EDIC RESEARCH PROPOSAL

Adaptive partitioning and indexing
for raw data querying

Matthaios Olma
DIAS, 1&C, EPFL

Abstract—Traditional database management systems approach
to data analytics assumes that the input would be loaded within
the DBMS, and then queried upon. However, data analytics
depend on the interaction with the data analyst and as data
collections grow larger and larger, data loading acts as a
bottleneck and it incurs significant data-to-query delay.

In this paper, we examine the NoDB paradigm, which proposes
querying data ir situ. We describe the structures it introduces to
overcome the limitations of having to access raw files repeatedly,
its adaptive nature, and see how it is manifested in a system
extending a traditional DBMS. To address shortcomings of query
execution in NoDB, we examine a parallelized approach to in situ
query processing. The efficient design of concurrent execution
may further minimize the overheads of raw data accesses as
well as benefit the query execution. In addition, affected by the
sheer amounts of data that need to be handled, and the dynamic
workloads which are common in data exploration scenarios,
we present an adaptive partitioning and indexing system for
relational tables which may be applied accordingly to fit the
raw data querying paradigm.

Finally, inspired by the previous approaches, we briefly present
our vision for a lightweight database service which allows users
to seamlessly pose interactive queries over raw files of unlimited
size while minimizing the execution time.

Proposal submitted to committee: May 28th, 2013; Candi-
dacy exam date: June 4th, 2014; Candidacy exam committee:
Prof. Rachid Guerraoui, Prof. Anastasia Ailamaki, Dr. Edouard
Bugnion.

This research plan has been approved:

Date:

Doctoral candidate:
(M. Olma)

(name and signature)

Thesis director:
(A. Ailamaki)

(name and signature)

Thesis co-director:

(if applicable) (name and signature)

Doct. prog. director:

(B. Falsafi) (signature)

EDIC-1u/05.05.2009

Index Terms—In situ querying, Query optimization, Data
analysis, Parallelization, Partitioning, Indexes

I. INTRODUCTION

Experts from various fields, ranging from domain scientists
to data warehouse analysts, attempt to gain knowledge by
going through newly acquired data and combining them with
existing information. Through this process, and by exploiting a
number of different data sources they try to expose previously
unknown patterns of interest.

The continuously increasing amounts of daily produced
data, open up multiple possibilities for extracting useful in-
formation via its exploration, but at the same time introduce
major challenges in data management.

In order to extract information from the bulks of produced
data one has to employ techniques like data exploration. In
data exploration cases, in order to gain insight through large
amounts of never-seen-before data, one has to follow a query-
based approach where knowledge over the data advances
through querying and leads eventually to gathering previously
unknown information.

Despite the increase in computing resources, due to the
volume of the data produced and the effort needed to analyze
it, the data cannot be leveraged. Deriving new information
from data is a time-consuming and complex process. Besides
the sheer amount of data produced, bottleneck to this process
is also the complexity of the data and the variety of formats
the data is stored in.

The traditional approach for data exploration follows the
ETL (Extract, Transform, Load) scheme thus requiring the full
loading of datasets into a DBMS. The scenarios for simple data
exploration have indicated that no useful information resides
in a batch of data, meaning that it may be ignored. Thus,
full loading of data into a DBMS, being a costly process,
introduces a major investment which may not be leveraged.

The primary reason for the presence of these time-
consuming tasks is the requirement of database systems to
always have complete control over the data. Therefore, the
impedance mismatch between the raw data and the query
engine has traditionally been resolved by converting raw data
to an internal, database-specific representation and loading it
in a database system. Then, queries would take place using a
query engine which has been heavily optimized to offer high
performance when operating over the internal format.

But this impedance mismatch with the data format, is only
one dimension of the problem. As the workload tends to be

EDIC RESEARCH PROPOSAL

very dynamic it is only logical that DBMS should adapt to it
as well. In this context, we argue that by incorporating into a
DBMS the capabilities to adapt to the data and the workload
while exploiting both computational and storage resources in
an efficient way, the execution of analytical queries will be
more efficient.

