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Background

- SAP HANA:

- Main-memory database

- Supports both analytical and transactional workloads
- Allows for column and row store

- Uses MVCC with distributed S| and locking scheme
- The deadlock detection is handled centrally.
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Main Contribution

- A number of optimizations for:

- Distributed Snapshot Isolation (Sl)
- Exploiting locality of transactions
- Local transactions pay for local coordination
- Global transactions pay for global coordination

- Two-phase commit protocol
+ Minimizing synchronized logging
- Less communication cost

Category of the Paper
Improvement over existing work



\Weaknesses

- Lacks scientific methodology

- Contributions do not support all claims

- Incompatibility of text and figure

- Leaves some questions unanswered



Methodology

- For the distributed snapshot isolation:
- Introduced the notion of transaction token
- Alittle bit verbose

- For 2PC optimization:
- Ad hoc in nature (early commit ack, skipping writes, group 2PC)
- More of an engineering effort than research

- No experiments, numbers, graphs, ...
- Particularly essential for this type of papers
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Claims vs. Results IfEd Then

- The paper’s main claim:
- High throughput for OLTP while allowing OLAP
- But only discusses optimization for OLTP

- For example:
- Impacts of the delta buffer on OLAP?
- How frequently/when merge delta with with main store?
- Index on these tables?

- Bottom line: this paper does not discuss OLAP



Incompatibility of text and figure
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maxCID, minWriteTID, closedTIDs, and the TID. Now, we will explain how the state information of the

maxCID is translated into a set of TID filter predicates. The minWriteTID attribute of the token identifies

all records that are visible to all transactions that are currently running hereby exploiting the assumption that Transaction Token
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Figure 1: Data Consolidation with Transaction To-
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Unanswered Questions

- In section 2.2
- Each record has local _TID and global TID
- A local write transaction sees local_TID
- A global write transaction sees global _TID and local_TID

Record_ID Local_TID Global_TID
1 5 6
) 7 8
3 9 P
4 5 6

- Algorithm correctness?



Unanswered Questions

—

- Local transactions always commit

+

. Paper’s assumptions: Unaddressed question:

- Short-running transactions are local-only — . :
] ot i inod How is starvation
ong-running transactions are multi-node handled?

+

- S| follows “first committer wins”




Suggestions

- In HANA:

- Coordinator assigns a range of TIDs to each node
- Eliminates the communication cost for TID request
- Coordinator discards the unused TIDs periodically

- Suggestion: further reduce the communication cost by:
- Assigning fixed TID numbering scheme (e.g. mod, hash)



Conclusion

- The paper presents some novel optimizations
- Not quite ready for publication in such a venue

- Benefits from
- revising some sections
- improving the flow of the paper
- following a systematic approach
- adding experiments



And now, let's welcome the authors




