

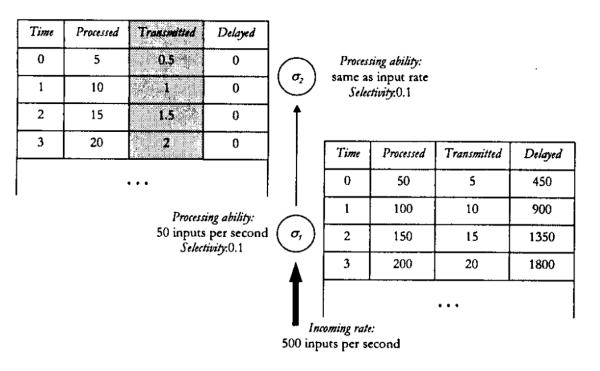
Rate-Based Query Optimization for Streaming Information Sources

Stratis D. Viglas

Jeffrey F. Naughton

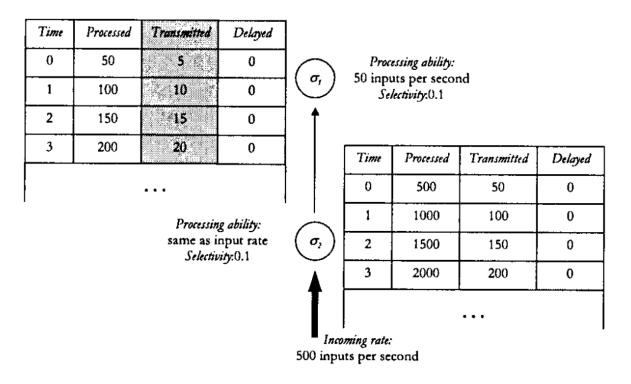
Cardinality Based vs. Rate Based Cost Estimation

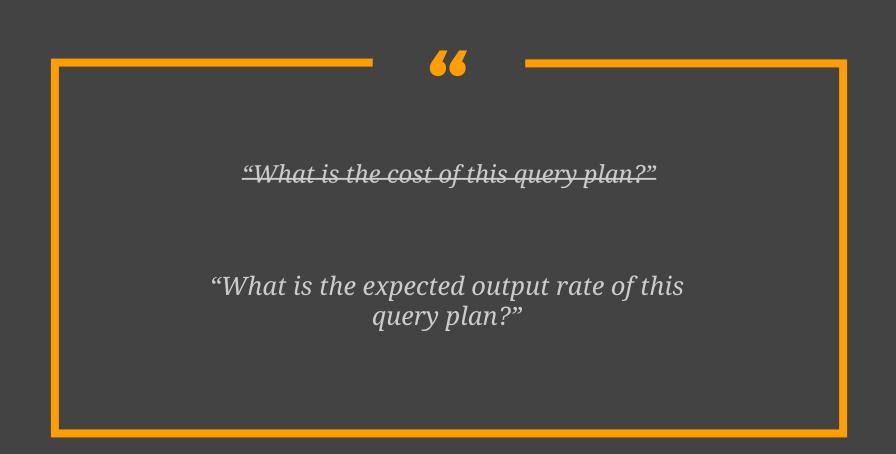
Let us consider two select operations A and B. Assume that the selectivity for A is 0.1 and B is 0.2 and that the input size is 500.


Cost (A
$$\rightarrow$$
 B) = 500 * c_{A} + 500 * 0.1 * c_{B}
Cost (B \rightarrow A) = 500 * c_{B} + 500 * 0.2 * c_{A}

Assume that the selectivity of each of A and B is 0.1; input arrives at 500 tuples per second; A can process 50 inputs per second and B can process data as fast as it receives it.

Size of input is infinite


 \Rightarrow Cost of each plan is infinite


(a) Output rate = 0.5 outputs per second

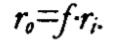
 $\bm{A} \to \bm{B}$

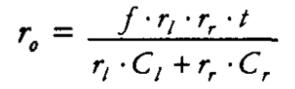
 $\mathbf{B} \to \mathbf{A}$

(b) Output rate = 5 outputs per second

 $Output \ rate = \frac{Number \ of \ outputs \ transmitted}{Time \ needed \ to \ make \ the \ transmission}$

Table 1: Cost variables used in the estimation of output rates


Cost Variable	Meaning	
Сл	Cost of projecting parts of an input object Cost of performing a selection on an input	ro Output Rate
C_{σ}	Cost of performing a selection on an input object	r; Input Rate
C_l	Cost of handling an input coming from the left- hand side of a join	r r Right Input Rate
C _r	Cost of handling an input coming from the right-hand side of a join	🎢 Left Input Rate
Т	Cost of making a single transmission	


Projections

Selections

Joins

 $r_o = r_i$

Optimize for a specific time point in the execution process using local rate maximization

Optimize for output production size using local time minimization

Experimental Validation Rate Based Cost Model

Does the cost model correctly estimate individual plan performance?

Is the framework capable of providing correct decisions regarding the best choice among a set of plans?

Experimental Setup

5 XML data sources Wide range of selectivities

Source	Number of tuples	Size
Α	5,000	0.7 MB
В	10,000	1.5 MB
С	20,000	1.8 MB
D	50,000	5.9 MB
Е	100,000	9.3 MB

5 Way Equi Join

Comparison to Traditional Cost Model

Plan	Traditional Estimation	Rate-Based estimation
Left Deep	104	1.3.103
Fast Leaves	2·10 ³	9.7·10 ²
Evenly Spread	5·10 ³	8.8·10 ²

Rate Based Estimation is the way to go!