The rest of this paper is organized as follows: Section II
introduces the NoDB philosophy, which proposes querying
data in situ instead of loading them in a traditional DBMS.
In Section Il we examine a parallel solution to in situ query
processing with a different approach to loading. In Section IV
we present adaptive partitioning and indexing techniques over
relational data which can help further with the adaptation
of the execution to the workload. Finally, in Section V we
briefly present our research plan, outlining our approach for
a lightweight, data- and query-adaptive database service over
raw data.

II. RAW DATA QUERY PARADIGM

The authors of [1] introduce the “NoDB philosophy”. Mo-
tivated by the trends in scientific data analysis they recognize
that to make data exploration efficient, the processes have to be
more interactive and in order to succeed the data-to-query time
has to be reduced. Traditionally, a data analysis task demands
that data has to be loaded into a DBMS, despite that only a
small part of the data would prove relevant. NoDB goal is to
remove this significant bottleneck and provide a load-free data
exploration experience.

In order to achieve its goal, NoDB executes queries straight
on the “raw” data files and to make this as efficient as possible,
treats raw data as a first-class citizen of a DBMS. The scan
operators of a NoDB system are to be able to handle not
only the binary data format that is understandable by the
database, but also raw data. In addition, specialized data
structures facilitate raw data access by providing indexing
support over raw data. This deep integration of raw data
support differentiates NoDB from industrial efforts such as
the ones from Oracle and MySQL. These two systems offer
support for querying files external to a database, but the
approach followed by them leads to poor performance, as files
are treated as an external entity, without indexing support, in-
database caching, or statistics gathering. NoDB opts instead
to treat “raw” data as a first-class citizen of the DBMS.

To prove the viability of the NoDB philosophy the authors
implemented a system prototype. The system, nick-named
PostgresRAW, has been built by overriding the scan operators
of the PostgreSQL row store. It provides support for querying
raw data stored in comma-separated value (CSV) files.

A. Reducing in situ access overheads

As a result of removal of loading functionality a number
of significant limitations that have to be taken into account.
Through loading, databases gained control over the data and
thus introduced metadata that improved query execution. In the
case of in situ access every time a query has to be executed
the file has to be scanned to determine the tuples present (i.e.,
find the end of line for each row), then the tuple fields need to

be tokenized based on the delimiter used, and finally the fields
required need to be converted to their original data types. Only
then the tuples can be evaluated against the query.

The authors to overcome the overheads of raw data file scan
implemented a variety of techniques. A first step includes
“selective tokenizing” based on which the tuple tokenizing
stops as soon as the attributes necessary to answer a query have
been found. In order to reduce parsing costs, PostgresRAW
can stop converting attributes of a tuple as soon as this tuple
does not satisfy some selection predicate, assuming there
is a WHERE clause predicate. Furthermore, PostgresRAW
performs selective tuple formation, creating tuples comprising
only the attributes required by the query. All in all, by using
these techniques, CPU processing costs are reduced, although
I/O costs are not affected.

Furthermore, PostgresRAW uses an auxiliary structure that
stores positional information of attributes. This structure,
called “’positional map” aims to reduce the file scan and as
a result to provide faster data retrieval. The positional map is
dynamically populated during query execution. Whenever an
attribute is retrieved from a raw file, its position is inserted
in the positional map. Subsequent queries requesting this
attribute, can use this information to directly jump to the
appropriate position, thus reducing parsing and tokenizing
costs. Even requests for nearby attributes can be serviced
by incrementally parsing from the known positions, so that
scanning tuples from their beginning is avoided.

after Query 1 on a4,a7

after Query 2 on a2,a5

Raw File

p4,p7 — p2, p5

Tuple 1
Tuple 2

al, a2, a3, a4, a5, a6, a7, ...,
al, a2, a3, a4, a5, a6, a7, ..., an

i
i
i
]
1
|
1
| p4,p7 |— P2 p5
al, a2, a3, a4, a5, a6, a7, ..., an i
1
i
i
1
i
i
1
i
i

al, a2, a3, a4, a5, a6, a7, ..., an 4, p7 2, p5

[p4.p7 1 p2,p5
[p4.p7 | p2.p5

al, a2, a3, a4, a5, a6, a7, ..., an
al, a2, a3, a4, a5, a6, a7, ..., an

Tuple 6

:
i |
i |
| i
i i
i |
| i
i i
i |
| i
i |
i [P4 p7 [p2,p5 | i
i |
| i
i i
i |
| i
i i
i |
| i
i i
i |
| i
i i

|

Fig. 1: Example of a positional map

An example of a positional map instance is depicted in
Figure 1. Its structure and contents fully adapt to the query
workload.

