 2, except that we used
block-sorted disorder (shown in Figure 7), with block duration
490 seconds. We varied the amount of slack from 0 to 600
seconds and used RANGE = 600 seconds and SLIDE = 60
seconds. The percentage of incorrect answers is the accuracy
metric for Figure 10. In contrast to Experiment 2, where error
decreases and accuracy increases as slack increases, for block-
sorted disorder there is no linear relationship between slack and
latency. For the block-sorted-disorder data set there is one slack
value that has the best latency, at the optimal accuracy, as shown
in Figure 10, which is determined by the relationship between
block size and window size. In our experiment, the optimal slack
is 491 seconds. When slack is less than optimal, latency is

Figure 8 (a): Execution Time: WID versus
Buffering – Overview

Figure 9: Latency vs. Accuracy Band-Disorder
(average error percentage)

321

essentially independent of slack. As slack increases above the
optimal, latency jumps dramatically. In this case, it would be
difficult to use slack to tune the latency and accuracy of the
query, as one might hope to do. It also shows that external
punctuation has better latency and accuracy for block-sorted
disorder than any slack amount used.

9. CONCLUSION AND DISCUSSION
We believe that the work here makes three important
contributions to the field of data-stream processing: 1) a
framework for defining window semantics independent of any
particular operator implementation algorithm; 2) a one-pass query
evaluation technique for many types of sliding-window
aggregates, which generally reduces memory space usage and is
very flexible in handling disorder; 3) an initial investigation on
the source and nature of naturally occurring disorder in data
streams, and its effects on stream system performance with
different disorder-handling strategies.
We believe that both our framework for window semantics and
query-evaluation approach are scalable and flexible enough to be
extended beyond window aggregates. In the future, we plan to
apply them on window join and multi-query window aggregates.

10. ACKNOWLEDGEMENTS
We thank Ted Johnson for information on sources of disorder,
Abilene for giving us access to their data, and our reviewers for
insightful comments. This work was supported by NSF grant IIS
0086002.

11. REFERENCES
[1] The Abilene Observatory.

http://abilene.internet2.edu/observatory.
[2] Abadi, D., Carney, D., Çetintemel, U., Cherniack, M.,

Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.
Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12, 2 (August 2003).

[3] Arasu, A., Babu, S. and Widom, J. The CQL Continuous
Query Language: Semantic Foundations and Query

Execution. Stanford University Technical Report, October
2003.

[4] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. Models and Issues in Data Stream Systems. In Proc. of the
2002 ACM Symp. on Principles of Database Systems (PODS
2002), (Madison, Wisconsin, June 2002).

[5] Cranor, C., Johnson, T., Spatashek, O. Gigascope: A Stream
Database for Network Applications. In Proceedings of the
2003 ACM SIGMOD International Conference on the
Management of Data (SIGMOD 2003) (San Diego, CA, June
2003).

[6] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart,
D., Venkatrao, M., Pellow, F., and Pirahesh, H. Cube: A
Relational Aggregation Operator generalizing Group-by,
Cross-Tab, and Sub-Totals. Data Mining and Knowledge
Discovery 1, 1 (May 1997).

Figure 10: Latency vs. Accuracy Block-Sorted-
Disorder (percentage of incorrect answer)

[7] Hammad, M., Aref, W., Franklin, M., Mokbel, M., and
Elmagarmid, A.K. Efficient Execution of Sliding Window
Queries over Data Streams. Purdue University Department of
Computer Sciences Technical Report Number CSD TR 03-
035, December 2003.

[8] Hammad, M., Franklin, M., Aref, W., and Elmagarmid, A.
Scheduling for shared window joins over data streams. In
Proceedings of the 29th International Conference on Very
Large Databases (VLDB 2003) (September 2003, Berlin,
Germany).

[9] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and

Peter A. Tucker. No Pane, No Gain: Efficient Evaluation of
Sliding-Window Aggregates over Data Streams. In SIGMOD
Record, 34, 1 (March 2005).

[10] Naughton, J., DeWitt, D., Maier, D. et al. The Niagara
Internet Query System. http://www.cs.wisc.edu/niagara.

[11] Passive Measurement and Analysis project. San Diego
Supercomputer Center. http://pma.nlanr.net/PMA.

[12] Radiation Detection Center, Lawrence Livermore National
Lab. http://rdc.llnl.gov.

[13] Raman, V., Raman, B., Hellerstein, J.M. Online Dynamic
Reordering for Interactive Data Processing. In Proceedings
of the 25th International Conference on Very Large
Databases (VLDB 1999) (September 1999, Edinburgh,
Scotland, UK).

[14] Srivastava, U, Widom, J. Flexible Time Management in Data
Stream Systems. Technical Report 2003-40, Stanford
University, Stanford, CA (July 2003).

[15] Stanford Stream Query Repository. http://www-
db.stanford.edu/stream/sqr.

[16] Tucker, P., Maier, D., Sheard, T. and Fegaras, L. Exploiting
Punctuation Semantics in Continuous Data Streams.
Transactions on Knowledge and Data Engineering, 15, 3
(May 2003).

[17] Urhan, T. and Franklin, M. J. Dynamic Pipeline Scheduling
for Improving Interactive Query Performance. In
Proceedings of 27th International Conference on Very Large
Data Bases (VLDB 2001) (September 2001, Rome, Italy).

[18] XMark Benchmark. http://www.xml-benchmark.org

322

	1. INTRODUCTION
	2. RUNNING EXAMPLE
	3. WINDOW SEMANTICS
	3.1 Motivation
	3.2 Window Specification
	3.3 Window-Ids and Window Extents
	3.4 Mapping Tuples to Window-ids
	4. BEYOND SEMANTICS: Towards Window Query Evaluation
	5. FCF WINDOWS: The WID Approach
	5.1 System Overview and Punctuation
	5.2 Query Evaluation for FCF Windows
	Bucket Operator
	5.2.2 Aggregation

	6. FCA WINDOWS: the WID Approach
	6.1 Slide-by-tuple Windows
	6.1.1 Example
	6.1.2 Algorithm
	6.1.3 Variations

	7. DISORDER
	7.1 Source and Nature of Disorder
	7.2 Disorder Handling: Punctuation

	8. PERFORMANCE STUDY
	8.1 Experimental Data Generation
	Results

	9. CONCLUSION AND DISCUSSION
	10. ACKNOWLEDGEMENTS
	11. REFERENCES

