
Storm@Twitter

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel*, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake

Donham, Nikunj Bhagat, Sailesh Mittal, Dmitriy Ryaboy

Paper Presented by Harsha Yeddanapudy

Basic Storm data processing architecture consists of
streams of tuples flowing through topologies.

vertices - computation
edges - data flow

Spouts & Bolts

spouts produce tuples for the
topology

bolts process incoming tuples and pass them
downstream to the next bolts

Partioning Strategies
Shuffle grouping, which randomly partitions the tuples.

Fields grouping, which hashes on a subset of the tuple attributes/fields.

All grouping, which replicates the entire stream to all the consumer tasks.

Global grouping, which sends the entire stream to a single bolt.

Local grouping, which sends tuples to the consumer bolts in the same executor.

Storm Overview

Nimbus

responsible for distributing and coordinating the execution
of the topology.

Nimbus cont.

user sends
topology as
Apache Thrift
object to Nimbus

user code
sumbitted as JAR
file

Nimbus stores
topology on
ZooKeeper and
user code on local
disk

Nimbus w/
 ZooKeeper & Supervisor

supervisors advertise
running topologies and
vacancies to Nimbus
every 15 sec

fail-fast and stateless

states

Supervisor
● runs on each storm

node
● recieves assignments

from nimbus and starts
workers

● also monitors health of
workers

● responsible for
managing changes
in existing
assigments

● downloads JAR files
and libraries for the
addition of new
topologies

● reads worker
heartbeats and
classifies them as
either valid, timed-
out, not started or
disallowed

Workers and Executors

● executors are threads within the worker
processes

● an executor can run several tasks
● a task is an instance of a spout of bolt
● tasks are strictly bound to their executors

Workers
worker receive thread: listens on TCP/IP port
for incoming tuples and puts them in the
appropriate in-queue
worker send thread: examines each tuple in
global transfer queue, sends it to next worker
downstream based on its task destination
identifier

Executors

User Logic Thread: takes incoming tuples from
in-queue, runs actual task, and places outgoing
tuples in out-queue
Executor Send Thread: takes tuples from out-
queue and puts them in global transfer queue

message flow inside worker

Processing Semantics

Storm provides two semantics gaurentees:
1. “at most once”

- gaurentees that a tuple is successfully
processed or failed in each stage of the
topology

2. “at least once”
- no gaurentee of tuple success or failure

At Least Once
Acker bolt is use to provide at least
semantics:
● random generated 64 bit message id

attached to each new tuple
● new tuples created by partioning during

tasks are assigned a new message id
● backflow mechanism used to

acknowledge tasks that contributed to
output tuple

● retires tuple once it reaches spout that
started tuple processing

XOR Implementation
● message ids are XORed and sent to the acker along

with original tuple message id and timeout parameter
● when tuple processing is complete XORed message id

and original id sent to acker bolt
● acker bolt locates original tuple and get its XOR

checksum, then XORed again with acked tuple id
● if XOR checksum is zero acker knows tuple has been

fully processed.

Possible Outputs
Acked - XOR checksum successfully goes to
zero, hold dropped, tuple retired
Failed - ?
Neither - Timeout parameter alerts us, restart
from last spout checkpoint

XOR Implementation cont.
Bolt

Spout

Experiment Setup

Results

tu
pl

es
 p

ro
ce

ss
ed

 b
y

to
po

lo
gy

/m
in

ut
e

Operational Stories
Overloaded Zookeeper - less writes to zookeeper, tradeoff
read consistency for high availability & write performance
Storm Overheads - Storm does not have more overhead
than equivalent Java; add extra machines for business
logic and tuple serialization costs
Max Spout Tuning - Number of tuples in flight value is set
dynamically by algorithm for greatest throughput

Review

Storm@Twitter is...
● Scalable
● Resilient
● Extensible
● Efficient