In order to further reduce data file access cost PostgresRAW
is also reinforced by the presence of data caches. These caches
aim to reduce parsing, tokenizing as well as conversion to
binary costs.

Finally, PostgresRAW adaptively generates statistics on the
attributes of the file that are touched by queries. The more
“popular” some fields are, the more statistics will be gathered
for them.

B. NoDB performance evaluation

For a NoDB system to be a viable alternative, it needs to
offer performance comparable to that of a traditional DBMS.
To this end, and to demonstrate the impact of the techniques
proposed, PostgresRAW is evaluated against a number of
existing solutions.

EDIC RESEARCH PROPOSAL

Experiments are performed using CSV input consisting of
7.5 % 106 tuples, with each tuple containing 150 integer fields.
A subset of the results is depicted in Figure 2. Approaches like
MySQL and DBMSX external tables which naively re-visit
raw files in every access cannot be considered a competitive
option. However, PostgresRAW even manages to be have per-
formance competitive to state-of-the-art DBMS while allowing
rapid access to data. The extra cost of having to access raw
data is amortized among the query sequence, and is reduced
as the structures used are adaptively refined.

An additional experiment providing useful insights is de-
picted in Figure 3. In this scenario, PostgresRAW is com-
pared with systems executing queries over pre-loaded data,
all starting with a cold cache. The projectivity of the query is
reduced between runs, while keeping selectivity at 100%. After
the initial query, which is a worst-case scenario for NoDB
systems (as the entire file needs to be scanned), PostgresRAW
is competitive with the other systems. Actually, as projectivity
is reduced, CPU processing in the case of PostgresRAW is
reduced more rapidly than in the case of PostgreSQL. This is
due to the fact that only necessary attributes are brought in
the CPU caches, as mentioned in Section II-A.

831sec
|]

656sec

617sec
]

~5971sec Qs Q8
3000 e
— Q7 Q6
g 2500 2357sec mQ5 mQ4
2 mQ3 Q2
2000
E 1671sec mQl = Load
2 1500
£ — —
5 1000
3
o

o
=}
1<)

o

MysaL

CSV Engine
MysaL

Fig. 2: Comparison of PostgresRAW with other DBMS

DBMS X DBMS X

w/ external files

PostgreSQL PostgresRaw

PM+C

__ 300 + M PostgresRaw PM + C

é 250 - W PostgreSQL

2 200 asaL

£ 150 Y

S 100

3 50

(O]

S 0
Ql: Q2: Q3: Q4: Q5: Q6: Q7: Q8:
100% 100% 80% 60% 50% 40% 20% 10%

Query Sequence

Fig. 3: Comparison of PostgresRAW with other DBMS as a
function of projectivity

C. Summary

Summing up so far, PostgresRAW demonstrates a viable
alternative for data analytics workloads offering comparable
performance to commercial DBMS without incurring the cost
of loading.

III. PARALLEL RAW DATA PROCESSING

Ideally a solution operating over raw data would not be
restricted to a sequential execution. The sheer amounts of

analytics workloads dictate scaling up and parallelizing the
execution.

In ”"NoDB” raw data processing bottlenecks were discovered
and multiple approaches (i.e. Selective tokenizing, parsing
and data type conversion) to overcome them were introduced.
These operations though, are dependent on each other only
on the data they get as input. By exploiting this knowledge
and being motivated by evolution of multi core processors,
the authors [2] use multi-threaded execution to parallelize
operations and thus enable a more efficient query execution
over raw data.

A system prototype named SCANRAW, has been imple-
mented. This system has been built by appropriately introduc-
ing the parallel execution as well as some additional func-
tionality into the "NoDB” philosophy. Apart from the parallel
execution of separate operations, SCANRAW takes a different
approach to loading. Instead of fully removing the overhead of
writing to disk, SCANRAW introduces ”Speculative loading”
approach, based on which used data will be written onto disk
when the storage device is underutilized, (i.e., execution is
CPU bounded).

