Paper review:
High-performance Transaction Processing
in SAP HANA

Erfan Zamanian
Feb. 2015

Background

- SAP HANA:

- Main-memory database

- Supports both analytical and transactional workloads
- Allows for column and row store

- Uses MVCC with distributed S| and locking scheme
- The deadlock detection is handled centrally.

‘V

Main Contribution

- A number of optimizations for:

- Distributed Snapshot Isolation (Sl)
- Exploiting locality of transactions
- Local transactions pay for local coordination
- Global transactions pay for global coordination

- Two-phase commit protocol
+ Minimizing synchronized logging
- Less communication cost

Category of the Paper
Improvement over existing work

\Weaknesses

- Lacks scientific methodology

- Contributions do not support all claims

- Incompatibility of text and figure

- Leaves some questions unanswered

Methodology

- For the distributed snapshot isolation:
- Introduced the notion of transaction token
- Alittle bit verbose

- For 2PC optimization:
- Ad hoc in nature (early commit ack, skipping writes, group 2PC)
- More of an engineering effort than research

- No experiments, numbers, graphs, ...
- Particularly essential for this type of papers

. S
Claims vs. Results IfEd Then

- The paper’s main claim:
- High throughput for OLTP while allowing OLAP
- But only discusses optimization for OLTP

- For example:
- Impacts of the delta buffer on OLAP?
- How frequently/when merge delta with with main store?
- Index on these tables?

- Bottom line: this paper does not discuss OLAP

Incompatibility of text and figure

2.1 General Concurrency Control Mechanism

Isclation of (om urrent Tanam Uons s enforied By 4 (entral Tanam BOf MARAGET Mantaining (nf ormaton shout
all write Tansacuons and e (omsstenl e manager decading on visbality of records per wble A so < alled
s o boden 3 penersted Dy the Vb Bof manager fof ca h Tansaton and encodes e hat Tana hons
are open and ommanied & he poust 0 Ume e Tamacton sarts The Tansa ton ohen (ontans all informaton
needed 10 conMret the conastent view for & TanAAUON of & satement B s passed & an additonal comten!
nformation 1o all operatons and engines hat are ivolved i e evecuton of 3 satement

For when gemeration the ransaction manager beeps Uk of the following mformanon for all enie vans
axton (1) wngue amsaction [Ds (TID) (4) the state of each Tansaction. | ¢ . open. aborted. o commutiod.
and () once the ramsaction s commutied. & commat [D (CID) (see Figure 1) While ClDs define the global

commat order. TIDn wdeatify 2 ungle Tansacton globally withowt amy order However there are reasoms W =

svosd worng the TID and CID per modified record |n the compressed column sore. for example. the wrie 2 2

wts of he Tansam oo are dwectly sored i the modifiable delta duffer of the wble To aheeve fine granuler 3 1

Tamaa ton control and hgh performane i hevomes aroesan o ranslate e aformateon s sed et the - 4 commited 3

potal CID mto an representation et only wses TIDh w0 svosd revisting all modified records dunng the (1D 35 open N

saxanon o e end of e commat The data comoladation s & harved wng e Tamaton ohen It con > 3 commited L<_

tns the ghobal referemce 1o the last communied Tansa oo o B poent 0 Lme and the Decessarny informaton o 7 open -

Tanalate s sate o & et of prede ses hesed oo TIDy The ransa ton wlen (ontams te folkw ing Seids 8 pr———

maxCID, minWriteTID, closedTIDs, and the TID. Now, we will explain how the state information of the

maxCID is translated into a set of TID filter predicates. The minWriteTID attribute of the token identifies

all records that are visible to all transactions that are currently running hereby exploiting the assumption that Transaction Token

the number of concurrently running transactions is limited and the order of the TIDs is similar to the order nextWriteTID 9

of the CIDs. This means that for all transactions T all records R with TIDp < minWriteTID are visi- Closed TIDs 68

ble. Since there can be committed transactions between minWriteTID and TID the attribute closedTIDs maxCID 5
maxWriteTID -

Figure 1: Data Consolidation with Transaction To-
ken

Unanswered Questions

- In section 2.2
- Each record has local _TID and global TID
- A local write transaction sees local_TID
- A global write transaction sees global _TID and local_TID

Record_ID Local_TID Global_TID
1 5 6
) 7 8
3 9 P
4 5 6

- Algorithm correctness?

Unanswered Questions

—

- Local transactions always commit

+

. Paper’s assumptions: Unaddressed question:

- Short-running transactions are local-only — . :
] ot i inod How is starvation
ong-running transactions are multi-node handled?

+

- S| follows “first committer wins”

Suggestions

- In HANA:

- Coordinator assigns a range of TIDs to each node
- Eliminates the communication cost for TID request
- Coordinator discards the unused TIDs periodically

- Suggestion: further reduce the communication cost by:
- Assigning fixed TID numbering scheme (e.g. mod, hash)

Conclusion

- The paper presents some novel optimizations
- Not quite ready for publication in such a venue

- Benefits from
- revising some sections
- improving the flow of the paper
- following a systematic approach
- adding experiments

And now, let's welcome the authors

