Models and Issues in Data Stream Systems

Presented by Christian Valdemar Mathiesen <u>cmath@cs.brown.edu</u> March 9, 2015

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Jennifer Widom

*STanford StREam DatA Manager

STREAM

- Query language
- Query processing
- Conclusion

Query language

"In the STREAM project, we have chosen to use a modified version of SQL as the query interface to the system [...]. SQL is a well-known language with a large user population."

SELECTAVG(V.minutes)FROM(SELECT S.minutesFROM Calls S, Customers TWHERE S.customer_id = T.customer_idAND T.tier = 'Gold')V [ROWS 1000 PRECEDING]

VS.

Source: "Storm @Twitter", Toshniwal et al.

Which is easier to understand?

STREAM

**

Aurora

*Source: http://stackoverflow.com/questions/6564601/sql-query-with-complex-subqueries ** Source: The Aurora and Borealis Stream Processing Engines, Cetintemel et al.

Timestamps

"Formally we say that a data stream consists of a set of (tuple, timestamp) pairs[...] — **all that is required is that [the timestamp] comes from a totally ordered domain** with a distance metric."

Timestamps

What if tuples arrive from multiple sources?

In other words, how do we guarantee a totally ordered domain?

Query processing

Paper uses same notation for queries and queues!?

Query processing

How are query plans generated?

How does the system scale (i.e. it only has one central scheduler)?

Conclusion

- Paper presents a series of relevant issues for OLTP systems
- STREAM tries to solve these issues, but reasoning behind design decisions are sometimes unclear
- Algorithmic issues should be put in separate paper