A. SCANRAW architecture

(Thread pool

position
buffer

Fig. 4: Architecture of SCANRAW

Figure 4 depicts the high level architecture of SCANRAW.
Primarily, SCANRAW acts as a scan operator and reads data
from the raw data files. The read operation takes place in
chunks, which is a collection of subsequent tuples. After
being read, the data is tokenized and parsed into the tuple
representation that can be processed by the execution engine.
Both tokenization and parsing are as well executed in chunks
of tuples.

As seen in Figure 4 multiple tokenize and parse stages are
present. Each of them operates on different portion of the data
in parallel, thus the execution of each one is independent to the
rest. A very important part of the architecture is the scheduling
of these stages and is managed by a separate component, the
scheduler. The scheduler controls a thread pool and assigns
threads to stages dynamically at runtime. The stages in the
SCANRAW pipeline act as producers and consumers that
move chunks of data between buffers. The entire process is
regulated by the size of the buffers which is determined based
on memory availability.

Considering the buffers, the fext chunks buffer contains text
fragments read from the raw file. The file is logically split into

EDIC RESEARCH PROPOSAL

horizontal portions containing a sequence of lines, i.e., chunks.
The position buffer between tokenize and parse contains the
text chunks read from the file and the corresponding field
starting positions computed in tokenize. Finally, binary chunks
buffer contains the binary representation of the chunks. This
is the processing representation used in the execution engine
as well as the format in which data is stored inside the
database. In binary format, tuples are vertically partitioned
along columns represented as arrays in memory. When written
to disk, each column is assigned an independent set of pages
which can be directly mapped into the in-memory array
representation. It is important to emphasize that not all the
columns in a table have to be present in a binary chunk.

B. Speculative loading

At the end of parsing, data converted to binary is loaded
in memory. Multiple paths can be taken at this point. In
commercial databases with raw data querying functionality
("External tables”), data is passed to the execution engine
for query processing and discarded afterwards. In NoDB,
data is kept in memory for subsequent processing and smart
caching policies are incorporated for optimal memory utiliza-
tion. SCANRAW implements speculative loading. In standard
database loading, data is first written to disk and only then
query processing can begin. SCANRAW on the other hand
decides adaptively at runtime (1) what data to load, (2) how
much, and (3) when to load it, while maintaining optimal query
execution performance. These decisions are taken dynamically
by the scheduler. Since the scheduler monitors the utilization
of the buffers and assigns worker threads for task execution,
it can identify when READ is blocked and enable WRITE
accordingly.

The ultimate goal of speculative loading is to be able to
take advantage in the future the already invested time into
parsing and tokenization but it is paramount that the disk
access have to be carefully synchronized in order to minimize
the interference since READ and WRITE contend for 1/O
throughput. Eventually depending on the policy taken by the
scheduler, SCANRAW could be either an “external table”
scan operator, a "NoDB” type operator with only intermediate
caches or to degenerate into a parallel Extract-Transform-Load
(ETL) operator.

C. Evaluation

The authors validate the impact of their contributions
namely, (1) the introduction of multi-threaded execution and
(2) the incorporation of speculative loading, with series of
experiments. The experiments are conducted on a server with
2 AMD Opteron 6128 series 8-core processors (64 bit) and 40
GB of RAM using a CSV file with 225 rows and 64 columns
with total size 40GB.

In Figure 5 the different variations of SCANRAW are eval-
uated against configurations with varying number of worker
threads. The query run is a summation over all columns and
rows. The ”Load & Process” initially loads all data and sub-
sequently executes the query thus incorporating a major static
cost. The “External Tables” approach queries straight over

W Speculative " Load & = External
loading

process tables
800
700
600
500
400
300

200

Execution time (seconds)

100
0 1 2 4 6 8 10 12 14 16

worker threads

Fig. 5: Execution time against parallelization

the raw data files. The ”Speculative loading” approach loads
data when the storage device is idle. In the experiment the
execution time level-off beyond 6 workers. The reason for this
is that processing becomes I/O-bound. Increasing the number
of worker threads does not improve performance anymore. As
expected, loading all data during query processing increases
the execution time. Before leveling-off the execution time of
all three configurations are similar because as processing is
CPU-bound and due to parallelism SCANRAW manages to
overlap conversion to binary and loading into the database
completely. Essentially, loading comes for free since the disk
is underutilized. All the unique SCANRAW features super-
scalar pipeline, asynchronous threads, dynamic scheduling
combine together to make loading and processing as efficient
as external tables.

=¥= Spec. loading = Buffer loading "8 Load+db =» External tables
200 o

N
160 LS
A S

120 e L L N S L R R T T

80

40

Execution time per query (seconds)

Query sequence

Fig. 6: Execution time for a sequence of queries

In Figure 6 is depicted the execution time of the different
approaches for a sequence of 6 same queries (identical queries
with the previous experiments).

The execution time for external tables is almost constant.
Data are always read from the raw file, tokenized, and parsed
before being passed to the execution engine. Considering
database execution, the first query incurs the whole cost of
loading thus starting from the second query the execution time
is constant. Comparing external tables to database execution
the database is considerably faster than external tables by a
factor of 2.5. Buffered loading simply inserts all chunks that

EDIC RESEARCH PROPOSAL

are expelled from the cache to the database thus distributes
the loading time over the first two queries since not all data
fit in memory. As a result, there is a decrease in runtime for
the first query when compared to standard loading. For the
second query though, execution time is larger. Considering the
execution speculative loading, for the first query it executes
identically as external tables but after a number of queries it
converges to the database execution time which is the minimun
it can achieve.

D. Summary

SCANRAW demonstrated that parallelizing of tokenization
and parsing of queries over raw data can provide considerable
enhancements in their performance and at the same time can
provide the resources to hide database loading behind query
execution without hurting query performance.

IV. EXPLOIT ADAPTIVE PARTITIONING AND INDEXING

In many data-intensive applications the velocity with which
data is produced is considerably higher than the rate that users
access it. Such growing datasets lead to ever-increasing space
and performance overheads for maintaining and accessing in-
dexes. At the same time, the skew over popular and not popular
data access is considerable. Motivated by these observations
the authors of [6] designed Shinobi, a system which uses
horizontal partitioning as a mechanism for improving query
performance in a relational database by clustering the physical
data, and increasing insert performance by only indexing data
that is frequently accessed.

In order to partition efficiently and provide fine-grained in-
dexing, thus improving the performance of skewed workloads,
Shinobi uses three key ideas:

1) it partitions tables, so that regions of the table that are
frequently queried together are stored together, separate
from regions that are infrequently queried.

2) it selectively indexes these regions, creating indexes on
partitions that are queried frequently, and omitting in-
dexes for regions that are updated but queried infre-
quently.

3) it dynamically adjusts the partitions and indexes to ac-
count for changes in the workload.

A. Architecture

Shinobi acts as an intermediary between the workload and
a database system. It provides both functionality to statically
partition and index optimally the dataset based on some initial
data, and the capability to continuously adapt to the workload.

The input Shinobi gets is: (1) a list of attributes each table
is to be partitioned on, (2) a set of indexes to install on
the table, and (3) a set of queries and inserts that apply to
the table. The indexes to be used may be provided by a
database administrator or database tuner. Based on the initial
data and through monitoring Shinobi finds an optimal set of
non-overlapping range partitions and chooses indexes for each
partition (together called table configuration”) to maximize
workload performance.

Workload
Shinobi Path 1 Path 2
Optimizer Workload Sampler | Que‘ry
[Dynamic Repartitioner] Machine Statistics | Rewriter
v v
c
[Index Selector] --—)l Cost Model £33
SR
Index & Partition 2 30@
Creation Statements

—

Database

Fig. 7: Shinobi architecture

The architecture of Shinobi is depicted on Figure 7. It
depicts in detail the execution of Shinobi. The workload
follows two major paths. Through Path 1 Shinobi samples
incoming SQL statements and updates workload statistics
for the Cost Model. The Optimizer uses the cost model to
(re)optimize the table configuration. Through Path 2 Shinobi
parses queries using the Query Rewriter. Since changes may
have happened in the database schema by Shinobi queries
referring to partitioned attributes have to be rewritten and
redirected to the relevant partitions. Queries without such
predicates are directed to all partitions.

Considering sampling, the Workload Sampler reads recent
SQL statements from the query stream and computes workload
characteristics such as the insert to query ratio, and the
query intensity of different regions of the table. Similarly,
the Machine Statistics component estimates capabilities of the
physical device as well as database performance information.
Physical statistics include RAM size and disk performance,
while database statistics include append costs, insert costs, and
typical query costs.

Based on these statistics and the defined cost model the
expected statement cost for a workload is calculated. The key
idea is that the model takes into account not only query cost
but also the non-trivial cost of updating indexes on inserts and
updates.

Finally, the Index Selector and Dynamic Repartitioner com-
ponents optimize the table configuration based on the results
of the cost model. More specifically, they choose the most
efficient partitioning scheme and the most efficient set of
indexes to install on each partition of a table.

B. Cost model

The goal of the cost model is to accurately order the query
and update performance of different table configurations rather
than exactly estimate the expected cost. In order to succeed
Shinobi cost model tries to predict:

1) The average cost per query.
2) The cost to re-partition and re-index a table.
3) The overall benefit to switch to a new “table configura-
tion”.
Based on the calculation of these metrics the decisions
considering the table configurations are taken.

EDIC RESEARCH PROPOSAL

1) Query Cost Model: As the goal of this system is to be
efficient even in update-intensive workloads, the cost model
tries to incorporate both query and insert costs. It takes
into consideration both clustered and unclustered indexes and
machine statistics such as database copy speed.

2) Repartition Cost Model: The repartitioning cost model
estimates the cost to switch from one table configuration
to another. It takes as input the existing configuration and
outputs along with the new configuration, the cost of the
transformation to the new configuration (new partitions and
indexes). The cost is separated into two major sections, the
partition cost and the index cost.

3) Workload Cost Model: To calculate the total benefit that
a table configuration transformation can provide, the benefit
for a specific workload has to be initially calculated. Based on
past statistics, Shinobi estimates the lifetime of a workload.
Based on the lifetime, it calculates the average query cost
for the current and “new” table configurations (as described
earlier) and multiplies it by the estimated number of queries
to come. To make a decision though, the investment into the
transformation for the new configuration has to be taken into
consideration as well. Thus, the total benefit is calculated
by subtracting from the benefit the repartitioning/re-indexing
cost. It is clear that if the workload is longer or the benefits
from the transformation are larger this scheme allows for more
considerable investments into repartitioning/re-indexing.

C. Evaluation

The authors of Shinobi provided extensive experimental
evaluation of the system against a number of workloads
and datasets. Shinobi has to prove that it enhances query
performance when using a realistic workload. To this end, and
to demonstrate the impact of the cost model, Shinobi is tested
against the real Cartel workload (Wcartel) [3] that contains
the positions of vehicles in the Boston area.

The dataset comprises the centroidlocations table consisting
of latitude, longitude, timestamp, and several other identi-
fication attributes. The values of the lat and lon fields are
approximately uniformly distributed within the ranges [35, 45]
and [80,70] (the Boston area), respectively, which we define
as the dataset boundary. The table size is 3.4 GB, contains 30
million records, and is partitioned and indexed (unclustered)
on lat, lon composite key.

The workload contains 10 timesteps. Each timestep has
100 queries and 360 inserts per query (36k inserts/timestep).
The comparison is done among approaches that differ along
two dimensions: index selection technique and partitioning
type. Regarding indexing, Full Indexing (FI) indexes all of
the data in the table, and Selective Indexing (SI) uses the
cost model to only create beneficial indexes. Regarding par-
titioning, Static Partitioning (SPN) partitions the table into N
equally sized partitions, and Optimized Partitioning (OP) finds
the optimal partitioning based on the cost model described.
The approaches tested include:

o a fully indexed table (FISII)

« full and selective indexing on a table statically partitioned
into N partitions (FISPN, SISPN)

o selective indexing on a dynamically partitioned table
(SIOP or Shinobi)

—Shinobi — FISP49
700

600

500 \‘W

SISP49 -+FISP9 -=-SISP9

Workload Cost (sec)

Timestep

Fig. 8: Cartel workload performance

The results are depicted in Figure 8. Primarily considering
partitioning, the FISP9/49 curves illustrate the effectiveness
of statically partitioning the table into 9 and 49 partitions
respectively. Increasing the number of partitions from 1 to
9 and 49 reduces the select query costs by over 3x and 4x,
respectively. Considering selective indexing, as it only creates
indexes on heavily queried partitions, and reduces insert costs
for SISP9/49 by 7x and 21x respectively. Shinobi performs
as well as SISP49; the higher initial cost is because Shinobi
has not collected enough data yet and thus invests to much
cheaper partitioning.

D. Summary

Partitioning significantly reduces query costs when the
dataset is not clustered on the partition keys, whereas se-
lective indexing can dramatically reduce the index size, and
correspondingly the index costs, even for clustered datasets.
By monitoring the workload and introducing a cost model,
Shinobi targets dramatic performance improvements over real-
world workloads with average performance that is 60x better
than an unpartitioned, fully indexed database.

V. RESEARCH PROPOSAL: AN ADAPTIVE QUERY SERVICE
FOR IN SITU QUERYING

As increasingly more companies are basing their business
on the results of data analysis and data is generated at
an increasing rate, the task to provide to data analysts the
tools to efficiently handle their data has become work of
extreme importance. A novel approach to offer a scalable and
accessible solution to empower data scientists to leverage their
data is needed.

From the work described, NoDB [1], introduces in situ
query processing and in order to minimize the overhead of raw
data file access incorporates various optimization techniques.
Motivated by the sheer amount of data, SCANRAW [2]
improves over NoDB considering parallel execution. Finally

EDIC RESEARCH PROPOSAL

Shinobi [6], targets at adapting to the workload as much as
possible by gaining knowledge over the dataset exploiting this
knowledge to efficiently partition and index accordingly.

Inspired by these approaches we propose a lightweight in-
situ database management system that needs neither loading
nor tuning. This system would adaptively populate its metadata
and tune itself depending on the upcoming queries while
querying over raw data files. The system takes advantage
in an optimal way the existing resources by scaling up and
out. By collecting statistics over the execution the system
will choose the optimal partitioning schemes paired with
specialized indexes. No preparation or loading data would be
necessary. By minimizing data-to-query time, data scientists
will be empowered to explore their data independent of its
volume, variety or complexity.

From a performance perspective the results presented by
NoDB are encouraging and also motivated by the fact that
prospective benefits from applying partitioning and adaptive
indexing will be even greater for raw data files compared to
traditional DBMS, due to the avoided disk scans, one can be
confident over the efficiency of such an approach.

In order to implement such a system though has a number
of challenges. Most partitioning approaches on relational data,
incorporate physical restructuring of the data which is not
permitted in in situ query processing. At the same time the
execution should avoid duplicating data as much as possible.
In addition any decisions over the data have to be made as
early as possible (first scan), on the one hand to exploit as
early as possible the opportunity of speed-up and on the other
hand as indexing data incurs a considerable overhead over data
scans. All these allow only creating data structures that manage
meta-data. The same principles apply for indexes which will
have to be designed in accordance to the physical infrastructure
and taking advantage the hierarchy of storage devices while
providing the lowest insertion overhead, consume minimal
space and offer the highest possible performance.

The system ideally would be provided as a library that can
be easily incorporated to any data analytics platform providing
efficient access to data without requirements for preloading.

All in all, we envision of a database system that through
avoiding data loading gains elasticity without losing in perfor-
mance. This system will be able to adapt to any workload, de-
spite the size of input or complexity of the data. Through this
adaptation the cost of execution will be the minimal possible
given the physical constraints of technological equipment.

REFERENCES

[1] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and
Anastasia Ailamaki. NoDB: Efficient Query Execution on Raw Data
Files. In SIGMOD, 2012.

[2] Yu Cheng and Rusu Florin. Parallel In-Situ Data Processing with
Speculative Loading. In SIGMOD, 2014.

[3] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel
Goraczko, Allen Miu, Eugene Shih, Hari Balakrishnan, and Samuel
Madden. Cartel: a distributed mobile sensor computing system. In In
4th ACM SenSys, pages 125-138, 2006.

[4] Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Aila-
maki. Here are my Data Files. Here are my Queries. Where are my
Results? In CIDR, 2011.

[5] Stratos Idreos, Martin L. Kersten, and Stefan Manegold.
Cracking. In CIDR, 2007.

Database

[6] Eugene Wu and Samuel Madden. Partitioning techniques for fine-grained
indexing. 2011.

